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Linear three-dimensional instability is studied in the shock layer and the laminar separation
bubble (LSB) induced by shock-wave/boundary-layer interactions in a Mach 7 flow of
nitrogen over a double wedge with a 30◦–55◦ cross-sectional profile. At a free-stream
unit Reynolds number Re = 5.2 × 104 m−1 this flow exhibits rarefaction effects and has
shock thicknesses comparable to the thickness of the boundary layer at separation. Flow
features have been fully resolved using a high-fidelity massively parallel implementation
of the direct simulation Monte Carlo method that captures the flow evolution from the
inception of three-dimensionality, through linear growth of instabilities, to the early stages
of nonlinear saturation. It is shown that the LSB sustains self-excited, small-amplitude
perturbations that originate past the primary separation line and lead to spanwise-periodic
wall striations inside the bubble and downstream of the primary reattachment line, as
known from earlier experiments, simulations and instability analyses. A spanwise-periodic
instability, synchronised with that in the separation zone, is identified herein for the first
time, which exists in the internal structure of the separation and detached shock layers,
and manifests itself as spanwise-periodic cats-eyes patterns in the global mode amplitude
functions. The growth rate and the spanwise-periodicity length of linear disturbances
in the shock layers and the LSB are found to be identical. Linear amplification of the
most unstable three-dimensional flow perturbations leads to synchronised low-frequency
unsteadiness of the triple point, with a Strouhal number of St ≈ 0.028.
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1. Introduction

Linear instability in the laminar separation bubble generated by shock-wave/laminar
boundary-layer interaction at supersonic and hypersonic speeds has been the subject of
intense experimental and, more recently, theoretical/numerical investigations, owing to
the ubiquitous nature of this phenomenon and its potential impact on the design of
high-speed vehicles. The appearance of regularly spaced streamwise-aligned vortices,
or striations, in the reattachment region of nominally two-dimensional supersonic and
hypersonic flow over a planar compression corner has been first reported over half a
century ago by Ginoux (1958), who went on to relate the vortex spacing with the attached
boundary-layer thickness ahead of the corner and document the quantitative effect that the
Mach number has on the appearance and spacing of the vortices (Ginoux 1965a,b, 1969,
1971). To date, the interaction of the three-dimensional shock-wave system associated with
the compression corner, also first reported experimentally at around the same time by
Holden (1963), has not been associated with the process of formation of the striations and
motivates the present contribution. However, before turning our attention to the description
of oscillations and spanwise modulation in the shock layers, and their association with
three-dimensional global instability in the laminar separation bubble (LSB), a brief
exposition of our current understanding of the physical origins of the streamwise vortices
in the compression corner is warranted, in order to set the scene for the present analysis.

Striations in a compression corner generated a long-standing debate regarding the
origins of this phenomenon being attributed to (imperfections at) the leading edge of
the flat plate preceding the corner (Simeonides 1992; Simeonides & Haase 1995) and
entering the separation region (Navarro-Martinez & Tutty 2005) or an intrinsic flow
instability mechanism associated with self-excitation of the LSB formed at the corner
itself. In recent years, evidence has been amassed in support of the latter mechanism:
fully resolved three-dimensional direct numerical simulations by Shvedchenko (2009)
and Egorov, Neiland & Shvedchenko (2011) over a wide range of Mach numbers
demonstrated exponential growth of small-amplitude perturbations, the latter taking the
form of spanwise-periodic modulation of the wall shear and wall heat transfer footprints of
the flow; such striations were found to originate inside the LSB formed at the compression
corner and extend beyond the primary reattachment line on the ramp wall. Amplification of
the spanwise-periodic perturbations was documented beyond a certain value of the corner
angle, scaled according to triple-deck theory (Neiland 1969; Stewartson & Williams 1969;
Rizzetta, Burggraf & Jenson 1978a; Neiland et al. 2008). More recently, global linear
instability analyses have unequivocally demonstrated the existence and linear amplification
of stationary three-dimensional self-excited perturbations originating inside LSBs formed
on account of shock impingement on a laminar boundary layer (Robinet 2007; Nichols
et al. 2017) or that forming in the steady laminar nominally two-dimensional compression
ramp flow (Dwivedi et al. 2019; Cao et al. 2021; Hao et al. 2021).

In the authors’ view, the debate regarding the origins of striations need not lead
to the search for mutually exclusive instability paths. Fundamental studies of linear
global instability of steady LSBs in the incompressible limit have demonstrated
that bubbles can act as amplifiers which promote exponential growth of incoming
disturbances, but can also become self-excited due to exponential amplification of intrinsic
stationary three-dimensional global modes through an oscillator instability mechanism
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(Chomaz, Huerre & Redekopp 1988; Theofilis, Hein & Dallmann 2000; Chomaz 2005).
Compressibility may alter the relative significance of the two scenarios quantitatively,
but not qualitatively. In this context, the interpretation of the experiments of Simeonides
(1992) and the direct numerical simulations (DNS) work of Navarro-Martinez & Tutty
(2005) would fall in the first category of a bubble acting as an amplifier, while the DNS
of Shvedchenko (2009) and Egorov et al. (2011), the global instability analysis of Dwivedi
et al. (2019) as well as the combined analysis and experiments of Dwivedi et al. (2020)
and Hao et al. (2021) on the compression corner and the global instability analyses of
Robinet (2007), Nichols et al. (2017) and Hildebrand et al. (2018) in the related problem
of shock-generated laminar separation on a flat plate would be examples of the oscillator
scenario.

The present contribution is concerned with the relatively unexplored question of the
dynamic behaviour of the shock layer which drives the interaction with the boundary
layer and the subsequent appearance of striations downstream of the primary separation
line. Shock unsteadiness and the resulting small-amplitude harmonic spatial corrugations
on the shock, generated as a result of flow instability, were first discussed in isolation
from the boundary layer by Carrier (1949), who addressed the inviscid flow limit and
employed linearised Euler equations and Rankine–Hugoniot conditions to study shock
interaction with acoustic perturbations. Moore (1954) and Ribner (1954) also monitored an
isolated straight shock wave and used inviscid equations to analyse pressure and vorticity
waves interacting with the shock, while McKenzie & Westphal (1968) quantified, in terms
of the free-stream flow Mach number and the shock angle, the amplitude of acoustic
perturbations emitted as a consequence of pressure, vorticity or entropy perturbations
traversing a plane stationary isolated shock. Duck & Balakumar (1992) introduced
viscosity in their study of self-excitation of a finite-thickness steady normal shock,
the latter computed by imposing constant upstream and Rankine–Hugoniot downstream
conditions in the framework of the base flow computation methodology proposed by
Gilbarg & Paolucci (1953). Their modal analysis revealed that the eigenspectrum only
contains (several) branches of damped continuous modes, while their solution of the
initial-value problem did not yield reliable large-time response of the shock to incoming
perturbations, due to the relatively rich structure of the continuous spectrum. Chang,
Malik & Hussaini (1990), Esfahanian (1991) and Malik & Anderson (1991) solved the
linear stability eigenvalue problem in the compressible (attached) flat-plate boundary layer
(Mack 1984) including far-field boundary conditions based on the Rankine–Hugoniot
equations, to analyse the effect of a shock that is locally parallel at a finite distance to the
flat plate. Stuckert & Reed (1994) solved the same problem on a cone at very high Mach
number, including chemistry effects. Triple-deck theory (Stewartson & Williams 1969;
Smith 1986; Neiland et al. 2008) has been employed to understand separated laminar
boundary-layer instability in supersonic and hypersonic flows over compression ramps
at moderate to high Reynolds numbers (Rizzetta, Burggraf & Jenson 1978b; Cowley &
Hall 1990; Smith & Khorrami 1991; Cassel, Ruban & Walker 1995; Korolev, Gajjar &
Ruban 2002; Fletcher, Ruban & Walker 2004), however, instability of the shock layer, or
its coupling with instability in the boundary layer, are beyond the scope of this theory.

