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Abstract. We prove that for a negatively pinched (−b2 ≤ K ≤ −1) topologically
tame 3-manifold M̃/Γ , all geometrically infinite ends are simply degenerate. And if
the limit set of Γ is the entire boundary sphere at infinity, then the action of Γ on the
boundary sphere is ergodic with respect to harmonic measure, and the Poincaré series
diverges when the critical exponent is 2.
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1. Introduction. In the following M is a complete Riemannian n-manifold with
finitely generated fundamental group Γ . We assume that the sectional curvature K
satisfies −b2 ≤ K ≤ −a2 for some 0 < a ≤ b. A manifold which satisfies curvature
bounds of this type will be said to have negatively pinched curvature. The Riemannian
universal cover of M is denoted by M̃, and M is identified with M̃/Γ . The following
additional notations and terminologies will also be used:

• D is the critical exponent of the Poincaré series (
∑

γ∈Γ e−s dist(x,γ x)) of Γ . This
means that for every x ∈ M̃, the series diverges when s < D and converges when s > D.

• Γ is said to be divergent if the Poincaré series diverges at s = D.
• S denotes an arbitrary, fixed generating set of Γ .
• Λ(Γ ) is the limit set of Γ (see Section 1).
• For each x ∈ M̃ and γ ∈ Γ , we refer to dist(x, γ x) as the displacement of x

under γ .
• Γ is said to be harmonically ergodic if Γ acts ergodically on S∞ with respect to

the harmonic measure on S∞ (see Section 4).
• Γ will be called topologically tame if M = M̃/Γ is homeomorphic to the interior

of a compact manifold-with-boundary.

THEOREM 1.1. Let M be a topologically tame negatively pinched 3-manifold with Γ

purely loxodromic. Then all geometrically infinite ends of M are simply degenerate.

THEOREM 1.2. Let M = M̃/Γ be a topologically tame 3-manifold with −b2 ≤
K ≤ −1. Suppose that Γ is purely loxodromic and that Λ(Γ ) = S∞. Then 2 ≤ D and Γ

is harmonically ergodic. If D = 2 then Γ is also divergent.

The study of divergence of the Poincaré series of the fundamental group of
negatively curved manifolds is a crucial element in the investigation of geometric
rigidity and displacement function estimates. One of the most fundamental tools in
the theory of negatively curved manifolds is the Patterson-Sullivan conformal density
supported on the limit set. It is a well-known theorem in hyperbolic geometry due to
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Sullivan, that a divergent Kleinian group is equivalent to the conical limit set of the
group is of positive area. It was Shalen and Culler who first used Patterson-Sullivan
density to study the displacement function of finitely generated non-elementary
Kleinian groups, and subsequently proved that the least volume hyperbolic 3-manifold
have Betti-number of most 2. Our main objective is to study geometric rigidity of
infinite volume negatively pinched 3-manifolds (see [24]).

For hyperbolic 3-manifolds, Theorem 1.1 follows from a result of Canary’s. In [8]
Canary proved the geometrical tameness conjecture for topological tame hyperbolic
3-manifolds. The conjecture states that all finitely generated Kleinian groups are
geometrically tame. It was the work of Bonahon which made the first breakthrough
in this conjecture. For topologically tame hyperbolic 3-manifolds, Canary employed
Bonahon’s result [5] for the case where the compact core is boundary-irreducible and
utilized the work of Gromov and Thurston [20] on branched coverings of hyperbolic
manifolds to reduce the general case to the case of a boundary-irreducible compact
core.

In section 2 we study some of the topological properties of negatively pinched
3-manifolds. In particular, Bonahon’s theorem for negatively pinched 3-manifolds is
stated. Section 3 is used to prove a stronger version of the Gromov-Thurston branched
covering theorem. In Section 4, we prove Theorem 1.1 and deduce some immediate
corollaries. Section 5 discusses measures on S∞ and the ergodicity of Γ with respect
to these measures.

2. Topological preliminary. In this section we will state some of the topological
results that we will require for the proof of Theorem 1.1 in section 4.

Every isometry of M̃ can be extended to a Lipschitz map on S∞ := ∂M̃ [19]. For
a torsion-free Γ , every element γ ∈ Γ is one of the following types: (1) parabolic if it
has exactly one fixed point in M̃ ∪ S∞ which lies in S∞; (2) loxodromic if it has exactly
two distinct fixed points in M̃ ∪ S∞, both lying in S∞.

Denote by Λ(Γ ) ⊂ ∂M̃ the limit set of Γ , which is the unique minimal closed
Γ −invariant subset of S∞. Most of the important properties of the limit set in the
constant curvature space continue to hold in the variable curvature space [15]. In
particular: (i) Λ(Γ ) = Γ x ∩ S∞; (ii) Λ(Γ )is the closure of the set of fixed points of
loxodromic elements of Γ ; and (iii) Λ(Γ ) is a perfect subset of Γ . The set Ω(Γ ) :=
S∞\Λ(Γ ) is the region of discontinuity. The action of Γ on M̃ ∪ Ω(Γ ) is proper and
discontinuous, (see [15]). The manifold MΓ := M̃ ∪ Ω(Γ )/Γ with possibly nonempty
boundary is traditionally called the Kleinian manifold. We also let Λc(Γ ) denote the
conical limit set of Γ , i.e. ξ ∈ Λc(Γ ) if for some x ∈ M̃ (and hence for every x) there
exist a sequence (γn) of elements in Γ , a sequence (tn) of real numbers, and a real
number C > 0, such that γnx −→ ξ and dist(cξ

x(tn), γnx) < C where cξ
x is the geodesic

ray connecting x and ξ . Equivalently, a point belongs to Λc(Γ ) if it belongs to infinitely
many shadows cast by balls of some fixed radius centered at points of a fixed orbit of
Γ . Note that Λc(Γ ) is a Γ −invariant subset of Λ(Γ ), and hence a dense subset.

