
MODIFIED BOUNDARY VALUE PROBLEMS FOR A 
QUASI-LINEAR ELLIPTIC EQUATION 

G. F. D. DUFF 

1. Introduction. The quasi-linear elliptic partial differential equation 
to be studied here has the form 

(1.1) Au = - F{P,u). 

Here A is the Laplacian while F{P, u) is a continuous function of a point P 
and the dependent variable u. We shall study the Dirichlet problem for (1.1) 
and will find that the usual formulation must be modified by the inclusion of a 
parameter in the data or the differential equation, together with a further 
numerical condition on the solution. 

The negative sign on the right in (1.1) is included for convenience and also 
to emphasize that the behaviour of the right side will be the opposite of that 
usually studied. We shall generally take F(P, u) to be a positive increasing 
function of w, these conditions being motivated by the following physical 
problem. Consider an equilibrium distribution of heat in a medium where the 
source density of heat generated depends on temperature u: 

p = P(u) = F(P, u). 

That p and hence F(P, u) in (1.1) should be positive and increasing with u 
is a natural assumption. 

The known results for quasi-linear equations such as (1.1) are, roughly 
speaking, of two kinds: local theorems, and in-the-large existence proofs for 
equations 

(1.2) Au = + F(P, u) 

where F{P, u) is an increasing function of u. By local theorems are meant 
those in which some restriction of size is placed on the boundary values, the 
domain, or the non-linearity of the function F(P, u). Among these we might 
include the case when F(P, u) is bounded independently of u. The Dirichlet 
theorem and various other boundary value results have been proved in such 
circumstances. (2; 4, vol. II, Ch. V; 6, Ch. II) . 

On the other hand, global existence theorems for (1.2) have been found by 
many authors. (3; 6, Ch. II) . The possibility of this may be recognized if one 

Received August 11, 1955. This paper was written at the 1955 Summer Research Institute 
of the Canadian Mathematical Congress. The author's thanks are due to the National Research 
Council of Canada for a fellowship held at this time. He is also indebted to Professor J. Leray 
for a stimulating discussion and helpful comments. 

203 

https://doi.org/10.4153/CJM-1956-024-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1956-024-5


204 G. F. D. DUFF 

constructs the equation of variation of (1.2) with respect to an external 
parameter: this variational equation has the linear form 
(1.3) Av = FU(P, u) v, 

with positive coefficient FU{P, u). Such equations satisfy a maximum principle 
in the sense that the maximum absolute value of any solution is taken on the 
boundary. Thus a priori estimates can be found for the solutions of (1.3) and 
hence for those of (1.2). 

These methods will not apply to (1.1). Even in the linear case, it is evident 
that the usual statement of the Dirichlet problem, namely the assertion that a 
solution having given boundary values exist, does not hold unless F(P, u) is 
restricted in some way. Indeed, if X is an eigenvalue, solutions of Au + Aw = 0 
have boundary values restricted by one or more conditions of orthogonality. 
This particular case will be relevant to Theorem III below; we shall later 
furnish a similar example which pertains to the main Theorem I and which 
shows that the conventional Dirichlet problem is not then always solvable. 

This discussion suggests that we should frame boundary value problems 
for (1.1) in such a way that some a priori bound can be included in the state­
ment of the problem. We will show that in a certain sense it is sufficient to 
bound the solution from above. In fact we assume that the actual maximum 
of the solution has a stated value. If, however, one additional numerical 
condition is assigned, it is evident that a corresponding degree of freedom 
should be allowed for the boundary values of the solution. This we shall 
permit by introducing a parameter t, of the nature of an eigenvalue parameter, 
into the boundary condition. Thus the main theorem asserts the existence of a 
solution with a stated maximum and with boundary values proportional to a 
given function. 

We then establish some variations of this theorem, allowing the parameter 
to appear in various ways in the differential equation instead of the boundary 
condition. These solutions have an assigned maximum together with given 
boundary values. We conclude with a Neumann boundary value theorem for an 
equation similar to (1.1) but containing an additional linear term. 