On the other hand, it has long been known (Liepmann, Narasimha & Chahine 1962,
1966) that predictions of the shock structure based on the Navier–Stokes equations
increasingly deviate from those delivered by kinetic theory as the degree of rarefaction
increases in critical zones such as the internal structure of the shock layer and the Knudsen
layer in the vicinity of a solid surface. Liepmann et al. (1962) computed shock profiles
using the Bhatnagar–Gross–Krook model of the Boltzmann equation and documented the
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systematic departure from Navier–Stokes predictions in the low-pressure region of the
shock layer, i.e. up to the location of maximum stress, as the free-stream Mach number
increases. It then follows that, if the internal structure of the shock is to be resolved, rather
than modelled, a numerical approach based on kinetic theory must be used.

Such an effort has been reported by Tumuklu, Levin & Theofilis (2018a); Tumuklu,
Theofilis & Levin (2018b), who performed direct simulation Monte Carlo (DSMC)
simulations of Mach 16 nitrogen flow over an axisymmetric double cone configuration
at unit Reynolds numbers Re = 0.935–3.74 × 105 m−1 and, within the limitations of a
two-dimensional simulation, demonstrated a strong coupling between oscillations of the
triple point and instability of the laminar separated flow region. The amplitude functions
of the least-damped global mode computed in these works comprised structures inside the
LSB as well as at the shock system, and included the multiple reflections leading to the
lambda-shocklet system between the wall and the slip line downstream of the reattachment
point; these features of the global mode became increasingly evident as the Reynolds
number at which simulations were performed was increased. In the axisymmetric limit
addressed, a steady state was reached after this least-damped global mode decayed
linearly, at a constant rate quantified by processing the DSMC signal. Sawant, Levin &
Theofilis (2021a,b) studied kinetic fluctuations in the internal non-equilibrium region
of one-dimensional shock layers resolved using DSMC and showed that the dominant
frequencies are characterised by a Strouhal number, St, defined based on the shock
thickness that is two orders of magnitude lower in the shock (Stshock ∼ O(0.01)) than that
in the upstream (Stshock ∼ O(1)). More recently, Klothakis et al. (2022) carried out DSMC
simulations in which the temporal and spatial development of harmonic perturbations
introduced in a hypersonic flat-plate boundary layer were quantified, before applying linear
stability analysis to document the synchronisation of oscillatory perturbations propagating
along the leading-edge shock layer with damped perturbations introduced through a wall
orifice into the boundary layer.

The present work addresses the three-dimensional analogue of the configuration studied
by Tumuklu, Levin & Theofilis (2019), in which the cross-section of the double wedge
is extruded along the third spatial direction. Three-dimensional DSMC simulations
are performed to study linear instability of the interaction between the shock and the
three-dimensional LSB formed in a Mach 7 nitrogen flow over a 30◦–55◦ double-wedge
configuration. Flow conditions are oriented to those of the experiments performed by
Swantek & Austin (2015) and Knisely & Austin (2016) at 8 MJ enthalpy. However, in
the present simulations, the number density is kept eight times lower than that in the
experiments (here Re = 5.2 × 104 m−1), to ensure that all DSMC numerical requirements
are met. The kinetic simulation results are analysed to extract characteristics of the
small-amplitude three-dimensional perturbations that emerge from numerical noise and
are organised into coherent structures both inside the LSB as well as in the separation
and detached shock layers. Using resources at the limit of present-day massively parallel
computing capabilities it has been possible to fully resolve the (comparable in thickness)
internal structure of the shock layer and the boundary layer in the separation region
and document, for the first time, the genesis, spatial structure and temporal evolution of
small-amplitude shock-layer perturbations and their relation to global instability in the
laminar separation zone.

The paper is organised as follows: § 2.1 describes the DSMC algorithm, the specific
numerical approach, required numerical parameters and collision models. Details on the
initialisation of the three-dimensional simulations are provided in § 2.2, while the features
of the two-dimensional base flow, recomputed here for consistency, as well as surface
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rarefaction effects, are discussed in § 2.3. Results are presented in § 3, starting with
quantification of the extraction of linear analysis quantities from the DSMC signal in § 3.1.
In § 3.2 the presence and synchronous amplification of a stationary three-dimensional
global mode in the LSB and the shock layer is documented, with emphasis placed in
§ 3.3 on the discussion of spanwise-periodic sinusoidal structures arising from global
instability inside the internal structure of the shock layer. Section 3.4 reports the emergence
of low-frequency unsteadiness in the shock/LSB system as a consequence of the nonlinear
saturation of the amplified global mode. A short discussion summarising the main findings
is offered in § 4.

2. Flow modelling methodology

2.1. The DSMC algorithm
The particle-based DSMC method (Bird 1994) is employed to fully resolve the
three-dimensional unsteady hypersonic flow field in question. DSMC is a computationally
powerful tool, based on the decoupling of molecular motion and intermolecular collisions,
in which each simulated particle represents a finite number, Fn, of actual gas molecules.
When all numerical parameters are satisfied, the time-accurate flow field represents a
solution of the Boltzmann equation of transport of the molecular velocity distribution
function, f (t, r, v) with respect to time t and position vector r, as

∂f
∂t

+ (v · ∇)f +
(

F
m

· ∇v

)
f =

[
df
dt

]
coll

(2.1)

where v is the instantaneous velocity vector, m is the mass, and ∇ and ∇v are gradient
operators in physical and velocity spaces, respectively. The first, second and third terms on
the left-hand side describe the change of f with time, convection of molecules in space, and
convection in velocity space as a result of the external conservative forces per unit mass
F/m, such as gravity or electric field, which are ignored in this work, respectively. The
right-hand side term accounts for changes in f in an element of space–velocity phase space
due to intermolecular collisions. Vincenti & Kruger (1965) provide a thorough description
of the Boltzmann equation.

The DSMC algorithm typically comprises four major steps of particle mapping,
selection for collisions, evaluation of collision outcomes and movement. Based on the
choice of boundary conditions, particles are introduced, removed or reflected from the
domain boundaries and interacted with the embedded surfaces using gas-surface collision
models during a timestep. They are then mapped to a mesh that encompasses the flow
domain with cell size, �x, that is smaller than the local mean free path of molecules,
λ. Particle pairs are selected for collisions based on the appropriate elastic or inelastic
collision cross-section and are then assigned post-collisional instantaneous velocities and
internal energies in each computational cell. Macroscopic flow quantities of interest such
as pressure, velocities and temperature can be derived from the microscopic properties
of simulated particles using the statistical relations of kinetic theory. Finally, based on
the post-collisional outcome, particles are moved with a timestep, �t, that is lower than
the local mean collision time, τ . Conveniently, this physics based approach provides
accurate modelling of the internal structure of shocks, their mutual interactions and
surface rarefaction effects. This warrants the use of DSMC for detailed modelling of
shock-wave/boundary-layer interactions (SBLIs), compared with ad hoc techniques of
modelling shocks in numerical solutions of the Navier–Stokes equations that fall short
of accurately capturing the internal structure of the shock (Liepmann et al. 1962).
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However, to obtain a physically meaningful solution of an unsteady SBLI flow, a
number of numerical criteria must be satisfied (see Tumuklu et al. 2018a). To overcome
this challenge, an octree-based, three-dimensional DSMC solver known as Scalable
Unstructured Gas-dynamic Adaptive mesh-Refinement (SUGAR-3D) (see Sawant et al.
2018) has been utilised in the present work. In summary, the code takes advantage of
adaptive mesh refinement (AMR) of coarser Cartesian octree cells to achieve spatial
fidelity at regions of strong gradients, cutcell algorithms to correctly model gas-surface
collisions in the vicinity of embedded surfaces, domain decomposition strategy based
on Morton-Z space filling curves and inclusion of thermal non-equilibrium models, all
within a message-passing-interface (MPI) environment that enables massively parallel
communication. In the octree-based AMR framework, the collision or C-mesh is formed
from a user-defined, uniform Cartesian grid with cells, known as ‘roots’, that are
recursively subdivided into eight parts until the local cell size is smaller than the local
mean free path. Note that a subdivision based on the above criterion is performed only if
there are at least 32 particles in a collision cell.