Let Hull(Λ(Γ )) denote the convex hull of Λ(Γ ), which is the minimal Γ −invariant
convex subset of M̃ ∪ S∞ containing the limit set. Then the convex set (Hull(Λ(Γ )) −
Λ(Γ ))/Γ is called the convex core of M. We denoted it by CC(M). Next we will recall
a few facts about negatively curved 3−manifolds. The proofs can be found in [1].

PROPOSITION 2.1 (Margulis Lemma). There exists a number εb which only depends
on the pinching constant b of M, such that the group Γε generated by elements in Γ of
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length at most εb with respect to a fixed point in M is almost nilpotent of rank at most 2.
Then the number 2εb is called the Margulis constant.

If M is orientable and Γ is torsion-free, then Γεb is abelian.
Let ε ≤ εb be given. Then M may be written as the union of a thin part M[0,ε)

consisting of all points at which there is based a homotopically nontrivial loop of
length ≤ ε and a thick part M[ε,∞) = M − M[0,ε). Note that M[ε,∞) is compact if M is
of finite volume. Also the thin part of M is completely classified by the next proposition.

PROPOSITION 2.2. Each connected component of M[0,ε) is diffeomorphic to one of the
following:

parabolic rank-1 cusp: S1 × � × [0,∞);
parabolic rank-2 cusp: T2 × [0,∞);
solid torus about the axis of a loxodromic γ : D2 × S1.

For simplicity we restrict to the case where M has no cusps. It follows from the
existence of a compact core C(M) for M [14] that M has only finitely many ends [2].
In fact, each component of ∂C(M) is the boundary of a neighborhood of an end of
M, and this gives a bijective correspondence between ends of M and components of
∂C(M).

Following Bonahon and Canary, we will define simplicial ruled surfaces as follows.
Let S be a surface of positive genus and let TP be a triangulation defined with respect
to a finite collection P of points of S. This means that TP is a maximal collection
of nonisotopic essential arcs with end points in P; these arcs are the edges of the
triangulation, and the components of the complement in S of the union of the edges
are the faces. Let f : S −→ M be a map which takes edges to geodesic arcs and faces
to nondegenerate geodesic ruled triangles in M. The map f induces a singular metric
on S. If the total angle about each vertex of S with respect to this metric is at least 2π ,
then the pair (S, f ) is called a simplicial ruled surface. It follows from the definition
of the induced metric on S that f preserves lengths of paths and is therefore distance
non-increasing. Any geodesic ruled triangle in M has Gaussian curvature at most −a2.
This means that each 2-simplex of S inherits a Riemannian metric of curvature at
most −a2. Since we have required the total angle at each vertex to be at least 2π , by
the Gauss-Bonnet theorem the curvature of S is negative in the induced metric.

DEFINITION 2.3. An end E is said to be a geometrically infinite end if there exists
a divergent sequence of geodesics, i.e: there exists a sequence of closed geodesics
αk ⊂ M◦

ε , such that for any neighborhood U of E, there exists some positive integer N
such that αk ⊂ U for all k > N. It follows from a result of Bonahon’s, stated below as
Proposition 1.5, that this definition of “geometrically infinite” is equivalent to a more
intuitive definition. If in addition for some surface SE we have that U is homeomorphic
to SE × [0,∞), and there exists a sequence of simplicial ruled surfaces : SE

fl−→ U such
that fl(SE) is homotopic to SE × 0 in U and leaves every compact subset of M, then E
is said to be simply degenerate. The sequence (SE

fl−→ U) is called an exiting sequence.
An end which is not geometrically infinite will be called geometrically finite.

Thurston first defined simply degenerate ends by using pleated surfaces. Later
Bonahon studied degenerate ends by using simplicial hyperbolic surfaces. In his thesis,
Canary used simplicial ruled surfaces and studied the generalization of Bonahon’s
theorem to negatively pinched manifolds, which we will state next.
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THEOREM 2.4 (Bonahon; see [8]). Let M = M̃/Γ be a negatively pinched complete
Riemannian manifold with Γ purely loxodromic. If M has boundary-irreducible compact
core, then every geometrically infinite end E of M is simply degenerate.

Bonahon’s theorem will be essential for our proof of Theorem 1.1, which we will
go through later. There are also a few simple but important results that were originally
proved by Thurston and later reworked by Bonahon and Canary, which we will prove
in our setting.

First, we state a characterization of geometric infiniteness by Bonahon [5], for
the constant curvature case. However, the result continues to hold for manifolds of
bounded negative curvature, with some straightforward modifications to the original
proof.

PROPOSITION 2.5 (Bonahon). If an end E is not geometrically infinite, then there
exists a neighborhood U of E which does not intersect CC(M).

COROLLARY 2.6. If M is noncompact with Γ purely loxodromic and Λ(Γ ) = S∞,
then all ends are geometrically infinite.

Proof. Suppose there is a non-geometrically infinite end. By Proposition 2.5,
there exists a neighborhood which is disjoint from CC(M), which implies that the
region of discontinuity is nonempty, and hence contradicts the assumption that
Λ(Γ ) = S∞. �

PROPOSITION 2.7 (Bounded Diameter lemma). Let (S, f ) be a simplicial ruled
surface such that for every compressible curve γ on S, we have length( f (γ )) ≥ ε. Then
for any x, y ∈ S we have a path λ in S such that f (λ) ∩ M[ε,∞) has length at most
8
ε
πa−2|χ (S)|.