2. Preliminaries. Let VN be a Riemannian manifold of dimension N 
with positive definite metric of class C4 in a given coordinate network: 

ds2 = aik dxidxk] 

then the Laplace operator has the form 

where a — \aik\ and the associate tensor aik satisfies 

aikakj = d^. 

We consider a compact domain D of VN, having a boundary surface B of 
class C2 in the above coordinate system. Points of D will be denoted by capitals 

https://doi.org/10.4153/CJM-1956-024-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1956-024-5


MODIFIED BOUNDARY PROBLEMS 205 

P , Q, . . . and points of B by lower case p, q, . . . . We assume that F(P, u) is a 
continuous function of P and u together; other conditions appropriate to each 
theorem will be stated separately. All functions and parameters used are 
real-valued. 

The existence proofs which follow will be based on the Schauder-Leray 
theorem (5), which we will state here. We work with the separable Banach 
space C, of continuous functions on the closure of the domain D, with the norm 

(2.2) | |u| | = max \u(P)\ . 
PtD 

Let 0 be a bounded domain of C, with boundary 12', and let Tk[u] be an opera­
tor defined in 0 + 0' which satisfies the conditions 

(a) Tk[u] is jointly uniformly continuous in k and u, for 0 < k < 1 and 
u e â = 12 + 0'. 

(b) Tk[u] is a compact or completely continuous operator, transforming 
bounded sets into compact sets (1, Ch. VI). Suppose also that the equation 

(2.3) u = Tk[u] 

has no solution on 12' for 0 < k < 1, and that for k = 0 it has a solution in 0. 
Finally, let 

v = u — T0[u] 

be a homeomorphism of C. Then the conclusion of the Schauder-Leray theorem 

is that the equation 
(2.4) u = Ti[u] 

has at least one solution in 0. 
Separate choices for Tk[u] and for £2 will be made in each of the following 

theorems. In each case condition (b) above is satisfied essentially because the 
integral operator with kernel the Green's function of D for Au — 0 is com­
pletely continuous in the space C. We include a demonstration of this in the 
proof of Theorem I. 

3. The modified Dirichlet problem. Let M be a positive number 
given in advance, and let f(p) be a C1 function on the boundary B which is 
positive : 
(3.1) 0 < wo <f(p) < Mo < » . 

We also take m0 < 1, which is always possible, for a reason which will appear 
later. Let F(P, u) be a positive non-decreasing function of u. 

THEOREM I. There exists a solution of (1.1) with maximum value M and 
boundary values proportional to f(p). 

The constant of proportionality being denoted by /, we have 

(3.2) u(p) = tf(p) 
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and also 

(3.3) maxw(P) = M 
PeD 

To establish the existence of such a solution, we begin by constructing the 
harmonic function Vo(P) with boundary values/(£). Thus 

(3.4) Avo(P) = 0, Vo(p) =f(p), 

and in view of the maximum principle for harmonic functions and (3.1) we 
have 

(3.5) m0 < min f(p) < v0(P) < maxf(p) = M0, 

these inequalities holding for P £ D + B. 
Now a solution of (1.1) with boundary values tf(p) satisfies the integral 

equation 

(3.6) u{P) = \G{P, Q) F(Q, U{Q)) dVQ + too(P), 

where G(P, Q) is the harmonic Green's function of the domain D. We note that 
G(P, (?) is non-negative (2). Conversely, a solution of (3.6) is actually a 
solution of (1.1) with boundary values tf(p), as may be verified by operating 
on (3.6) with the Laplacian, and noting that the integral on the right has 
vanishing boundary values. We observe that to satisfy the maximum condition 
(3.3) we must make an appropriate choice of t, which will in turn depend on 
u{P), so that a fixed value for t cannot be determined at this stage. 

We therefore define the non-linear functional 

(3.7) Tk[u](P) = (G(P, Q) F(Q, ku(Q)) dVQ + tk[u) v0(P), 

where / = tk[u] is so chosen that 

(3.8) max Tk[u](P) = M. 
PtD+B 

Since floC^O satisfies (3.5) we see that such a choice of / is always possible, 
since the right side of (3.7) is a strictly increasing function of / tending to 
dz oo with /. 