The satisfaction of the numerical criteria in the flow over the three-dimensional double
wedge depends on the free-stream conditions, given in table 1. Table 2 provides a summary
of the key numerical parameters for these simulations which were found to require
∼60 billion computational particles and ∼4.5 billion collision cells of the adaptively
refined C-mesh octree grid. Here, the Knudsen number is based on the length of the
lower wedge, 50.8 mm, Fn denotes the number of actual gas molecules represented by
a computational particle, while the wall surface is fully accommodated (Bird 1994),
i.e. isothermal. The appendix of Sawant et al. (2022) describes the DSMC numerical
criteria and convergence study for flows presented here. Figure 6(b,c) of Sawant et al.
(2022) show that the ratio τ/�t is greater than unity in the entire flow domain and
the smallest collision cells contain at least eight particles, respectively. With respect to
λ/�x, figure 6(a) of Sawant et al. (2022) shows that the ratio is greater than unity in the
entire flow domain, including the interior zones of shock structures and regions of triple,
separation and reattachment points. This ratio is between 0.9 and 1, however, in close
proximity to the corner of two wedges, also known as the hinge, inside the recirculation
region, where the expected errors in transport coefficients of shear viscosity and thermal
conductivity are within 6.2 and 3.7 %, respectively (see Alexander, Garcia & Alder 1998).
Finally, figure 6(e) of Sawant et al. (2022) also shows that the effect of doubling the
number of particles produced the same transient behaviour, where the instantaneous,
spanwise-averaged, streamwise velocity differed by at most 7 % in the small region where
λ/�x = 0.9 and by 1.5 % outside of it.

In terms of collision models, the majorant frequency scheme (MFS) of Ivanov &
Rogasinsky (1988) derived using the Kac stochastic model for the selection of collision
pairs and the variable hard sphere model for elastic collisions are used. Appendix A
describes an improved strategy for the computations of maximum collision cross-section
used in the MFS scheme for accurate spectral analysis of unsteady flows simulated on
adaptively refined grids. For rotational relaxation, the Borgnakke & Larsen (1975) model
is employed with rates of Parker (1959) and DSMC correction factors (see Lumpkin, Haas
& Boyd 1991; Gimelshein, Gimelshein & Levin 2002) that account for the temperature
dependence of the rotational probability. For vibrational relaxation, the semi-empirical
expression of Millikan & White (1963) is used with the high-temperature correction of
Park (1984).
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Mach number, Ma (–) 7.02
Unit Reynolds number, Re (m−1) 5.22 × 104

Knudsen number, Kn (–) 3.2 × 10−3

Number density, n1 (m3) 1022

Streamwise velocity, ux,1 (m s−1) 3812
Equilibrium translational temperature, Ttr,1 (K) 710
Surface temperature, Ts (K) 298.5
Species mass, m (kg) 4.65 × 10−26

Species diameter at reference temperature of 273 K, d (m) 4.17 × 10−10

Viscosity index, ω (–) 0.745
Parker model parameters, Zr,∞ and T∗ (K) 18.5 and 91
Vibrational characteristic temperature, θ (K) 3371

Table 1. Physical gas parameters.

Domain size, (Lx,Ly,Lz) (mm) (80, 28.8, 80)
Number of octree and sampling cells along X, Y, Z 400, 144, 400
Number of gas-surface interaction cells along X, Y, Z 25, 10, 25
Number of computational particles (–) ∼ 6 × 1010

Number of collision cells (–) ∼ 4.5 × 109

Fn (–) 6.1 × 107

Timestep, �t (ns) 5
Adaptive mesh refinement interval (μs) 5
Relaxation probability computation interval (μs) 1

Table 2. Numerical simulation parameters.

2.2. Initialisation of three-dimensional flow
The three-dimensional flow studied in this work is initialised using the two-dimensional
steady-state solution over a double wedge simulated by Tumuklu et al. (2019). The
latter flow is recalculated here and then replicated on every octree cell along the
spanwise direction (Y) to form the three-dimensional field at the beginning of the
unsteady simulation. Note that the Cartesian coordinates of streamwise, spanwise,
streamwise-normal directions are designated as X, Y and Z, respectively. From the inlet
boundary at X = 0, an inward-directed local Maxwellian flow is introduced at an average
number density, bulk velocity and temperature of n1, ux,1 and Ttr,1, respectively. For
this work, the SUGAR solver is employed with spanwise-periodic boundary condition
in the Y-direction, as described in Appendix A. The spanwise extent of the current
simulation is Ly = 28.8 mm, which will be shown to be sufficiently wide to capture
linearly growing spanwise-periodic flow structures. In subsequent sections, contours and
isocontours showing the detailed spanwise-periodic structures are presented with two
periodic wavelengths for clarity.

In terms of the computational strategy used, it takes ∼ 50T (flow-through time, T ,
defined in the next section) until the onset of linear instability. To minimise data storage,
we estimate this time at which the spanwise-periodic flow structures start to emerge such
that they can be easily detected in the background of statistical fluctuations in DSMC.
We use an equilibrium criterion along the lines of Hadjiconstantinou et al. (2003) to
quantify the amount of spanwise fluctuations about the two-dimensional base state. For
example, the standard deviation in the bulk velocity at equilibrium can be calculated
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Figure 1. (a) Magnitude of mass density gradient of the base flow, |∇ρb|, normalised by ρ1L−1
s , where ρ1 =

n1m is free-stream mass density. (b) Overlaid on the image shown in (a) are the wall-normal directions U, S
and R, and the numerical probes a, b, c, d, r, s and t, defined in the text.

as, σu = √
R〈Ttr〉s/〈N〉s, where 〈Ttr〉s and 〈N〉s are local spanwise-averaged translational

temperature and number of particles, respectively, and R is the gas constant. The linear
instability can be easily detected, when the DSMC-computed standard deviation is larger
than the above criterion.

Finally, to accommodate billions of computational particles and collision cells, 19.2 k
MPI processors were used in this simulation. The spanwise-periodic simulation takes
∼5.5 h per through-flow time (T) using Intel Xeon Platinum 8280 (‘Cascade Lake’)
processors of the Frontera supercomputer (2019) and ∼14 h per flow time using Intel Xeon
Platinum 8160 (‘Skylake’) processors of the Stampede2 supercomputer (2019). The overall
cost of the simulation up to T = 190 discussed in what follows required ∼870 k node hours
(∼43.8 million core hours) of computing time.

2.3. Main features of the two-dimensional base flow
Starting with the two-dimensional base flow, figure 1(a) shows the complex features of
an Edney-IV type SBLI system (Edney 1968; Babinsky & Harvey 2011). The base flow
results are obtained by spanwise and temporally averaging the DSMC flow fields between
T = 48 and 60, where T is the non-dimensional flow time, defined as the time it takes for
the flow to traverse the distance Ls = 40 mm at a free-stream velocity of ux,1; Ls is defined
as the straight-line distance from the separation point, Ps, to the reattachment point, PR,
which mark the origin and end of the shear layer inside the separation bubble, respectively.
The SBLI features include the interactions of the separation shock with the leading-edge
oblique and detached bow shocks at triple points T1 and T2, respectively. Two contact
surfaces, C1 and C2, are formed downstream of triple points T1 and T2, respectively, where
C1 is between two supersonic streams downstream of the separation shock, and C2 is
between the supersonic and subsonic streams downstream of the separation and detached
shocks, respectively. For details about the earlier time evolution of the two-dimensional
SBLI features over the double wedge, see Tumuklu et al. (2019).

The image shown in figure 1(a) is repeated in figure 1(b), in order to define a number
of probes that will aid the discussion of the next sections. Probes are placed at locations
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Figure 2. Surface macroscopic flow quantities in the base state, where the profiles are time averaged from
T = 48 to 53. (a) Surface velocity slip in the local streamwise direction, Vs. (b) Value of λ adjacent to the wall
and temperature jump Ts. (c) The heat transfer and pressure coefficients, Ch and Cp, respectively.

a: at the foot of the separation shock, (X = 32.817 mm, Z = 13.285 mm), b: inside the
LSB, (X = 48.496 mm, Z = 24.270 mm), c: at the contact surface, (X = 65.191 mm,
Z = 56.593 mm), d: on the detached shock, (X = 52.860 mm, Z = 59.226 mm), r: at
reattachment, (X = 64.396 mm, Z = 44.358 mm), s: on the separation shock, (X =
44.165 mm, Z = 32.597 mm) and t: at the triple point T2, (X = 48.347 mm, Z =
41.624 mm). Probes a and d define lines a–t and t–d, denoting the intersection with the
OXZ plane of two planes passing through the separation and detached shocks, respectively.
Wall-normal directions U, S and R are respectively defined at the foot of the separation
shock and either side of the triple point, T2. The vertical projection of the foot of the
arrows U, S and R on the X-axis is at 32.5, 49 and 66.1 mm, respectively. From this
point onward, the DSMC-derived instantaneous profiles shown are noise filtered using
the proper orthogonal decomposition (POD) procedure discussed in Appendix B.