(Recall that ε is a positive number less than ε3,b. To say that γ is compressible means
that it represents a nontrivial element of the kernel of f# : π1(S) → π1(M).)

Proof. For x, y in S, let Lx,y denote the shortest curve connecting x, y. Denote
Lx,y ∩ S[ε,∞) by Lε

x,y. Then the ε/4-neighborhood Nε/4(Lε)x,y) of Lε
x,y is an embedded

tube in S. Since (S, f ) is a simplicial ruled surface, we have K(S) ≤ −a2, where S has
the metric induced by f . The Gauss-Bonnet formula then gives

ε/4 length(Lε
x,y) ≤ area(Nε/4(Lε

x,y)) ≤ 2πa−2|χ (S)|, (1)

which implies that length(Lε
x,y) ≤ 8

ε
πa−2|χ (S)|. Also, by the assumption on the length

of the image of compressible curve, and the fact that f preserves lengths of paths,
we have f (S[0,ε)) ⊂ M[0,ε). Hence f (Lx,y − Lε

x,y) ⊂ M[0,ε). Hence f (Lx,y) ∩ M[ε,∞] is
contained in f (Lε)x,y), and therefore has length at most 8

ε
πa−2|χ (S)|. �

PROPOSITION 2.8. Let E be a simply degenerate end of M. Then there exists a number
α > 0 and an exiting sequence (S

fk−→ Uα) such that for any compressible curve γ on S we
have length( fk(γ )) ≥ α for all k.

Proof. Let ( fl) be any exiting sequence for E. Then there is a neighborhood
U = SE × [0,∞) of E such that fl(S) ⊂ U and fl : S → U is a homotopy equivalence
for every l ≥ 1. Assume that there is a sequence (γl) of compressing curves in S such
that length( fl(γl) tends to 0 as l → ∞.
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We claim that for each l the curve fl(γl) is homotopic in U to a closed curve ηl

such that length(ηl) ≤ length( fl(γl)) and ηl meets SE × {0}. Since fl(γ ) is homotopically
trivial in M, it can be deformed to a constant through a continuous family of piecewise
smooth curves whose lengths decrease monotonically. Now since fl(γl) is homotopically
nontrivial in U , some curve in the family must meet the frontier SE × {0} of U ; the
first such curve in the family is the required curve ηl.

In particular, length(ηl) tends to 0 as l → ∞. Hence for large enough l we have
ηl ⊂ SE × [0, 1]. This gives a sequence of curves in the compact submanifold SE × [0, 1]
of M which are homotopically nontrivial in the submanifold, but whose lengths tend
to 0. This is a contradiction. �

PROPOSITION 2.9. Let M = M̃/Γ be a negatively curved, topologically tame,
orientable 3-manifold of infinite volume with purely loxodromic Γ . Let Ñ be a cover
of M such that π1(Ñ) is finitely generated. Then Ñ is also topologically tame.

Proof. By assumption, M is topologically tame, so it is homeomorphic to the
interior N◦ of a compact manifold N. Since M is also negatively curved with infinite
volume, so N must be an irreducible, atoroidal manifold with nonempty boundary.
Then by Thurston’s uniformization theorem ([28], [30]), N◦ admits a geometrically
finite, complete hyperbolic structure. Hence we can assume N◦ is a geometrically finite
hyperbolic manifold. Now Ñ is homeomorphic to some covering space N̂, a cover of
N◦ with π1(N̂) finitely generated. Since N◦ is geometrically finite with infinite volume,
N̂ is also geometrically finite (this fact is proved by Thurston and presented in [28]),
hence topologically tame. The result follows. �

3. Deformation and branched cover. We will prove a branched cover theorem,
stated below as Theorem 3.2, for 3-manifolds of variable negative curvature. This
result will be used next for the proof of Theorem 1.1.

First we will point out a simple topological condition which will ensure the
existence of a branched covering of a 3-manifold.

PROPOSITION 3.1. Let p be a positive integer. Let γ be a collection of null-homologous
curves in a orientable 3-manifold M. Then there exists a �p cyclic branched covering of
M with γ as the branching locus.

Let N be a Riemannian n−manifold. We denote by K<a,b>(N) the space of all
metrics on N which have negatively pinched curvature in the sense that −b2 ≤ K ≤ −a2.

THEOREM 3.2. Let M be a 3-manifold and let g be a metric in g ∈ K<a,b>(M). Let
p be a positive integer. Let γ be a collection of null-homologous simple closed geodesics
in (M, g). Then the �p branched covering Mp of M over the branch curves γ admits a
metric ḡp with ḡp ∈ K<a′,b′>(Mp) for some b′ > a′ > 0, and outside a neighborhood of the
branch curves γ the metric ḡp is the pull-back metric of the metric g.

Theorem 3.2 will be proved at the end of this section. In Section 3.1 we will establish
some geometric results which will be used in the proof of Theorem 3.2. In Section 3.2
the proof will be completed by combining these results with the following theorem:

THEOREM 3.3 (Gromov-Thurston [20]). Theorem 3.2 is true for a hyperbolic
manifold M.
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3.1. Deformation of metric. Given a negatively pinched metric on a manifold and
a simple closed curve in it, we will construct a new negatively pinched metric which,
near the closed curve, is a hyperbolic metric.