We now show that tk[u] is bounded, provided that 0 < k < 1 and u < K, 
where K is a fixed constant. Let 

(3.9) A = max (G(P, Q) F(Q,K) dVQ; 
PeD «/Z> 

this number exists and is positive. Now if A < M it would appear that 
tk[u] in (3.7) should be positive. However it is clear that 

tk[u] < M/Mo, 

since Mo = max floC^O and Tk[u] < M. This furnishes an upper bound for 
tk[u]. If M < A, tk[u] may be negative; however 
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X G(P,Q)F(Q,ku{Q))dVQ<A, 

since ku < K for 0 < k < 1 and F is a non-decreasing function of u. Thus the 
multiple of v0(P) required to reduce the maximum of Tk[u] to M does not 
exceed (A — M)/mo. We therefore have 

(3.10) < tk[u\ < — . 
Wo Wo 

This shows that if u is bounded above, tk[u] is bounded below and in fact 
bounded. The lower bound depends on A and hence on the upper bound K 
of u. 

Since the integral in (3.7) is non-negative, it follows that Tk[u] is bounded 
below : 

(3.11) - A " M MQ< Tk[u]. 
Wo 

Combining (3.8) and (3.11), we see that Tk[u] is bounded in both directions. 
To apply the Schauder-Leray theorem, we set 

K = 2M/m0 > M, 

and let A be defined by (3.9) with this value of K. Then we choose 0 to be the 
connected domain of C defined by 

(3.12) Q: - — \A - M\ - e0 < u(P) < — , e0 > 0. 
Wo Wo 

The boundary 12' consists of those functions u for which equality holds on 
either side for one or more points of D + B. Now Tk[u] is defined on 0 + 0' 
and is continuous in both k and u. This is easily verified since F(P, ku) is 
uniformly continuous in ku, and the integral 

x G{P,Q)dVQ 

is a continuous function of P , vanishing on B, and so is bounded. Thus the 
integral in (3.7) depends continuously on ku and so, therefore, does tk[u]. 
Hence Tk[u] is continuous in k and u together. 

We now show that Tk[u] is a compact operator in C. Let {un} be a uniformly 
bounded sequence of continuous functions. From (3.8) and (3.11) we see that 
Tk[un] is bounded, independently of n and P . We now show that the sequence 
Tk[un](P) is equicontinuous in P by forming the difference 

(3.13) \Tk[unKP2) - Tk[un]{P1)\ < + tk[un}\ fl0(P2) - Vo(Pi)\ 

+jjG(F» Q) - W * Q)\ F^ un(Q)) dVQ 

Since un is bounded independently of w, so is F(Q, un) and also tk[un]: let F0 
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and /o be bounds for the absolute values of these sequences. Thus the pre­
ceding difference is less than 

Fo f |G(P2, Q) - G(PU Q)\dVQ + t0\ vo(P2) - vo(Pi)\. 
*)D 

The second term here tends to zero as P 2 —> Pi , since Vo(P) is continuous. 
To estimate the integral containing the Green's functions, we suppose that the 
distance s(P, Q) < ô and denote by Sv a geodesic sphere of radius rj about P i . 
For P 7* Q, G(P, Q) is continuous, and we can therefore choose ô so small that 
for Q Ç D — Sn, the difference 

|G(P2,<2) -G(PUQ)\ < € ! . 

We then write 

x \G(P2,Q)-G(P1,Q)\dVQ 

(3.14) < fD_sMP„ Q) - G(PU Q)\dVQ 

+ J^iGiPu Q) + G(P2, Q)} dVQ 

< ei JDdVQ + j§G(Pz, Q) dVQ + j s G(PU Q) dVQ. 

Here S is a sphere of radius 2r\ about P l t which certainly contains 5 , if 
5(PiP2) < 17. Since 

the integrals over small spheres converge like 

x 
uniformly with respect to P in D. Given e > 0, we choose rj so small that the 
second and third terms on the right in (3.14) are each less than Je. We can 
then choose 5 < rj so small that the first term is less than \e. Also for s(P2 , Pi) 
sufficiently small the second term on the right of (3.13) can be made less than 
\e. This shows, finally, that the sequence Tk[un](P) is equicontinuous, uni­
formly for P in D + B. By Ascoli's theorem (1), the sequence contains a 
uniformly convergent subsequence with a continuous limit. That is, Tk[u] 
is a compact operator in C. 