The use of a particle-based approach permits analysis of surface rarefaction effects;
results corresponding to the base flow are shown in figure 2(a) for the local streamwise
velocity slip, Vs, normalised by ux,1, while the local mean free path adjacent to the wall,
λ, as well as the translational temperature jump at the surface are presented in figure 2(b),
respectively normalised by free-stream mean free path λ1 and Ttr,1.

Figure 2(a) shows a maximum Vs equal to 2.16 % of ux,1 at the leading edge
(X = 10 mm), similar to the value of 2.45 % obtained by Tumuklu et al. (2019) in a
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two-dimensional flow simulation. The large slip at the leading edge is due to the increased
rarefaction of gas induced by steep gradients of the leading-edge shock. Here, Vs decreases
along the local streamwise direction to 0.6 % at X = 32 mm, similar to the decrease of λ
adjacent to the wall as seen from figure 2(b). From X = 32 to 36 mm in the interaction
region of the separation shock with the boundary layer, Vs rapidly decreases to zero
at the separation point, PS. Inside the recirculation zone, from PS to PR, the point of
reattachment, Vs is negative because the flow impinging on the wall is opposite to the
local streamwise direction; Vs and λ remain constant on the lower wedge, where the latter
is approximately 3.69 % of the free-stream mean free path, λ1. On the upper slant surface,
Vs and λ both increase such that the rate of increase is significantly larger downstream of
reattachment while Ts follows a similar variation as Vs and λ, as seen from figure 2(b).
Velocity slip and temperature jump are rarefaction effects that are proportional to the size
of the Knudsen layer in the vicinity of the wall (Chambre & Schaaf 1961; Kogan 1969).
Since the Knudsen layer is approximately of the order of λ, which is inversely proportional
to number density, n, and directly proportional to the translational temperature, Tω−0.5

tr ,
where ω = 0.745 is the viscosity index of the gas, the profiles of Vs and Ts are similar to
the profile of λ in the vicinity of the surface, for our assumption of a fully diffuse surface.

The variations in surface heat flux and pressure coefficients, Ch and Cp, respectively,
are shown in figure 2(c). The change in Ch along the local streamwise direction is similar
to Vs and Ts and Cp is constant on the lower wedge, except for a sharp increase in the
vicinity of the separation point from X = 32 to 38 mm. Inside the recirculation zone
on the lower wedge, Cp plateaus, but on the upper wedge it increases rapidly up to the
corner of the wedge. It must be noted that, although figure 2(c) shows a small dip in Cp
at the hinge equal to 1.36 % of the plateau at X ∼ 50 mm, we do not observe secondary
vortices in the separation region. This is consistent with the value of the scaled angle
α ∼ 2 of our simulations, which is much smaller than that required for secondary vortices
to emerge (4 ≤ α ≤ 5) (see Shvedchenko 2009). The scaled angle is calculated based on
the definition used by Gai & Khraibut (2019) (eq. (1.1)), which was originally defined by
Stewartson (1970) and Rizzetta et al. (1978a).

3. Three-dimensional linear instability mechanisms

3.1. Analysis of the three-dimensional DSMC signal

During the early time of the simulation, when deviations from the imposed steady
state are still small in magnitude, perturbations Q̃ of an unsteady macroscopic flow
quantity Q = (n, ux, uy, uz, Ttr, Trot, Tvib)

T may be obtained by subtracting from the
unsteady three-dimensional full DSMC field the steady, two-dimensional base flow state
Q̄ = (n̄, ūx, 0, ūz, T̄tr, T̄rot, T̄vib)

T computed in § 2.2 and imposed as initial condition in the
simulation

Q̃(x, y, z, t) = Q(x, y, z, t) − Q̄(x, z). (3.1)

In the disturbance field vector Q̃ = (ñ, ũx, ũy, ũz, T̃tr, T̃rot, T̃vib)
T, ñ denotes the

perturbation number density, ũx, ũy, ũz are perturbation velocities in the X, Y and Z
directions and T̃tr, T̃rot, T̃vib are perturbation translational, rotational and vibrational
temperatures, respectively. The smallness of the perturbations at early times in the
simulation permits decomposition of the DSMC-computed perturbation flow fields Q̃
according to linear stability theory into a spanwise-independent vector Q̂(x, z), comprising
the two-dimensional amplitude functions, and a phase function, Θ , according to
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Figure 3. Temporal evolution of spanwise perturbation velocity, (a) in the separation shock (probe s) and (b)
the bubble (probe b), at spanwise locations C (y/Ly = 0.13) and D (y/Ly = 0.63).

(Theofilis 2000; Theofilis & Colonius 2003)

Q̃(x, y, z, t) = Q̂(x, z) exp (iΘ) + c.c., (3.2)

where
Θ = βy − Ωt, (3.3)

Here, β = 2π/Ly is the real spatial wavenumber corresponding to the spanwise
wavelength, Ly, of the global mode, Ω = Ωr + iΩi is a complex quantity, whose real part,
Ωr, indicates the frequency and the imaginary part, Ωi, is the temporal growth rate and
c.c. indicates complex conjugation so that Q̃ is real. The sign convention in (3.3) indicates
that Ωi > 0 signifies exponentially growing linear perturbations.

3.2. Linear instability in the three-dimensional shock layer/LSB interaction region
Analysis of the DSMC results was performed during two time windows, 30 ≤ T ≤ 68 and
68 ≤ T ≤ 190. The lower limit of the first bracket was chosen after initial transients in
the solution had subsided, while the upper limit in the second time interval was chosen
in order to study the long-time development of the instability, once nonlinear saturation
had been reached. A qualitative change that occurs after T = 68 in the shock structure
and its long-time (T > 110) effect on the LSB will be discussed in § 3.4; in this and the
next section an in-depth discussion of the results obtained during the linear growth of
perturbations is presented first.

The temporal evolution of the spanwise perturbation velocity component, ũy, normalised
by ux,1, within the time of linear growth, indicated by the greyed out box in figure 3,
is presented at probe s inside the shock and probe b inside the LSB, both at two
spanwise locations, C and D, to be defined shortly. The immediate observation made
is that, both inside the shock layer and in the LSB, ũy grows exponentially and, up
to this time, monotonically. In order to verify the existence of an underlying linear
instability mechanism and quantify its parameters, a two-dimensional linear fit of the
full three-dimensional field of the perturbations is performed according to (3.2) using
the generalised least-squares method of the Python LMFIT (Version 1.0.1) function.
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Perturbation quantity Growth rate Ωi (kHz) Amplitude Q̂

ñ, (m−3) 4.91 ± 0.06 % −5.013 × 1019 ± 0.24 %
ũx, (m s−1) 4.90 ± 0.07 % −0.1613 ± 0.30 %
ũz, (m s−1) 4.95 ± 0.08 % −0.1108 ± 0.33 %
T̃tr, (K) 4.88 ± 0.04 % 0.5111 ± 0.17 %
T̃rot, (K) 4.88 ± 0.05 % 0.5128 ± 0.19 %
T̃vib, (K) 5.15 ± 0.11 % 0.1560 ± 0.51 %
ũy, (m s−1) 4.89 ± 0.10 % 0.0762 ± 0.43 %
ũy (at s), (m s−1) 5.12 ± 0.26 % 0.03648 ± 1.14 %
ũy (at r), (m s−1) 4.77 ± 0.11 % −0.0914 ± 0.46 %
ũy (at c), (m s−1) 5.55 ± 0.66 % −0.0092 ± 3.20 %

Table 3. Two-dimensional linear curve fit parameters obtained using (3.2) and (3.3). Fit parameters are
obtained at probe b unless explicitly indicated otherwise.
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Figure 4. Temporal evolution of spanwise perturbation velocity, ũy, inside the LSB, along the entire span.
(a) Raw DSMC data. (b) Two-dimensional linear fit of the result shown in (a).