Our construction is a generalization of the one given by Gao in [17]. In [17], a given
metric with negative Ricci curvature is deformed into another negative Ricci curvature
metric by local modification about a closed curve. This method is an important
ingredient in the proof of a result due to Gao-Yau, which says that every closed
3-manifold M admits a metric g with Ricc(g) < 0, (see [18]).

Let (N, g0) be a smooth compact Riemannian n-manifold. Let Nρ denote the
radius-ρ tubular neighborhood of a simple closed oriented curve γ in N. The radius
ρ is taken sufficiently small (i.e. ρ < injradγ ) so that we can identify Nρ topologically
as the solid torus Dn−1

ρ × S1, where Dn−1
ρ is the n − 1 dimensional disc of radius ρ.

We equip it with the cylindrical coordinates (θ, r, s) with θ ∈ �/2π . Let ∇ be the
Levi-Civita connection.

We denote the space of metrics on N by M. The space M can be made into a
differentiable manifold with TgM = Γ ∞(S2T∗N). Then the curvature operator R :
M −→ Γ ∞(Λ2T∗N

⊗
Λ2T∗N) is a quasilinear and differentiable operator (see [3]

and [16]).
For a given tangent vector h ∈ TgM we denote the derivative of R at g in

the direction of h by DhR(g). By direct computation, one can show that for any
Xi, Xj, Xk, Xl ∈ Γ ∞(TN) we have

DhR(g)(Xi, Xj, Xk, Xl) = 1/2
{∇2

jkh(Xi, Xj) + ∇2
jlh(Xj, Xk) − ∇2

ikh(Xj, Xl)

− ∇2
jlh(Xi, Xj) + h(R(g)(Xi, Xj)Xk, Xl)

− h(R(g)(Xi, Xj)Xl, Xk)
}
. (1)

Here ∇2
ijh := ∇i(∇jh) − ∇i,jh where ∇i,j := ∇∇iXj , and ∇2

ijh is the Hessian of h.
Now assume h satisfies h = ∇h = 0 at γ . We will consider a deformation of g the

form g̃ := g0 + tψh, where t ranges in [0, 1] and ψ ∈ C∞(N, [0, 1]). Set h̃ := ψh. Then,
we have ∇2

ij h̃ = ψ∇2
ijh + Eij, where

Eij := D2
ijψh + Djψ∇ih + Diψ∇jh − Di,jψh (2)

Hence, we have

Dh̃R(g0)(Xi, Xj, Xk, Xl) = ψDhR(g0)(Xi, Xj, Xk, Xl) + E(ψ)(Xi, Xj, Xk, Xl) (3)

where

E(ψ)(Xi, Xj, Xk, Xl) := 1
2

(Ejk(Xi, Xl) + Eil(Xj, Xk) − Eik(Xj, Xl) − Ejl(Xi, Xk)).

Note that, since h = ∇h = 0 at γ , we have ∇2
ijh(Xk, Xl) = D2

ijhkl, where hkl := h(Xk, Xl).
So we get

DhR(g0)(Xi, Xj, Xk, Xl)|γ = 1
2

((
D2

jkhil − D2
jlhik

) + (
D2

ilhjk − D2
ikhjl

))
. (4)

By the condition on the 1-jet of h at γ and E(ψ)|γ = 0, we have

R(g0 + th̃)|γ = R(g0 + th)|γ = R(g0) + tψDhR(g0). (5)
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Hence if g0 + th defines a metric on Nρ and R(g0) + tψDhR(g0) is bounded in between
a2 and b2 at γ , then it follows from continuity that for any small number δ > 0, there
exists a ρ̃ < ρ such that the restriction of g0 + th to Nρ̃ is in K<a−δ,b+δ>(Nρ̃). Note that
the radius ρ̃ is independent of ψ because ψ is bounded by 1. This is important if one
is interested in deforming one metric to another. By (3), we have the operator equality
Dh̃ = ψDh + E(ψ). So if we consider the formal Taylor series

∑ (tψDh+tE(ψ))k

k! R(g0) we
see that it can be made close to

∑ (tDh)k

k! R(g0), provided E(ψ) can be made sufficiently
small, since ψ has norm bounded by 1. Hence, to ensure that g0 + th̃ is also negatively
pinched on Nρ̃ , one needs to bound the term E(ψ) by a sufficiently small number, say
ε > 0 on Nρ̃ , with appropriate choice of ψ .

By (2), and since h = ∇h = 0 at γ , it is easy to see that, to bound E(ψ) by ε, it
would be sufficient to have hD2ψ and ∇hDψ bounded by a constant multiple of ε on
Nρ̃ . We summarize these observations in the following proposition.

PROPOSITION 3.4. Let γ be a simple closed curve in (N, g0). Let h ∈ Γ ∞(S2T∗N)
satisfy h = ∇h = 0 at γ . Suppose that (g0 + th) ∈ K<a,b>(Nρ̃). Then for any given small
δ > 0 less than a, there exists ε > 0, such that (g0 + th̃) ∈ K<a−δ,b+δ>(Nρ̃), provided that
we have E(ψ)(W, X, Y, Z) < ε for any unit vectors W, X, Y, Z ∈ Γ ∞(TN).

Next we will construct a family of functions indexed by ε > 0 which will satisfy
the conditions of Proposition 3.4.