Next we demonstrate that for 0 < k < 1, the equation 

(3.15) u(P) = Tk[u](P) 

has no solution lying on the boundary 12'. Since for any solution, 

max u = max Tk[u] = M, 
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we see from (3.12) and the condition ra0 < 1 that 

u(P) < M < 2M/m0 = K. 

Since A was denned by (3.9) for this Ky we see that if tk[u] < 0, then 

- eo - — \A - M\ < ^ \A - M\ < Mo h[u] 
TJÎ0 W o 

< tk[u] Vo(P) 

< (G(P, Q) F(Q, ku{Q)) dVQ + tk[u] vo(P) 

= Tk[u](P) = u(P). 

Hence the strict inequality on the left holds in (3.12) for any solution and so if 
tk[u] < 0 no solution can lie in Q'. If tk[u] > 0, then Tk[u] > 0 and the same 
conclusion follows at once. 

Now for k = 0 the equation (3.15) has a unique solution since the operator 
T0[u] is then independent of u. (Thus the mapping v = u — T0[u] is a 
homeomorphism). In fact the solution u for k = 0 is the solution of Au = 
-F (P, 0), with max u = M and u{p) = tf(p). 

From the Schauder-Leray theorem we may now conclude that (3.15) has a 
solution for each k, 0 < k < 1. For k = 1, we observe that in view of (3.7), 
(3.15) becomes equivalent to the integral equation (3.6). Thus the solution 
u(P) for k = 1 satisfies (1.1) and has boundary values tf(p). From (3.8) and 
(3.15) it follows that its maximum value is M. This completes the proof of 
the theorem. 

Two minor extensions of this result will be noted here. First, we can treat 
the case where F(P, u) is only bounded below: 

F(P, u)> -Kt 

by taking as a new variable û = u + v, with v the solution of A# = — Ki 
which vanishes on B. Second, we may replace the boundary values tf(p) by a 
more general continuous function f(p, t) which is strictly increasing with t 
and tends to ± oo with /. 

4. Qualitative behaviour of the boundary values. The theorem of the 
preceding section would be of comparatively small interest if it were possible 
to solve the conventional Dirichlet problem which concerns the existence of a 
solution with given boundary values. We show that this problem is not solvable 
for the class of non-linear equations here considered. 

Let Xi be the lowest Dirichlet eigenvalue of D for Au + \u = 0, and let 
the corresponding eigenfunction be denoted by U\. From (4, vol. I, ch. VI, 
§6) we see that U\ is of one sign in D, say non-negative. Hence the outward 
normal derivative dui/dn is non-positive, and also does not vanish identically. 
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Now let u be any solution of (1.1) with boundary values t f(p), and let us 
suppose that 

(4.1) F(P, u) > Xi« 

for all values of u. Then the value of t is necessarily negative. 
This assertion follows readily from Green's formula, since 

/ I fUindS = I (U Uin — UnUi) dS 
•SB *s B 

(4.2) = J («AMI - «iA«) dV 

= f Wi[F(P,w) - \xu\dV. 

Since U\ > 0 in D the integral on the right is positive and since lBUin dS < 0 
we conclude that / < 0. If in (4.1) the equality sign is permitted we would 
find t < 0; the case 

(4.3) F(P9u) = J X I ( « + M ) 

illustrates this possibility. 
Thus, if (4.1) holds, (1.1) can not have any solutions with positive boundary 

values. This shows that the conventional Dirichlet problem for (1.1) is 
impossible. Since in the physical interpretation of heat generation one would 
expect F(P, u) to be a rapidly increasing function of u as u —> + oo, it seems 
worthwhile to find the closest analogue of the conventional Dirichlet theorem 
for such equations. Though Theorem I is not the only variant which might be 
considered, it has physical meaning since: 

(a) the maximum temperature is prescribed. 

