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LOCAL MALCEV CONDITIONS 

BY 

ALDEN F. PIXLEY 

ABSTRACT. Let p and q be polynomial symbols of a type of 
algebras having operations v, A, and ; (interpreted as the join, 
meet, and product of congruence relations). If 51 is an algebra, L(2I), 
the local variety of 91, is the class of all algebras 23 such that for each 
finite subset G of 23 there is a finite subset F of % such that every 
identity of F is also an identity of G. 

THEOREM. There is an algorithm which, for each inequality 

p<q> 
and pair of integers n, k>2, determines a set Unik of (Malcev) 
equations with the property: 

For each algebra 51, p<q is true in the congruence lattice of 58 
for each 23 G L(2I) if and only if for each finite subset Fof% and 
integer n>2 there is a k=k(n, F) such that Un>k are identities of F. 

This generalizes a corresponding result for varieties due to Wille 
(Kongruenzklassengeometrien, Lect. Notes in Math. Springer-
Verlag, Berlin-Heidelberg, New York, 1970) and at the same time 
provides a more direct proof. 

1. Introduction. Let p and q be polynomial symbols of a type of algebras having 
operation symbols V, A, and ; (which we interpret as the join, meet, and relation 
product of congruence relations). In [3] Grâtzer raised the following question: is 
the condition that the congruences of the algebras of a variety V satisfy p=q 
equivalent to a Malcev conditions for V, that is to the existence of certain identities 
in VI Wille [10] (using a much more general concept of Malcev condition than that 
proposed by Gratzer) answered this question affirmatively by establishing the 
following theorem: 

THEOREM 1.1. There is an algorithm which, for each inequality 

P<><1 

and pair of integers n, k>2, determines a finite set UUtk of equations (ofpolynomial 
symbols of unspecified type) with the property: 

For each variety V of algebras of type r, p<q is true in Q^S)Q)for all He V if 
and only if for each n>2 there is a k=k(ri) and a r-realization UT

n>lc of Unjc such 
that UT

n>k are identities of V. 
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Applications of this result yield Malcev's classic theorem characterizing per-
mutability [7], the author's characterization of joint permutability and distri-
butivity [8], and, with modifications, Jônsson's conditions for distributivity [6], 
and Day's for modularity [1]. 

In the present paper we extend Wille's result to classes of algebras more general 
than varieties and, at the same time, provide a more direct proof than that 
appearing in [10]. Our extension is based on the following 

DEFINITION. (Foster [2], Hu [4]): Let 21 and 23 be algebras of the same type r. 
23 locally satisfies the identities of% if for each finite subset G of (the universe of) 
23 there is a finite subset F of 2t such that every identity tx(x, y, . . .) = t2(x, y, . . .) 
(fx and t2 polynomials) which holds for all x, y,. . . e F also holds for all 
x, y, . . . G G. (The values of t^x, y9. . .) need not lie in F or G.) 

L(2t) denotes the local variety of 2t, i.e. : the class of all algebras of type r 
which locally satisfy the identities of 31. Evidently L(2I) is a subclass of the variety 
F(2t) of all algebras of type r satisfying the identities of 31. According to the 
following theorem varieties are special cases of local varieties. 

THEOREM 1.2. (Hu and Kelenson [5].) Let V be a variety and let gw be V-free 
with a denumerable set of free generators. Then V=LÇ$03). 

On the other hand, simple examples show that not every L(2I) is a variety, 
though if 21 is finite L(2I) = V{%) obviously. 

Applications of local varieties appear in [2, 4, 9]. 
Our main result is the following: 

THEOREM 1.3. There is an algorithm^) which, for each inequality 

and pair of integers n, k>2, determines a finite set Untk of equations of unspecified 
type with the property: 

For each algebra 2t of type T, p<q is true in 0 (23) for each S G L(2I) if and only 
if for each finite subset F of % and integer n>2 there is a k=k(n, F) and a r-
realization UT

nth of Un>k such that UT
ntk are identities of F. 

The algorithm is essentially the same as Wille's [10]. Also, taking 21=g^ and 
applying Theorem 1.2, Theorem 1.3 specializes to Wille's result. 

An example of our technique appears in [9, Lemma 4.2]. 
In order to state our result conveniently we have spoken above of polynomial 

symbols (or equations) of unspecified type. We consider such a polynomial symbol 

0) @(2ï) denotes the lattice of congruence relations of 21 (and is, of course, not generally 
closed under ;). By "p<q is true in ©(21)" we mean that the binary relations obtained by sub­
stituting elements of 0(21) for the variables of/? are included in the corresponding binary relations 
obtained from q. 

(2) Algorithm 2.3. 
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to be either one of the letters (variables) xl9 x2,... or a primitive operation symbol 
t whose argument places have been filled with variables. A set UT of equations of 
type T is called a r-realization of a set U of equations of unspecified type if UT can 
be obtained from U by replacing each operation symbol, in all of its occurrences 
in U, by some fixed polynomial symbol of type r. 

2. The Wille algorithm; varieties. In this section we shall give a somewhat more 
direct proof of Theorem 1.1 than that appearing in [10]. By an adaptation of our 
method to local varieties we shall, in §3, then generalize the result to local varieties 
and establish Theorem 1.3. 