Let ε > 0 be any number. We choose a function βε ∈ C∞(�+, [0, 1]) such that
βε((−∞, ε/4]) = 0 and βε([ε/3,+∞)) = 1. Set c := max(sup |β ′

ε |, sup |β ′′
ε |) and c̄ :=

max(c, 1), and consider any k such that 0 < k < 1/c̄.
Let us define the function ψε ∈ C∞([0, ρ], [0, 1]) to agree with βε(rk) for 0 ≤ r ≤

(3ε/4)1/k and to be equal to 1 for ρ ≥ r ≥ (3ε/4)1/k. Also let us denote the numbers;
(3ε/4)1/k, (2ε/3)1/k, (ε/4)1/k by ρ̄, ρ1, ρ2 respectively.

Let g0, g1 ∈ K<a,b>(Nρ) be given. Set h = g1 − g0.

PROPOSITION 3.5. Let δ be a positive number, δ < a. Suppose that h|γ = ∇h|γ = 0,
and define a family of metrics {gε}ε>0 on Nρ by gε := g0 + ψεh. Then there exists a
number ε(δ) > 0 such that gε(δ) ∈ K<a−δ,b+δ>(Nρ̄) with gε(δ) = g0 for r ∈ [0, ρ2) and
gε(δ) = g1 when r ∈ (ρ1, ρ̄]. (We will denote such gε(δ) by g̃).

To prove Proposition 3.5 we will first compute DhR(g0) and verify that R(g0) +
tψεDhR(g0) is bounded between a2 and b2 at γ .

Let us extend the function ψε to Nρ trivially (i.e ψε(θ, r, s) = ψε(r)). This will
give us the deformation along the r direction on Nρ̃ . We will express DhR(g0) in local
coordinates ofNρ . For a given metric g we denote the Christoffel symbol and curvature
of g by Γ l

jk(g) and Rijkl respectively. A simple computation gives us the following;

Rijkl(g1)|γ − Rijkl(g0)|γ = (
∂2

ikhjl − ∂2
ilhjk

) + (
∂2

jlhik − ∂2
jkhil

)
.

Comparing this with equation (4), we have:

(DhR(g0))i jkl|γ = Rijkl(g1)|γ − Rijkl(g0)|γ .

Then by equation (5), we have R(ĝ)|γ = R(g0) + tDhR(g0). So, for t ∈ [0, 1], we get
a2 ≤ R(ĝ) ≤ b2. Therefore, for any given small δ > 0, by continuity, there exists ρ̃ > 0
such that ĝ is in K<a−δ,b+δ>(Nρ̃).
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Proof of Proposition 3.5. By Proposition 3.4, we only need to show that hD2ψε

and ∇hDψε , which in local coordinates are ∂iψε∂jhkl and hij∂
2
klψε respectively, are

bounded by a constant multiple of ε.
Since h = ∇h = 0 at γ , we have

hkl =
∑

i,j

cik jlxixj + O(|x|3) locally around γ ,

where {xl} denotes the local coordinates (θ, r, s). So the above equation implies that
there exist c, c′ > 0 such that |hij| ≤ c|x|2 and |∂jhkl| ≤ c′|x| on the compact set Dn−1 ×
S1. Hence we only need to bound terms |x||∂iψε |and|x|2|∂klψε | by a constant multiple of
ε. Since the function ψε depends only on r = |x|, we may rewrite |x||∂iψε |and|x|2|∂klψε |
simply as r|ψ ′

ε | and r2|ψ ′′
ε |, where ′ denotes differentiation with respect to r.

We may assume ε < min(ρ̃, 1). Then it is easy to verify that max(r|ψ ′
ε |, r2 |ψ ′′

ε |) <

2ε, and 0 < ρ2 < ρ1 < ρ̄ < ρ̃. Since g̃ satisfies

g̃ =
{

g0 : 0 ≤ r ≤ ρ2

g1 : ρ1 ≤ r ≤ ρ̄

and ε > 0 is arbitrarily small, the result follows from Proposition 3.4. �

3.2. Branched covers. Let (M, g) be a Riemannian 3-manifold with −b2 ≤
K ≤ −a2. Let γ be a simple closed geodesic parametrized by arclength in M. Let γ̃ be
a lift of γ in M̃. Then γ̃ is an axis of some loxodromic element α in Γ . The restriction
of α to the axis γ̃ (s) is translation through some distance l. The distance l is called the
length of α. With the appropriate parametrization we can write α(γ̃ (s)) = γ̃ (s + l ).

We equip Nρ(γ̃ ) with a hyperbolic metric:

f̃ = dr2 + sinh2(r)dθ2 + cosh2(r)ds2

with respect to the cylindrical coordinates (r, θ, s) on Nρ(γ̃ ), where s denotes arclength.
The identity component of the isometry group for f̃ is SO(2) × T ; T is the group
of translations along γ̃ . Let ∂s := ·γ (s) denote the parallel vector field along γ .
Then Nρ(γ ) = expγ (∂s × ∂⊥

s ) for ρ ≤ injrad γ . Let {u1(s), u2(s)} be an orthonormal
frame along γ which spans ∂⊥

s , with u1(0) = ∂r, u2(0) = ∂θ . Consider the smooth map
F : [0, l] × D2

ρ −→ Nρ(γ ) defined by:

F(s, x1, x2) = expγ (s)

( ∑
i

xiui

)
.

The map F defines a system of coordinate on Nρ(γ ), called the Fermi coordinates.
Parallel transport around γ gives a rotation ω ∈ SO(2). We have:

PROPOSITION 3.6. Let f be the metric implicitly defined by f̃ = π∗
1 f , where π1 is the

projection map: D2
ρ × � −→ D2

ρ × �/(ω × Tl). Define h := f − g. Then h = ∇h = 0
at γ .