(b) the distribution (or ratio) of temperatures on the boundary is pre­
scribed, so that if the actual boundary value is known at one point, all other 
boundary values are determined. 

We continue the qualitative discussion of the values of /. If (4.1) holds 
only for 

(4.4) u > u0 > 0, 

we have 

(4.5) / < ^ , mo = mmf(p), 
nto peB 

since otherwise we should have / f(p) > Uo and, the minimum value of a 
solution of (1.1) being assumed on the boundary, this would lead to 

u > Uo in D. 

But then (4.1) and (4.2) show that / < 0, which is a contradiction. 
If we regard / as a function of M for fixed / (£ ) , we can show that / is a 
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continuous function of M. This follows from the Schauder-Leray theorem if 
we consider the functional 

TMiP) s T1)M[u](P) 

in its dependence on M. We need only choose the domain 12 so that M is free 
to vary in a small interval and so that no solution of u(P) = TitM[u](P) can 
cross the boundary of 12. The reader will readily be able to supply the details 
here. 

We now show that if 

(4.6) Fu(P,u) < Xi, u < M, 

then t is a monotone strictly increasing function of M for M < M. This will be 
established by finding a contradiction to the contrary assumption, which is 
that there exist M\ and M2, Mi < M2 < M, such that h > /2. Let U\ and u2 

be the respective solutions. Then w = u2 — U\ satisfies 
Aw = - F{P, m) + F(P, Mi) 

= ~ («2 - Wi) FW(P, UX + 6(P)(U2 - «i)) 

= - w Fu(P,Uz), 

say. Here uz is intermediate in value to u\ and «2, so Uz < M. Since 

w = u2 — wi = (/2 — /i) /(/>) < 0 on B 

and w > M2 — ikf > 0 at the maximum of u2l there exists a domain D j C D 
wherein w is positive, and such that w = 0 on the boundary J5i of D\. Let 
X' be the lowest Dirichlet eigenvalue of D\\ then (4, vol. I ; ch. VI, §6) we have 
Xi < X' since D\ C D. Let u\ be the corresponding eigenfunction ; we see as in 
(4.2) that 

0 = f uJw[Fu{Pyuz) - \']dV, 

and this is a contradiction since U\ > 0, w > 0 and FU(P2, Uz) < Xi < X' in 
Z>i, no one of the three factors vanishing in any open subset of D\. This proves 
the results stated. 

For example, if 

fo, u < 0, 

we see that (4.1) holds for 

W > Wo = Ai 

and so an upper bound for / is known. For M = 0 the solution w = 0 fulfills 
the conditions of Theorem I with / = 0. Since (4.6) holds for 

u < (sr*. 
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we see that / increases and is positive for 
/ ^ \ l / ( n - l ) 

0<"<\.V • 
The behaviour of t as M —» °° seems difficult to determine. 

5. Related eigenvalue problems. The theorems of this section differ 
from the preceding result in that the parameter t appears in the differential 
equation instead of the boundary condition. They have therefore the character 
of eigenvalue problems, although the conditions to be fulfilled by the solution 
include the assigning of boundary values. 

Let F(P, u) be a continuous positive function, bounded away from zero: 

(5.1) F(P , u) > 8 > 0, 

and consider the problem of finding a solution of 

(5.2) . Au = - tF(P, u) 

with given boundary values f(p) and a given maximum M. Let us assume that 
f(p) is C1 with maximum 

(5.3) Mo = max/(/>)• 
B 

Then without loss of generality we may take 

(5.4) M > AU, 

since in any case M > Mo is necessary, while if M == Mo, we may take t — 0 
(4.2) and find a harmonic solution of the problem. 