The results returned for the mean value of the unknown fit parameters, Ωi, Q̂, Ωr,
alongside the 1σ -uncertainty (standard error) of these estimates, are presented in table 3,
where the growth rates obtained for macroscopic flow quantities at probes b, s, r and c
defined in figure 1 are shown.

The results of curve fits at all locations examined indicate the presence of an amplified
stationary global linear instability. The average growth rate of each flow quantity listed in
the table is Ωi = 5.0 kHz, with a standard deviation of ∼ 6.7 %. Significantly, the absolute
magnitude of the small amplitude of spanwise perturbation velocity, ũy, is of the same
order at probes r, b, s, and an order of magnitude lower at probe c: the maximum deviation
of ∼11.4 % is found at probe c, which is outside of the region of shock and LSB interaction.

The temporal evolution of ũy at 50 ≤ T ≤ 90 over the entire span of the separation
bubble is shown in figure 4(a) as raw DSMC data, while figure 4(b) shows a
two-dimensional linear fit of the data shown in figure 4(a) using (3.2) and (3.3).
A well-defined harmonic pattern of ũy emerges along the span and the choice of points
C and D becomes clear, as they represent the spanwise locations at which ũy attains a local
maximum and minimum, respectively.
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ũ y/
(1

0
–
2
)

Figure 5. Same data at location C as in figure 3, plotted in a semi-logarithmic scale. The dashed line shows
the average value of the growth rate shown in table 3, Ωi ≈ 5 kHz, i.e. ΩiLs/ux,1 ≈ 5.247 × 10−2. The colour
for the data at probe b has been changed to distinguish from the data at probe s.

The emergence of linear instability in the DSMC simulation is demonstrated in
figure 5, where the probe results shown in figure 3 at location C are plotted again in
semi-logarithmic scale; superposed upon the DSMC results a straight line is plotted,
having a slope Ωi = 5.0 kHz, as indicated by the average value of 5 kHz of the
amplification rate calculated earlier. A number of significant conclusions can be drawn
on the basis of these results. First, perturbations grow exponentially by at least one order
of magnitude inside the separation bubble and the shock layer, up to times T ≈ 110 and
T ≈ 130 at probes b and s, respectively. Second, within the one standard deviation error
bar of 0.335 kHz (6.7 %) calculated earlier, growth of perturbations occurs at the same
amplification rate inside the bubble and the shock, as indicated by the parallel slopes of
the straight dashed line and those of the probe data. Third, at these conditions nonlinear
saturation, indicated by the oscillatory evolution of the signal that will be discussed in the
next section, occurs first inside the LSB and sets in later in the shock layer.

To the best of the authors’ knowledge, this is the first time that (unsteady)
DSMC simulations have captured the growth of linear instability in the context of
three-dimensional DSMC simulations. The essential qualitative difference between the
present three-dimensional and the earlier two-dimensional results of Tumuklu et al. (2019)
is the discovery of unstable three-dimensional perturbations in the three-dimensional
configuration, as opposed to the damped eigenmodes in the two-dimensional work, that
ultimately led to a steady state being reached in the two-dimensional flow; the present
results show that no such steady state exists in the three-dimensional double-wedge flow
at these parameters. Notwithstanding differences in Mach number, a comparison of the
present results with those of instability analysis in the double wedge by Sidharth et al.
(2018), who analysed a Mach 5 hypersonic flow of a calorically perfect gas, reveals that
the present non-dimensional, average growth rate Ωi = 0.0057 (growth rate results are
non-dimensionalised by multiplying Ωi by the boundary-layer thickness at separation,
δ99 = 3.35 mm, and dividing by the free-stream velocity downstream of the leading-edge
shock, ux,2 = 2930.8 m s−1, the latter obtained from inviscid shock theory (Anderson
2003) for the observed shock angle of 41◦) is nearly an order of magnitude larger than the
Ωi = 7.5 × 10−4 obtained in the referenced work. This can be explained by the difference
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Figure 6. (a) Boundary-layer profiles in the base state along wall-normal directions U and S. Local streamwise
velocity, ut,l is normalised by ux,1, Hl being the distance along the wall-normal direction. (b) The absolute
maximum spanwise variation in ut,l along B and S.

in the angles between the upper and lower wedges, which is �θ = 15◦ in the present and
�θ = 8◦ in the referenced work and is consistent with the strong destabilising effect of
�θ found by Sidharth et al. (2018), and also known from the related compression ramp
flow (e.g. Cao et al. 2021). Finally, linear instability was found not to affect surface flow
quantities. Spanwise variations of the streamwise velocity slip and the temperature jump
at the wall were found to be negligible during linear growth of disturbances, such that
these quantities are the same as the base state profiles shown in figures 2(a) and 2(b),
respectively. The spanwise velocity slip (not shown) was also found to be negligibly small
with a maximum spanwise variation of only 0.078 % of ux,1.

The question of the spatial origin of linear instability and the spanwise periodicity seen
in figure 4 is addressed next. Two locations are selected, U and S, as shown in figure 1(b),
located upstream of the separation shock and in the separation region, respectively.
Figure 6(a) shows the variation of the local streamwise velocity, ut,l along the local
wall-normal direction, subscript ‘t’ standing for the local streamwise (wall-tangential)
component of velocity and ‘l’ referring to the lower wedge surface, as a function the
wall-normal height Hl. Figure 6(b) shows the absolute maximum spanwise variation of
ut,l during linear perturbation growth, calculated based on the difference in ut,l at two
locations, A, at Y/Ly = 0.88 and B, at Y/Ly = 1.38 of the spanwise sinusoidal modulation
induced by linear instability; the significance of these locations A and B will be further
elucidated in the next section.

Common characteristics of the boundary-layer profiles at U and S are the respective
non-zero streamwise velocity component at the wall, due to surface rarefaction effects
discussed in § 2.3, and the generalised inflection points (GIPs), indicated by open circles.
The essential difference between the profiles at the two locations concerns the respective
maximum spanwise variation: at U, this is only within 0.05 % of ux,1, indicating that the
flow upstream of the separation shock is essentially two-dimensional. By contrast, at S
the maximum spanwise variation peaks at the inflection point, Hl/Ly = 0.113, where it is
equal to 1.8 % of ux,1. In addition, a second local maximum of 0.72 % of ux,1 is observed
inside the separation shock layer at Hl/Ly = 0.40. Attention is thus turned to correlating
this spanwise inhomogeneity inside the shock layer with global instability in the LSB.
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Figure 7. (a) Wall-normal probe data for |∇p̃|, along direction S as a function of wall-normal height at two
spanwise locations A and B defined in the legend. (b) Spanwise probe data for ũt,l inside the separation shock
at Hl/Ly = 0.4 on plane S.

3.3. Correlation of linear instability in the shock layer and the LSB
Figures 7(a) and 7(b) present probe data of perturbation quantities along specific
wall-normal and spanwise field lines, respectively. It should be stressed here that the
flow components shown are representative of all perturbation quantities, all of which
exhibit the same qualitative behaviour, but are not shown for brevity. Figure 7(a) shows
the variation of the gradient magnitude of the pressure perturbation, |∇p̃|, normalised
by p1L−1

s (p1 being the free-stream pressure) as a function of wall-normal distance, Hl,
along the S-direction. Data are shown at the same two spanwise locations, A and B, the
choice of which will be discussed shortly. The rapid increase of |∇p̃| at Hl = 0.36Ly is
indicative of the separation shock, inside of which the value of |∇p̃| far exceeds that in
the vicinity of the surface. This criterion was used to indicate the separation shock region
in figure 6(a). It is worth pointing out here that the measured thickness of the shock layer
based on this criterion, 0.083Ly = 2.39 mm, is comparable to the boundary-layer thickness
at separation, δ99 = 3.35 mm.

The choice of spanwise locations A and B can be understood from results shown in
figure 7(b). Here, the spanwise variation of ũt,l inside the separation shock layer is plotted
at a wall-normal height Hl/Ly = 0.4 along the S-direction. It can be clearly seen that the
spanwise locations A and B correspond to the trough and peak of a sinusoidal modulation
of ũt,l.