Proof. By using Fermi coordinates and the fact that ∇ is the Levi-Civita connection
we have g|γ = ds2 and ∇g|γ = 0. Also, from the formula for f̃ , we see that ∂i f̃ jk|r=0 = 0,
so ∇f |γ = 0. Hence we have h = ∇h = 0 on γ . �
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Proof of Theorem 3.2. Let M̃p
π̃p−→ M̃ be the �p cyclic branched covering of M̃

with branching curve γ . By Propositions 3.5 and 3.6 we have two numbers ρ1 > 0,
ρ2 > 0 with ρ1 < ρ2 < ρ, and a metric ḡ on M such that

ḡ =
{

f : r ≤ ρ2

g : r ≥ ρ1.

Let ˜̄g be the lift of ḡ to M̃. Then, on the complement of a neighborhood π̃−1
p Nρ ′ (γ̃ ) of

γ̃ in M̃p where 0 < ρ ′ � ρ2, the pullback metric of ˜̄g is of the form:

d2r + p2 sinh(r)2d2θ + cosh(r)2d2s

for ρ ′ ≤ r ≤ ρ2, and agrees with π̃∗
p g̃ for ρ1 ≤ r.

Next, we simply point out that according to [20, Lemma 2.1], there exists a C∞

function σ (r), which is equal to sinh(r) for 0 ≤ r � ρ ′ and is equal to p sinh(r) for
r ≥ ρ ′, and satisfies the following inequalities:

σ ′, σ ′′ > 0

λ−1 ≤ σ ′′/σ ≤ λ

λ−1 ≤ σ ′ sinh(r)
σ cosh(r)

≤ λ

for some λ > 0 which only depends on p and ρ ′.

We can use σ to define a C∞ metric g̃p on M̃p which is in K<a′,b′>(M̃p). Explicitly, on
the neighborhood of γ̃ defined by 0 ≤ r ≤ ρ2, the metric g̃p is just

d2r + σ (r)2d2θ + cosh(r)2d2s.

On the complement of this neighborhood, g̃p agrees with ˜̄g.
Finally, it is easy to see from the construction that g̃p is invariant under all

isometries of the cover M̃p. Hence we have a metric ḡp on Mp with g̃p = π∗
2 ḡp, where

π∗
2 is given by the commutative diagram:

M̃p
π̃p−−−−→ M̃

π2


 
π1

Mp
πp−−−−→ M �

4. Ends.

THEOREM 4.1. Let M be a topologically tame negatively pinched 3-manifold with Γ

purely loxodromic. Then all geometrically infinite ends of M are simply degenerate.

The strategy of Canary’s proof ([8, Proposition 5.1]) of geometric tameness for
topologically tame hyperbolic manifolds works equally well for manifolds of variable
negative curvature. Hence we will summarize the steps involved in Canary’s proof and
mention the necessary modifications that one will need for the proof of Theorem 4.1.
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PROPOSITION 4.2. Let M be a complete, topologically tame, negatively pinched 3-
manifold, with an end E. Then there exists a complete, negatively pinched 3-manifold M′

with an end E′ such that (i) some neighborhood UE′ of E′ is isometric to a neighborhood
UE of E, and (ii) the compact core of M′ is boundary-irreducible.

Proof. By topological tameness, M is homeomorphic to the interior of a compact
3-manifold N. The manifold N can be decomposed into a finite union of compression
bodies and boundary irreducible manifolds [22]. Then E is associated with a boundary
component of a compression body C. Note that by Proposition 2.9 a cover of M
with finitely generated fundamental group is also topologically tame. The Riemannian
cover of M associated to π1(C), has an end isometric to E. Hence after replacing M
by this Riemannian cover, we may assume that M is homeomorphically identified with
the interior of C. The idea then is to show that there is an collection of curves γ such
that the �2 cyclic branched cover Cb of C over γ has incompressible boundary. The
construction of Cb is based on the fact (which is established in [8] as a consequence
of the Meeks-Yau Equivariant Dehn’s lemma [27]) that if γ is a disjoint union of
simple closed curves that intersects every essential disk in C, then any 2-fold cyclic
branched cover of C with branch locus γ is boundary-irreducible. Hence, in view
of Proposition 2.1, the problem reduces to showing that there exists a collection of
null-homologous simple geodesics γ that intersects each essential disk.

Otal’s theorem [8, 3.5] provides a disjoint union γ0 of simple closed curves in
M = C◦ which intersects every essential disk in C. Let γ1 denote the collection of
closed geodesics in M with homeomorphic images in C which are homotopic to γ0.
The geodesics γ1 need not be simple; however, by using the same technique as in
[8, Lemma 5.5] we may perturb the metric of M in a compact neighborhood of γ1

so as to obtain a metric which is also negatively pinched, and such that the geodesics
with respect to the new metric which represent the same homotopy classes as γ0 form
a disjoint family of simple geodesics. Therefore, without loss of generality, we may
assume that γ is a collection of simple closed geodesics. The 2-fold cyclic branched
cover of C over γ is then the desired Cb. We define M′ to be the interior of Cb, which
is a 2-fold branched cover of M with branch locus γ .