Since a solution of the problem satisfies the integral equation 

(5.5) u(P) = / f c ( P , Q) F(Q, u{Q)) dVQ + v0(P), 

where Vo(P) is again harmonic with boundary values / (£ ) , we define the 
new operator 

(5.6) Tk
l[u]{P) = tk

l[u] (G(P, Q) F(Q, ku(Q)) dVQ + Vo(P), 

with the choice of / governed by the condition 

(5.7) maxZVMCP) = M. 
PeD 

To show that this choice is possible we note that the non-negative integral 

(5.8) (G(P,Q) dVo 

has a maximum Go say for P = P0 in D. Now for t = 0 the right side of (5.6) 
is less than M ; consequently tk

l[u] must be positive. As / increases, so does the 
expression on the right in (5.6). However at P = P 0 we have 

(G(PO,Q) 
*J D 

tôGo < tô G(P0} Q)dV{ 
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<t fG(Po, Q) F{Q, ku(Q)) dVQ 

< M - v(Po). 

Let us denote by m0 the minimum of /(/>), then by the maximum principle for 
harmonic functions 

m0 < vo(P), P G D, 

and so we find 

(5.9) 0 < tk*[u) < (M - |wo|) Ô-ÏGO-1. 

Since /**[#] is positive, we have 

ra0 < Vo(-P) < TV M 

and therefore Tk
l[u] has the bounds 

(5.10) m0 < 7 V M < M. 

We now choose for Q the connected region of C: 

(5.11) 12: Wo - e < M < M + €, 

and consider the equation 

(5.12) u = 7VM, 

for 0 < fe < 1. That 2V[w] is jointly continuous in k and u is evident on 
inspection. To show that this operator is compact, we select from any bounded 
set of functions a subsequence {un} such that tk

l[un] converges to a limit. 
This is possible on account of (5.9). A proof similar to that in the preceding 
sections shows that 

f G ( P , Q)F(Q,u(Q))dVQ 

is compact, and the result follows if we consider the subsequence {un}. 
For 0 < k < 1, we see from (5.10) that (5.12) has no solutions on Qf, since 

this would contradict (5.11). For k — 0, Tk
l[u](P) is independent of u and so 

(5.12) has a unique solution. The Schauder-Leray theorem now shows that for 
k = 1, (5.12) has a solution. Thus the integral equation (5.5) has a solution 
u(P) with maximum Af, and this establishes the result, which we state as 
follows. 

THEOREM II. There exists a solution for suitable t of 

Au = - tF{P,u), F > è > 0, 

with assigned boundary values f(p) < M and maximum M. 

The proof shows that the minimum value of the solution is attained on the 
boundary, and so is equal to m\ however this could be deduced from the 
differential equation given that / is positive. 

From our next theorem we insert the parameter/with the dependent variable 
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u in F(P, u). This requires a different set of conditions to be satisfied by 
F(Ptu), namely 

(5.13) F(P,0) = 0 

and 

(5.14) Fu(Py u)>o>0. 

Thus we consider the differential equation 
(5.15) Au = - F{Pytu), 

and look for a solution with maximum M and boundary values f(p) where 

(5.16) 0 < m0 <f(p) < Mo < M. 

The necessity of these restrictions will appear; meanwhile we remark that the 
case Mo = M can be solved for / = 0 with a harmonic solution. 

The appropriate integral equation is now 

(5.17) u(P) = (G(P, Q) F(Q, tu{Q)) dVQ + p,(J>). 

We shall supply the parameter k in front of the integral, but this leads to a 
minor difficulty which suggests the addition of a further term. We define 

(5.18) Tk
2[u](P) = k (G(P, Q) F(Qy tu(Q)) dVQ + C(l - k) t + v0(P), 

where 
2C = ônioGo, 

and Go is again the maximum value of the integral (5.8). For 0 < k < 1 the 
right side of (5.18) is an increasing function of t, and we can choose t = tk

2[u] 
so that 

(5.19) max Tk
2[u] = M. 