The spanwise structure of small-amplitude perturbations inside the separation and
detached shock layers, alongside that inside the LSB, is shown in figures 8(a) and
8(c), respectively corresponding to wall-normal planes at the locations S and R defined
in figure 1(b). Figures 8(b) and 8(d) show the same spanwise perturbation velocity
component on the separation shock plane a–t and the detached shock plane t–d defined
in figure 1(b). In all four of these figures contours of the spanwise perturbation velocity
component are shown. This quantity is zero at the start of the simulation and only arises on
account of linear instability as time progresses. On figures 8(a) and 8(c) the approximate
boundaries of the separation and detached shock regions, as well as the envelope of the
LSB and the location of the contact surface are marked by dashed/dash-dotted horizontal
lines.
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Figure 8. Field data of the spanwise perturbation velocity component, ũy, normalised by ux,1 during linear
growth of perturbations, on the planes S in (a), a–t in (b), R in (c) and t–d in (d) as denoted in figure 1(b).
Overlaid line contours: (black dashed line) |∇p̃| and (black dashed dotted line) ω̃y = 0.

On the S-plane in figure 8(a), spanwise-periodic flow structures are seen inside the
separation bubble between the wedge surface, Hl = 0, and the outer envelope of the
separation bubble, a Hl ≈ 0.15Ly, where the spanwise vorticity, ω̃y, is zero. The outer
envelope of the bubble can also be seen to be corrugated sinusoidally, on account of the
stationary growing LSB instability, the three-dimensional footprint of which leads to the
well-known striations that originate inside the LSB (Ginoux 1958; Shvedchenko 2009;
Dwivedi et al. 2019; Hao et al. 2021). This spanwise-periodic global instability is identified
here for the first time in the context of kinetic theory simulations.

Further away from the wall, figure 8(a) shows, also for the first time, that
spanwise-periodic flow structures form inside the strong gradient region of the separation
shock layer, at a height 0.36 < Hl/Ly < 0.44 away from the wall. These structures are in
phase with those inside the LSB and have the same spanwise-periodicity length. This result
is consistent with the maximum spanwise variation seen in the probe data and the DSMC
signal post-processing discussed in the previous section, which revealed nearly identical
growth rates inside the LSB (probe b) and the separation shock (probe s). The conjecture
put forward based on interpretation of the probe data can now be further strengthened
on the basis of the field data shown, namely that self-excited linear instability leads to
spanwise-periodic structures in perturbation flow quantities within the shock layer, with a
spanwise wavelength of Ly, identical with that seen in the LSB.

941 A7-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

27
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.276


Shock layer and laminar separation bubble instabilities

On the cut plane a–t in figure 8(b), it is seen that the spanwise-periodic structures are
present in the entire separation shock layer from the foot of the separation to the triple point
T2. The region of interaction of the oblique shock with the separation shock is marked on
the a–t plane at the distance of 0.474Ly to 0.613Ly. In this region, the magnitude of ũy
increases and striation patterns emerge further along the separation shock.

On the R-plane, downstream of the triple point, figure 8(c) shows contour plots of
the spanwise perturbation velocity component, ũy, which also exhibits spanwise-periodic
structures inside the reattached boundary layer; together with the result shown in
figure 8(a), this result shows that the striations originating inside the LSB extend at least up
to the location of plane R on the downstream wedge wall. Along the wall-normal direction,
Hu, spanwise-periodic structures are also present in the vicinity of contour line ω̃y = 0 at a
height of Hu = 0.36Ly, in the vicinity of contact surface C2 downstream of the triple point
T2, which clearly points to the contact surface being corrugated by perturbations that are in
phase with the striations on the wall. Further away from the wall, the contour lines of |∇p̃|
at Hu = 0.61Ly and 0.677Ly indicate the approximate layer of the detached shock. Inside
this layer the spanwise-periodic flow structures are still noticeable, but their amplitude has
subsided compared with that in the separation shock, indicating that the spanwise-periodic
global mode is concentrated in the zone of interaction between the separation and detached
shock-layer system and the LSB.

The presence of spanwise-periodic structures in the detached shock layer from the triple
point T2 to probe d is seen on the cut plane t–d in figure 8(d). The peak magnitude of
these structures is at least a factor of two lower than the structures in the separation shock
and an order of magnitude lower than those in the separation bubble. This shows that
the synchronisation of global instability is strongest between the separation shock and the
LSB, and the amplitude of the perturbations in the shock layer declines downstream of the
triple point. It can further be seen that the structures inside the detached shock layer are
180◦ out of phase with structures in the separation shock, shown earlier on plane a–t.

Returning to the analysis of the spanwise structures inside the shock layer and the
separation bubble on the S plane, figure 9 confirms that spanwise-periodic perturbations
are present in all perturbation flow quantities, namely number density, ñ, streamwise
velocity with respect to the lower wedge (i.e. direction perpendicular to S), ut,l,
wall-normal velocity with respect to the lower wedge (i.e. direction of S), un,l, translational
temperature, T̃tr, rotational temperature, T̃rot, and vibrational temperature, T̃vib. The
minimum (negative) and maximum (positive) values of spanwise structures in ũt,l, ũn,l,
and ñ are also at spanwise locations A and B, respectively.

Interestingly, closer inspection of the relative magnitude of the perturbation velocity
components, all scaled by the same free-stream value, reveals qualitatively different results
inside the LSB and at the shock layer. In the LSB, the tangential and spanwise perturbation
velocity components have comparable magnitudes, while the wall-normal component is an
order of magnitude smaller in relative terms. By contrast, the peak oscillation amplitude
in the wall-normal perturbation velocity component is two orders of magnitude higher in
the shock layer than inside the LSB (|ũn,l|max ≈ 0.3 inside the shock layer, as opposed to
|ũn,l|max ≈ 3 × 10−3 in the bubble), as seen in the inset graphs that magnify all shock-layer
results. This behaviour, although not as pronounced, can also be seen in the number density
and perturbation temperature components.

Furthermore, all three perturbation temperatures have primary spanwise structures
adjacent to the wall having minimum and maximum values at spanwise locations B and
A, respectively, i.e. they are 180◦ out of phase with perturbation structures of velocities
and number density. Perturbations in the normalised T̃tr and T̃rot also exhibit secondary
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Figure 9. Contours of perturbation quantities on the plane defined along S. (a) Number density, ñ, (b)
streamwise perturbation velocity, ut,l, (c) wall-normal velocity, un,l, (d) translational temperature, T̃tr , (e)
rotational temperature, T̃rot, and ( f ) vibrational temperature, T̃vib, showing the cats-eyes pattern of instability
in the shock layer. Number density, velocities and temperatures are normalised by respective upstream values.

structures immediately above the primary structures within 0.1 < Hl < 0.15. From a
qualitative point of view, all perturbation components inside the shock layer are found to
feature the same cats-eyes pattern, seen in all insets of figure 9. The degree of thermal
non-equilibrium seen in the perturbation temperatures presented in figures 9(d)–9( f )
is significant, and originates in differences in the base flow temperatures, shown in
figure 10(a), where thermal non-equilibrium is present in the entire region between the
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Figure 10. (a) Base flow temperatures, T̄tr , T̄rot, T̄vib, along U, S and R. (b) Wall-normal probe data of
perturbation temperatures, T̃tr , T̃rot, T̃vib, along S at the spanwise location A.
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Figure 11. (a) Isocontours of spanwise perturbation velocity ũy on the OXZ plane and definition of cut planes
P and Q. (b) Same result for ũy, plotted underneath cut plane P and denoting spanwise-periodic striations inside
the LSB. (c) Same plotted upstream of cut plane Q and denoting spanwise-periodic modulation in the vicinity
of contact surfaces (shear layers) downstream of triple points.

shock structure and the wedge surface along the three directions shown. This results in the
large differences in the shock, denoted by the blue dashed line at Hl/Ly = 0.36 − 0.44 in
figure 10(b), where relatively smaller differences can be seen in the bubble, at Hl/Ly = 0 −
0.15, in all three temperatures. Consistent with the faster relaxation between translational
and rotational modes, those two temperatures have an analogous spatial dependence.