Next we note that by Theorem 3.2, M′ can be given an metric with negatively
pinched curvature with pinching constants arbitrarily close to the pinching constant
of M and outside a compact tubular neighborhood of the branching geodesics, the
metric is induced by the metric on M via the branched covering map, and hence its
ends are isometric to the ends of M. Therefore the result follows. �

Proof of Theorem 4.1. The result follows immediately from Proposition 4.2 and
Theorem 2.4. �

4.1. Corollaries. In this section we deduce two consequences of Theorem 4.1,
Corollaries 4.4 and 4.7, which are of special interest. They relate topological tameness,
which is a purely topological condition, to an analytical property. This interaction
between topology and analysis was originally worked out for hyperbolic manifolds
by Thurston in the case of a boundary-irreducible compact core, and generalized by
Canary, Culler and Shalen to cases where the core may be boundary reducible. However
the idea works equally well for variable curvature manifolds, as we shall now show.
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DEFINITION 4.3. An orientable Riemannian manifold N (with possibly non-empty
boundary) is analytically tame if there exists an sequence of compact submanifolds
(Nk) such that

(i) Nk1 ⊂ Nk2 for k1 < k2;
(ii) if N◦

k denotes the interior of Nk, then ∪kN◦
k = N;

(iii) there exists a number C > 0 such that for some r > 0 we have, for all k,

volume(Nr(∂Nk)) ≤ C.

Such a sequence (Nk) is called an exhaustive sequence.

COROLLARY 4.4. Let M = M̃/Γ be a topologically tame negatively pinched (−b2 ≤
K(M) ≤ −a2) 3-manifold with Γ purely loxodromic. Then CC(M) is analytically tame.

Proof. First we note that, under the hypothesis, there are no cusps. Hence the ends
of CC(M) are precisely the geometrically infinite ends of M. By Theorem 4.1, these
ends are simply degenerate.

For each geometrically infinite end E of M, let UE be an neighborhood of E, which
is homeomorphic to SE × [0,∞), and choose a sequence of maps ( f E

k : SE → UE)
having the properties stated in the definition of a simply degenerate end. By passing
to a subsequence of ( f E

k ), we may assume that the f E
k satisfy the following property

(1): f E
k (SE) ∩ f E

l (SE) = ∅ for k �= l, and f E
i (SE) is enclosed by ( f E

j (SE) ∪ ∂UE) for
i < j, i.e. f E

i (SE) is contained in the relatively compact subset of UE with boundary
f E
j (SE) ∪ ∂UE . Furthermore, Proposition 2.8, applied to each of the finitely many

geometrically infinite ends of M, gives a constant α > 0 such that for geometrically
infinite end E and any compressible curve C in SE , we have (2): length( f E

k (C)) > α.
Then for each k we define a compact submanifold Mk to be the region in M enclosed
by ∂CC(M) ∪ ⋃

E f E
k (SE), where E ranges over all geometrically infinite ends of M.

We verify that (Mk) is the desired exhaustive sequence for CC(M). By the distance-
nonincreasing property of the maps f E

k , together with property (2) above, one can show
that (compare [8, Lemma 8.2])

volume(Nr( fk(SE))) ≤
∑

E

1
d(α/2)

∫
SE

B(r + (α/2)) dA

≤
∑

E

2a−2πB(r + (α/2))|χ (SE)|
d(α/2)

where d(α/2) is the least area of any disc of radius α/2 in the universal cover S̃E of
SE , and B(r + (α/2)) is the greatest volume of any ball of radius r + α/2 in M̃. If Vn(r)
denotes the volume of a ball of radius r in �n, we have B(r + α/2) ≤ cbV3(r + α/2) for
some constant cb depending only on b, and d(α/2) ≥ caV2(α/2) for some constants
cb and ca depending only on b and a respectively. Hence as k → ∞ the quantity
volume(Nr(∂Mk)) is bounded by some positive constant C = C(M, r). And the as-
sertions that ∪kM◦

k = CC(M) and Mk1 ⊂ Mk2 for k1 < k2 follow directly from the
definition of Mk. This completes the proof. �

THEOREM 4.5 (compare [8, 35]). Let N be a complete analytically tame manifold.
Then, any subharmonic function u which is bounded above on N is constant.

Proof. Assume that there exists a nontrivial subharmonic function bounded above
on N, and denote it by u. Let λ > 0 be such that u ≤ λ. By normalization we can
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assume λ = 1. Let gt denote the flow of the vector field grad u. Note that gt is defined
for all t ≥ 0, and for any measurable subset A ⊂ N we have

d
dt

volume (gt(A))|t=s =
∫

A

d
dt

g∗
t dv|t=s =

∫
A

g∗
s

d
dt

g∗
t dv|t=0

=
∫

A
g∗

s Lgrad u dv =
∫

A
g∗

s ((div(grad u)) dv)

=
∫

A
g∗

s (�u dv) =
∫

gs(A)
�u dv

≥ 0

which means that gt is volume nondecreasing. Let x be any point of N, let B be any
subset of {gt(x)}t≥0 and T(B) denote the amount of time that gt(x) ∈ B. Then, we have

(length(B))2 =
(∫ T(B)

0

〈
dgt

dt
,

dgt

dt

〉1/2

dt

)2

≤ T(B)
∫ T(B)

0

〈
dgt

dt
,

dgt

dt

〉
dt

≤ T(B)
∫ T(B)

0
〈grad u(gt(x)), grad u(gt(x))〉 dt

≤ T(B)
∫ T(B)

0
(grad u)(u(gt))(x) dt

≤ T(B)
∫ T(B)

0
dg∗

t (u)(x) ≤ T(B)

where the last inequality follows from our assumption that u is bounded above by 1.
We wish to show that u is constant. Assume it is not, and let x be a point of