Since the first two terms in Tk
2 have the sign of t, and since vo(P) < M, it is 

evident that tk
2[u] must be positive. Thus for 0 < k < 1, Tk

2[u] will have the 
lower bound m0l since m0 < v0(P). We therefore define the region Œ of function 
space C as 

(5.20) ft: 0 < into < u(P) < K, 

where K is a large positive constant as yet not fixed, but which exceeds M. 
To show that Tk

2 is completely continuous in 12 + ft' we need a uniform 
bound for tk

2[u], u G ft + ft'. To find this, we take the point P0 where (5.8) 
has maximal value Go > 0, and note that for u Ç ft, F(P, u) > Jôw0. Then 

M > Tk
2[u] > \ktbmoGo + C{1 - k) t + m0 

= \bmoGot + mo 
according to the definition of C in (4.18). Thus for u Ç ft, we have 

2 r 1 . 0 M — m0 (5.21; 0 < tk[u] < 2 
ôm0Go 
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The conclusion now follows quickly from the Leray-Schauder theorem. 
The equation 

(5.22) u{P) = Tk*[u](P) 

has no solutions on 12' for 0 < k < 1, since 

im0 <m0< Tk
2[u] < M < K. 

For k = 0, the operator Tk
2 is independent of w, so that a unique solution 

exists. Thus for k = 1 the conclusion follows that (5.22) has a solution. From 
(5.18) we see that (5.17) is then satisfied. 

THEOREM I I I . Let F(P, u) satisfy (5.13) and (5.14). Then there exists for a 
suitable value of t a solution of 

Au = - F{Py tu) 

with assigned maximum M > 0 in D + B and given boundary values f(p) < M 
on B. 

We note that F(P, u) = \iu, where Xi is the lowest eigenvalue as in §4, 
yields a counterexample to the solvability of the conventional Dirichlet 
problem for this equation, since an orthogonality condition is necessary. 

We conclude this section with a similar theorem for the equation 

(5.23) Au = - F(P, u) - tp(P). 

Again the solution is to have a given maximum M and boundary values 
f(p) < M. The detailed assumptions are as follows. We take for F(P, u) the 
restrictions 

(5.24) F(P, u)> - Fo 

and 

(5.25) FU(P, u) > 0, 

while the coefficient of t on the right in (4.23) must satisfy 

(5.26) p(P) > po > 0. 

The integral equation of the problem is 

(5.27) u(P) = f G(P, Q) [F(Q, u{Q)) + tP(Q)] dVQ + v0(P), 

and so, defining 

(5.28) R(P) = f c ( P , Q) p(Q) dVQ > 0, 

we set 

(5.29) Tk
z[u](P) = k fc(P, Q) F(Q, u(Q)) dVQ + tR(P) + v0(P). 
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The choice of t = tk
z[u] is again governed by 

(5.30) max Tk*[u] = M. 

For the domain Q we take 

(5.31) Q: -K < u < M + e, 

where K is a large positive constant. Now for u £ Q we have from (5.24) and 
(5.25) a limitation for F(P, u): 

(5.32) \F(P,u)\ <A. 

Since F(P, u) is bounded a s w - > - <», 4̂ is independent of K. 
We now obtain bounds for t = tk

z[u]. Since z>o(P) < Af, the first two terms 
together in (5.29) must be somewhere positive. Since G(P, Q) is a non-negative 
kernel, this implies that the integrand 

kF(Q,u(Q))+tp(Q) 

is somewhere positive. Hence at some point <2i, 

tp(Qi) > -hF{Quu{Q)) > - kA 

and so 
t > - kA/po. 

This furnishes a lower bound for /. An upper bound may be found if we note 
that at the point P , where R(Pi) = Ri is maximal, we have 

tRi< M - k \ GFdV - vo 

< M + £GoPo - wo. 

Thus 

(5.33) -A/po <t < (M + GoFo - m0)/Ri, 

and these bounds are independent of K. 
The necessary lower bound for Tk

z[u] is obtained by taking lower bounds 
for each term. Thus 

(5.34) Tl [u] > - FoGo -~Ri + wo, 
Po 

where Wo is a lower bound for f(p). This lower bound (4.34) is independent 
of K and so if we choose 

K = 2\FoG0 + ^ + |wo | ) , 
Po 

then the equation 

(5.35) u = Tk*[u] 

will have no solutions on Q' for 0 < k < 1. For k — 0 there is a unique solution 
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as before. For k — 1, there must accordingly exist a solution and from (5.29) 
we see that (5.27), is satisfied for a certain value of t. The maximum condition 
(5.30) also holds and the solution of the problem is thus completed. 