Figure 11 presents three different views of the spanwise perturbation velocity component
over the entire calculation domain. In figure 11(a) the perturbation is shown on the OXZ
plane and two characteristic cut planes, P and Q, defined by their respective normal vectors
[−0.7193î + 0.6946k̂] and [0.7193î − 0.6946k̂]. Here, P is taken approximately tangential
to the dividing streamline of the LSB, while Q is taken at a distance from the corner,
so as to cross the triple point of the steady flow. Figure 11(b) shows three-dimensional
isosurfaces of uy underneath plane P, while figure 11(c) presents spanwise-periodic
structures in the shear layers downstream of triple points T1 and T2 defined in figure 1(a).
All of these results, as well as consistent results seen in the isocontours of vorticity

941 A7-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

27
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.276


S.S. Sawant, V. Theofilis and D.A. Levin

components in Appendix B, all confirm the three-dimensional, spanwise-periodic nature
of an instability that encompasses the LSB region in tandem with the separation and
detached shock layers and the triple point T2 that connects the latter two.

Summarising, it is seen that during linear perturbation growth the steady
two-dimensional base flow becomes unstable to a self-excited, small-amplitude,
three-dimensional spanwise-periodic stationary global mode. The spanwise perturbation
velocity component, ũy, which was zero at the beginning of the simulation, attains a
sinusoidally varying amplitude not only inside the separation bubble, as known from
earlier work (e.g. Ginoux 1958; Theofilis et al. 2000; Shvedchenko 2009; Dwivedi et al.
2020), but also inside the separation and detached shock layers and the shear layers formed
downstream of triple points. This result extends the findings of Tumuklu et al. (2018a,b,
2019) in the two-dimensional counterpart of this configuration but, contrary to the
two-dimensional limit, in the present three-dimensional environment the observed global
instability is unstable with synchronised spanwise-periodic small-amplitude perturbations
amplifying exponentially within both the LSB and shock layer. Linear growth of the
global mode inside the laminar separation leads to striations on the wall, while in the
shock layer a spanwise-periodic cats-eyes pattern is formed in all perturbation components.
Ultimately, linear growth will lead to nonlinear saturation and attention is turned next to
analysis of the three-dimensional DSMC predictions at later times.

3.4. Low-frequency unsteadiness of the shock and separation bubble
Turning to the dynamics of the linear flow instability at times beyond exponential growth
of the stationary spanwise-periodic global mode, attention is paid to low-frequency
unsteadiness, that has been reported over a wide range of Re ∼ O(106 − 108) in a number
of numerical solutions of the Navier–Stokes equations (see e.g. Pirozzoli & Grasso 2006;
Piponniau et al. 2009; Touber & Sandham 2009; Priebe & Martín 2012; Clemens &
Narayanaswamy 2014; Gaitonde 2015), as well as many experiments (Dussauge, Dupont &
Debiève 2006), where shock-induced turbulent boundary-layer interactions were studied in
a variety of configurations. Low-frequency unsteadiness is identified in this context as that
corresponding to Strouhal numbers in the range 0.01 ≤ St ≤ 0.05, while Strouhal numbers
within the same range have also been reported for supersonic laminar and transitional
shock/boundary-layer interactions (Sansica, Sandham & Hu 2016; Threadgill, Little &
Wernz 2019).

A qualitative change in the evolution of the signal commences in the triple point at
T = 68. Figures 12(a) and 12(b) present the spatio-temporal variation of normalised
perturbation spanwise velocity, ũy, at probe b in the separation bubble, where linearly
growing spatial structures start to exhibit sinusoidal oscillations in time with an average
period of 46T . At probe t near triple point T2, the variation of normalised perturbation
number density, ñ, is shown in figures 12(c) and 12(d) where two time scales with periods
of 51T and 41T (average period of 46 T) can be seen. The corresponding Strouhal number
corresponding to these time periods is,

St = fLs

ux,2
= 0.0283 ± 0.003, (3.4)

which is defined based on the length of the separation bubble, Ls = 40 mm and the velocity
downstream of the leading-edge oblique shock, ux,2 = 2930.8 m s−1. This Strouhal
number is within the low-frequency range reported in the literature of turbulent SBLI.
The triple point starts to oscillate at T = 68, and its motion remains two-dimensional
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Figure 12. Low-frequency unsteadiness at probes b and t in the separation bubble and at the triple point, T2,
respectively. (a) At probe b, the temporal evolution of perturbation spanwise velocity, ũy, normalised by ux,1.
(b) At spanwise locations C (Y/Ly = 0.13) and D (Y/Ly = 0.63), the normalised ũy indicating the period of
unsteadiness (see the greyed out region). (c) At probe t, the temporal evolution of perturbation number density,
ñ, normalised by n1. (d) Normalised ñ at locations A (Y/Ly = 0.88) and B (Y/Ly = 1.38) as a function of T .

up to approximately T = 85, as indicated by the lack of variation in ñ along the
spanwise direction. Past this time, three-dimensional linear instability manifests itself and
low-frequency unsteadiness is observed, causing spanwise modulation of structures in ñ
and their oscillations in time.

In summary, as time progresses, low-frequency oscillation follows exponential growth
of a self-excited stationary three-dimensional global mode in the separation bubble and
the shock layer. As far as self-excitation of the laminar separation zone is concerned, the
appearance of low-frequency oscillation in the related configuration of laminar separation
generated by a shock impinging on a flat-plate geometry has been attributed by Boin et al.
(2006) to a supercritical Hopf bifurcation of the flow, following the oscillator scenario
discussed by Theofilis et al. (2000) in the incompressible LSB case.

The present kinetic-theory results fully concur with this prediction regarding the
existence of a self-excited three-dimensional stationary global instability of the LSB.
Moreover, we find that the underlying global mode is not confined to the LSB but
includes the shock layer as an integral part. Past linear amplification of this stationary
mode, low-frequency synchronised oscillations arise both in the LSB and in the (fully
resolved) shock layer. Current computing capabilities have not permitted us to pursue the
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time integration of the DSMC equations in order to further quantify additional frequency
content generated past the initial stages described herein, or follow flow into transition to
turbulence; this task will be pursued in future efforts.

4. Summary and conclusions

Linear instability mechanisms in laminar hypersonic flow of nitrogen over a
three-dimensional double wedge with a 30◦–55◦ cross section have been studied using the
particle-based DSMC method, as implemented in the massively parallel SUGAR solver
(Sawant et al. 2018). The temporal evolution of the DSMC field was computed over a span
of ∼200 through-flow time units that included the inception of three-dimensionality, linear
perturbation growth and nonlinear signal saturation. The fully resolved kinetic approach
permitted space- and time-accurate modelling of the internal structure of shocks, surface
rarefaction effects, thermal non-equilibrium as well as, for the first time, time-accurate
description of small-amplitude three-dimensional self-excited perturbations that arise
from interaction of the shock system with the three-dimensional LSB both inside the
separation and detached shock layers and in the LSB.

In line with the findings of Tumuklu et al. (2018b) for Mach 16 flow over an
axisymmetric double cone, and Tumuklu et al. (2019) for the two-dimensional counterpart
of the present double wedge flow, the LSB was found to be strongly coupled with the
separation and detached shock system. In contrast to the results in the two-dimensional
configuration, linear instability was found to be exponentially amplified in the present
three-dimensional context. The origin of instability was traced in the vicinity of primary
separation, i.e. the flow region of interaction of the separation shock and the bubble. This
finding clearly points out that the observed mechanism is one of self-excitation and not the
result of amplification of incoming upstream disturbances, a result which generalises the
concept of oscillator, introduced in an incompressible context either in weakly non-parallel
(Chomaz et al. 1988; Chomaz 2005) or in fully non-parallel flow (Theofilis et al. 2000),
to include the interaction of the entire separation and detached shock system with the
three-dimensional LSB.

The presence of amplified linear instability leads to the formation of spanwise-periodic
flow structures in three-dimensional perturbations of macroscopic flow quantities inside
the LSB, corresponding to the well-known striation wall pattern. More importantly, the
present study showed that spanwise-periodic linear instability also exists in the internal
structure of the separation and detached shock layers and in the vicinity of contact surfaces
downstream of triple points; this shock-layer instability, which takes the form of cats-eyes
patterns, is seen for the first time in the present work. Linear instability in the shock
layer and the LSB are synchronised, with the spanwise-periodicity length of the structures
forming inside the bubble and in the shock system being identical, and their amplitude
growing with the same average, linear temporal growth rate, Ωi = 5.0 kHz ± 0.16 % at
the conditions examined. The slow linear growth and long time scale of low-frequency
unsteadiness suggest that experimental test times must be sufficiently long, if differences
between the various experimental and numerical results are to be reconciled.