M such that grad u(x) �= 0. Let V be a neighborhood of x in N of positive volume
with V ∩ gτ (V ) = ∅ for some τ > 0. Note that such a set V can always be found
since u is strictly increasing along the flow line near x. Now, if V ∩ gτ (V ) = ∅, then
gnτ (V ) ∩ gmτ (V ) = ∅ for any positive integers n and m, because gt is a flow . Let
{Nk} be the exhaustive sequence of N. Since gt is volume nondecreasing and Nk is
compact, we must have gTk (V ) ⊂ N − Nk for some large finite Tk. Now, let V1 be any
subset of V of positive volume with diameter gt(V1) < 1 for t ≤ Tk. Note that for some
small r > 0 we have that Nr(∂Nk) ∩ Nr(∂Nk+1) = ∅. By passing to a subsequence if
necessary, we can take r = 1. Then for any y ∈ V1, the flow line {gt(y)} that passes
through ∪k

0N1(∂Nk) will have length at least 2k, since N1(∂Ni) ∩ N1(∂Ni+1) = ∅. So
the amount of time that gt(y) spends in ∪k

0N1(∂Nk) is at least (2k)2. Hence gl(V1) ⊂
∪k

0N2(∂Nk) for all 0 ≤ l ≤ 4k2. Since gl(V1) ∩ gl′(V1) = ∅ when l �= l′, therefore
we have volume(∪k

0N2(∂Nk))) ≥ 4k2volume (V1). But, by hypothesis we have that
volume (∪k

0N2(∂Nk))) ≤ ∑k
0 volume (N2(∂Nk))) ≤ (k + 1)C, for some constant C > 0.

Hence, there exists a constant C′ > 0 such that we have 4k2 ≤ kC′ for all k, which is a
contradiction. So, we have a dense subset U of N with grad u|U = 0. By continuity we
get grad u|N = 0, which implies u is constant on N. �

COROLLARY 4.6. Take N as in Theorem 4.5. Then there exist no nontrivial positive
superharmonic functions on N.
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COROLLARY 4.7. Let M = M̃/Γ be a topologically tame negatively pinched
(−b2 ≤ K ≤ −a2) 3-manifold with Λ(Γ ) = S∞. Then there are no nonconstant positive
superharmonic functions, or nonconstant subharmonic functions bounded above, on M.

Proof. By hypothesis, we have Λ(Γ ) = S∞ which implies CC(M) = M. Then the
result follows from Corollary 4.4 and Theorem 4.5 and Corollary 4.6. �

5. Γ -action. Two Borel measures on S∞ are in the same Γ -class if the Radon-
Nikodym derivative of γ ∗ν1 with respect to ν1 is equal to the Radon-Nikodym derivative
of γ ∗ν2 with respect to ν2.

PROPOSITION 5.1 ([29]). Let Γ be nonelementary and discrete. Suppose that Γ acts
ergodically on S∞ with respect to a measure ν defined on S∞. Then every measure of S∞
in the same measure class as ν is a constant multiple of ν.

A family of finite Borel measures [νy]y∈M̃ will be called a λ-(conformal density under
the action of Γ ) if for every x ∈ M̃ and every γ ∈ Γ we have γ ∗νy = νγ ∗y, and the Radon-
Nikodym derivative dνy

dγ ∗νy
(ζ ) at any point ζ ∈ S∞ is equal to exp(−λBζ (γ −1y, y)). (This

is to be interpreted as being vacuously true if, for example, the measures in the family
are all identically zero.)

PROPOSITION 5.2. Let Γ be a non-elementary discrete subgroup of the isometry group
of M̃. If [νy]D

y∈M̃
is a non-trivial Γ -invariant D-conformal density, then D �= 0.

Proof. Suppose D = 0. Then νy is a Γ -invariant non-trivial finite Borel measure.
Since Γ is non-elementary, there exists a loxodromic element γ in Γ . Let ξ, ζ ∈ S∞
be the two distinct fixed points of γ . Let 〈γ 〉 be the group generated by γ . Then νy is
clearly 〈γ 〉-invariant. But γ is loxodromic, so we must have supp(νy) ⊂ {ξ, ζ }. Then,
by the fact that Λ(Γ ) is infinite, we have νy is an infinite measure, which is a contra-
diction. �

Let x ∈ M̃ and s > 0 be given. Denote the Poincaré series for a infinite uniformly
discrete subset W ⊂ M̃ by ZW (x, s), i.e. set

ZW (x, s) :=
∑
v∈W

exp(−s dist(x, v)).

In particular, W can be the orbit Γ x of x. We will use the notation ZΓ (x) to denote the
Poincare series for W = Γ x in this case. We call Γ divergent if ZΓ = ∞. By applying
an adjusting function we can always assume the Poincaré series diverges at D. The
measures

µx,s :=
∑

γ∈Γ e−s dist(z,γ x)δγ x∑
γ∈Γ e−s dist(z,γ z)

; s > D

converges weakly to a limiting measure µx as sn → D through a subsequence. It is
trivial to see that µx is supported on ΛΓ . The measure [µx]D is called Patterson-
Sullivan measure which is D-conformal under Γ .

THEOREM 5.3 (Hou [24]). Let M = M̃/Γ be a complete Riemannian 3-manifold
with −b2 ≤ K ≤ −1, such that there are no nontrivial positive superharmonic functions
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on M. Then D ∈ [2, 2b]. And if we have D = 2, then Γ is divergent, hence ergodic with
respect to [µx]D.

Proof of Theorem 1.2. Under the hypothesis of Theorem 1.2, it follows from
Corollary 4.7 and Theorem 5.3 that D ∈ [2, 2b]. That Γ is harmonically ergodic
follows from Corollary 4.7 and Fatou’s conical convergence theorem. If D = 2, then,
by Corollary 4.7 and Theorem 5.3, we have Γ is divergent. �
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