THEOREM IV. Let F{P,u) satisfy (5.24) and (5.25), and let p(P) satisfy 

(5.26). Then there exists for a suitable value of t a solution of 

Au = - F{P, u) - tP(P)} 

with assigned maximum M in D + B and given boundary values f{P) < M 
on B. 

The various conditions imposed on F(P, u) in these theorems can be slightly 
relaxed in various ways. However it is to be noted that the conditions of 
Theorem III exclude all functions F(P, u) satisfying the restrictions of the 
other theorems. 

6. A modified Neumann problem. As an illustration of the way in 
which this method of proving existence theorems can be applied to other types 
of boundary condition, we include here a modified Neumann problem for the 
equation 

(6.1) Au - bu = - F(P, u), b > 0, 

where 

(6.2) F(P, u) > - Fo, FU(P, u) > 0. 

The boundary condition shall be 

(6.3) Yu = go(p) + tgl{p)' 

for some value of t. We take ga{p) and g\(p) to be C1 with 

(6.4) gx{p) > 0. 

The usual maximum condition max u — M shall hold. 
The Neumann function N(P> Q) of the linear equation 

(6.5) Au - bu = 0 

may be written as 

(6.6) N(P,Q) =G(P,Q)+K(P,Q)J 

where G(P, Q) is the Green's function, and K(P, Q) the Bergman kernel 
function, of (6.6). (2) We shall need the complete continuity in the space C 
of the operator with kernel N(P, Q); this will be established by showing that 
the operators based on G(P, Q) and K{P, Q) are completely continuous. 
Indeed the proof for G(P, Q) is the same as in §3. Now let us write down 
Green's first formula on D with argument functions K(P, Q) and 1. Since 
K(P, Q) is a solution of the differential equation, we get 
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\ [VK-Vl+ôK'l]dV = l l ^ d S . 
JD JB on 

The right hand expression is the solution of (6.5) with boundary values 1, and 
so is less than or equal to 1 in D. Thus we find 

i K(P,Q)dV<ô~1; 

this integral is uniformly bounded in D + B. We also note that K(P, Q) is 
non-negative (2) in D + B. A calculation of the kind given in §3 now leads to 
the complete continuity of the operator based on K(P, Q). Further details are 
here omitted. 

The integral equation of the problem is 

(6.7) u{P) = (N(P, Q) F(Q, U{Q)) dVQ + tv0(P) + *>i(P), 

where for i = 0, 1 we have 

(6.8) ut(P) = jBN(P, q) gi(q) dSq. 

Since N(P, (?) > 0 it follows from (6.4) that fli(P) > 0, and we denote by V\ 
and Vi positive lower and upper bounds: 

0 < Vl < vx(P) < Vi, 

while similarly choosing bounds for Vo(P)' 

vo < v0(P) < Fo. 

The operator T for this problem will now be defined as 

(6.9) Tk[u](P) = f N(P, Q) F{Q, ku{Q)) dVQ + tv0(P) + v1(P)t 

while / = tk[u] is fixed by the condition 

(6.10) max Tk[u] = M. 

Setting 
Q = {u\-K <u < M + e], 

we find that for u Ç Î2, F(P, u) satisfies an estimate 

(6.11) F(P,u) <A. 

Then / = tk[u] has the bounds 

( 6 1 2 ) \NpA + Vt - M\ < / < M-VX+ NQFQ 
Vo Vo 

We. therefore choose — K less than ^ o " 1 ! ^ ^ + V\ — M\, which is possible 
since this quantity is independent of K. The equation 

u = Tk[u] 
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now has no solutions on 0' for 0 < k < 1; and a unique solution for k = 0. 
The result now follows as before. 

THEOREM V. There exists a solution of (6.1) which satisfies the boundary 
condition (6.2) for some tf and has maximum value M. 

As in Theorem I, the right side of (6.3) could be replaced by a more general 
increasing function of /. Corresponding results for the Dirichlet and Robin 
boundary conditions and this differential equation can be established along the 
same lines of proof. 

In conclusion we note that the uniqueness of solutions in all of these results 
has not been established. 
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