The long-time simulation of the flow revealed that, past the stage of linear instability
growth, low-frequency unsteadiness of the triple point and consequently of the separation
bubble sets in, having a time period of oscillation of 46 T. The long-time spatio-temporal
evolution of the flow at the triple point T2 of ∼ 190T revealed the presence of spanwise
corrugation of the shock as well as sinusoidal oscillations in time. The oscillation
frequency corresponds to Strouhal number of St ∼ 0.028, consistent with the existing
literature on turbulent SBLI.
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Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2022.276.
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Appendix A

A modification to the computation of maximum collision cross-section used in the MFS
scheme is described for accurate spectral analysis of unsteady flows. In a typical DSMC
simulation, the collision pairs selected using either the MFS or the no time counter scheme
are allowed to collide with probability

Pc = σTcr

(σTcr)max
, (A1)

where σT = πd2 is the total cross-section, d is the molecular diameter, cr is the relative
speed and (σTcr)max is the maximum collision cross-section. The last term is stored for
each collision cell and is estimated at the beginning of the simulation to a reasonably large
value using an expression suggested by Bird (see 1994, § 11.1),

(σTcr)max = (πd2
r )300

√
Ttr/300, (A2)

where dr is the reference molecular diameter. As the simulation progresses, this value is
updated if a larger value is encountered in the collision cell.

However, care should be exercised at an AMR step during which the old C-mesh
is deleted and a new one is constructed, because the newly created collision cells
require an estimate of (σTcr)max. If the value is arbitrarily guessed based on (A2), then
the instantaneous temporal signals of macroscopic flow quantities exhibit kinks at the
timesteps when the AMR step is performed. These kinks decay in approximately 3–4 μs
and therefore would not affect steady-state simulations, but for unsteady flows they can
spuriously reveal a dominant frequency equal to the inverse of the time period between
the two AMR steps. To avoid the corruption of instantaneous signals with such artificial
perturbations, at an AMR step each root cell stores the smallest value of (σTcr)max among
all of its collision cells before deleting the C-mesh. After a new C-mesh is formed, the
value stored in the root is assigned as the lowest estimated guess to all collision cells in

941 A7-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

27
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.276
https://orcid.org/0000-0002-2931-9299
https://orcid.org/0000-0002-2931-9299
https://orcid.org/0000-0002-7720-3434
https://orcid.org/0000-0002-7720-3434
https://orcid.org/0000-0002-6109-283X
https://orcid.org/0000-0002-6109-283X
https://doi.org/10.1017/jfm.2022.276


S.S. Sawant, V. Theofilis and D.A. Levin

a given root. Those newly formed collision cells, for which the actual value of (σTcr)max
must be larger than that assigned as an estimate, quickly update to this value within the
next 0.2 μs and eliminates spurious corruption of the instantaneous residual.

Next, the implementation of spanwise-periodic boundaries in the SUGAR code is
performed as follows. Suppose a particle intersects a spanwise domain boundary at Y = 0
or Ly, within a period, δt, smaller than the timestep, �t. In that case, its spanwise position
index is changed to the periodically opposite Y boundary index, i.e. Y = Ly or Y = 0,
respectively. After this translation, the particle continues its movement for the remaining
portion of the timestep, �t − δt. This simple algorithm is implemented in SUGAR’s
parallel framework by ensuring that the processors containing a portion of the flow
domain adjacent to any Y-boundary also store the information of processors containing the
periodically opposite portion of the domain. Such information includes the ‘location code
array’ and the triangulated panels of the embedded surface. The location code arrays are
special arrays used in the efficient particle mapping strategy based on the Morton-based
space-filling-curve approach. Sawant et al. (2018) provide additional details of these arrays
and optimised gas-surface interaction strategies employed in the SUGAR code.

Appendix B

Use of the POD method to remove statistical noise in instantaneous perturbation
macroscopic flow fields obtained from DSMC is briefly discussed. The basic theory can be
found in Luchtenburg, Noack & Schlegel (2009) while additional details on its application
to noise reduction have been provided in a number of resources (e.g. Grinberg 2012;
Tumuklu et al. 2019). This method performs the singular value decomposition (SVD) of
the input data matrix D, in which the macroscopic flow field is stacked such that the
number of rows and columns are equal to the number of total sampling cells Nc in the
DSMC domain and the instantaneous time snapshots Ns, respectively. The SVD procedure
performs the decomposition

D = φST , (B1)

where φ is the matrix of spatial modes having dimensions Nc × Nr, Nr is the user-specified
rank of the reduced SVD approximation to D, S is the square diagonal matrix of singular
values having dimensions Nr × Nr and T is the matrix of temporal modes of dimensions
Nr × Ns. The ith spatial and temporal modes are stored in the ith column of φ and row
of T , respectively. The singular values in S are arranged in decreasing order, and their
square corresponds to the amount of energy in each mode. After the decomposition, a
reduced-order, noise-filtered representation of D can be reconstructed by forming a new
data matrix D2 from a user-specified number of ranks Nr2, which is smaller than Nr. Here,
Nr2 is chosen such that the difference between any time snapshot of D2 and that of D is
within statistical noise.

For the double-wedge solution, the data matrix for each macroscopic flow quantity was
formed by the number of sampling cells, Nc = 23.04 × 106 and number of time snapshots,
Ns = 450. The instantaneous snapshots were collected from T = 48.0312 to 90.9162, at
an interval of 0.0953 flow time, which corresponds to the frequency of 1 MHz. Initially,
Nr = 10 was chosen; however, Nr2 = 2 was found to be sufficient as the modal energy of
higher modes is less than 10 %, as shown in figure 13(a). The modal energy, Ei, of the ith
mode is defined as

Ei = S2
i∑Nr

j=1 S2
j

, (B2)
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Figure 13. (a) Modal energy in perturbation macroscopic flow quantities based on singular values obtained
from the POD analysis. (b) Contours of unfiltered raw DSMC data for ũy, normalised by ux,1 on a plane defined
along wall-normal direction S as in figure 8(a). Overlaid are contour lines of noise-filtered reconstruction of ũy
from the first two proper orthogonal modes. (c) Comparison of unfiltered (DSMC) and filtered (POD) ũy along
lines L1 and L2 denoted in (b).

where Si is the ith singular value. The total energy of the first two modes of perturbation
quantities other than ũy is almost 70 %. For ũy, this number is lower than other
components because the shock structure has little influence on flow field of ũy, which
is composed only of a slowly growing linear mode and statistical noise. Note that the
data matrix itself requires 77.24 GB of run time memory, larger than the typical compute
nodes of supercomputing clusters. Therefore, the method was parallelised based on
the tall and skinny QR factorisation algorithm (Sayadi & Schmid 2016) to overcome
storage requirements and speed up the SVD procedure. Figure 13(b) shows the original
noise-contained DSMC solution of perturbation spanwise velocity during linear growth
on the S-plane normal to the lower wedge along with the noise-filtered contour lines of
the solution reconstructed using POD. The figure also shows two horizontal dashed lines
L1 and L2 along which the DSMC data is extracted and compared in figure 13(c). The
POD-reconstructed data exhibits the same spatial spanwise variation but contains very
low statistical noise compared with the DSMC solution.

The statistical noise reduction using the POD method is sufficient to clearly see vorticity
fields in the flow. For example, the spanwise-periodic flow structures in the isocontours of
X, Y and Z perturbation vorticity components are also shown in figures 14(a), 14(b) and
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Figure 14. Isocontour surfaces of vorticity components during linear perturbation growth, (a) ω̃x, (b) ω̃y,
(c) ω̃z, normalised by the local vorticity magnitude. Isocontours are shown underneath cut plane P, indicated
in figure 11(a).

14(c), respectively. The X and Z components of vorticity are in phase with each other and
90◦ out of phase with the Y component.
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