As a preliminary we consider first the special case in which p (in the inequality 
P<q) is join free, i.e.: involves only the operations A and ;, while q is allowed to 
involve V as well. In this case we shall obtain (Theorem 2.2) a Malcev condition 
(in the precise sense of [3]) characterizing/?^. 

For q=q(d1, . . . , dr), in which all three of A, ;, V may occur, and for each 
integer k>2, let qk be the join free polynomial symbol obtained from q by replacing 
each occurence of V in q by the £-fold relation product (;) of the operands. (For 
definiteness we associate these products from the left.) For example, if 

q = ((0! V 02) A 03) V fl4, 
then 

q3 = (Witfùl Où A e3); 64); (((0 i ; 02); 6,) A 6S). 

With these conventions we can state the following algorithm (cf. Grâtzer [3]) 
which is basis to the remainder of the paper: 

ALGORITHM 2.1. Let p be join free. Start with the left side of p<q 

(p=p(01,...90r)9q = q(Pl9...,0r)) 

and write the formula 

(2.1) Xijpx2 (xi> x2new variables). 

Next, according as p=p±Ap2 or px ;p2, we write either 

(2.2) XLPI*2 and x1p2x29 

or 

(2.3) X1P1X3 and x3p2x29 

respectively, where x3 is a new variable. We repeat this process on each formula of 
the pair (2.2) or (2.3), as appropriate, and continue in this fashion as far as possible, 
i.e.: until the formulas we obtain are of the form 

(2.4) xfitx» 

where 0t is one of the variables 0l9. . . , 0r which may occur in p, and at each step, 
any new variable xi introduced in obtaining a formula of type (2.3) is different from 
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any previously introduced variable. Let U1 be the (finite) set of all formulas of type 
(2.4) obtained by this process and let xl9 . . . , xn be all of the variables occurring in 
the formulas of U1 and which have been introduced by the construction of U1. 

Similarly, start with the formula 

(2.5) xxq
kXz 

and by the same process as above, construct another finite set U% of formulas of 
the form 

(2.6) tu(xl9. . . , xJflACxi,. . . , xn), 

where, instead of introducing a new variable xi when a product is encountered, we 
introduce a new polynomial symbol t — t^x^ . . . , xn) of unspecified type and in the 
variables xl9 . . . , xn introduced by the construction of U1. Let xl9 x2, tl9 . . . , tm 

be all of the polynomial symbols occurring in V\ and which have been introduced by 
this construction. 

Now consider a particular formula (2.6) of U%. Let 

(2.7) xj1Uixk1> • • • > xjs^ixks 

be all of the formulas of U1 in which this particular Bi occurs. From the polynomial 
symbols tu=tu(x1, . . . , xn), tv=tv(x1, . . . , xn) occurring in (2.6) obtain new poly-
nomial symbols t'u and t'v by equating those variables among xl9 . . . , xn which would, 
in consequence of (2.1), be deduced equivalent modulo di if we considered #z- to be an 
equivalence relation on the variables Xj , xk ,. . . , Xj, xk occurring in (2.7). Then form 
the equation 

(2.8) t'u = C 

For each k let Uk be the set of all equations (2.8) obtained in this way, one for each 

formula in Uk (deleting repetitions). 

EXAMPLE. Consider p = 61 A (62; 03)<(0i A 02) V (01 A 03)=q. Starting with 
x161 A (62;02)x2 we obtain for U1 the formulas 

(2.4) X1U-^X29 XiU2X3, X3C/3X2. 

Starting with 
X~i~{ X2 — 1 

(#! A 62);(61 A 62)x2 we obtain for Xj\ the formulas 
xiUiti(Xi9 X29 X3), ^l"2^1V^'l> X1i XZJi 

(2.6)' 
ti\Xi, X29 X3)C71X2, ^l(^l5 x2> ^3)^3-^2* 

Equating variables as prescribed, we obtain for U2: 

Xl = = *l(^l> Xli XZ)i Xl = *1V-̂ 1» X2> Xl)> X3 = = * 1 \ ^ 1 J ^3? ^ 3 / ' 

The following result gives a Malcev condition (in the strict sense of [3]) charac­
te r iz ing/?^ when/? is join free. 
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THEOREM 2.2. Let p be join free and for each integer k>2 let Uk be constructed 
by Algorithm 2.1. For any variety V of algebras of type r9p<q is true in 0(31)/or all 
3t e V if and only if there is a k>2 and a r-realization UT

k of Uk such that UT
k are 

identities of each algebra of V. 

Proof. First suppose p<q is true in 0(31) for all 31 e V. Let <J3 be the F-free 
polynomial algebra freely generated by the set K={x1,. . . , xn} of variables intro­
duced by Algorithm 2.1. With reference to (2.7), for each dt occurring in p<q 
define d'{ on ty by 

% = Uxh, XjJ V • • • V eixjs, xks) 

where, for m—\9... , s9 0»-(*j , xkJ is the least congruence on 3̂ which identifies 
Xj and xk as prescribed by the formula xi 0 ^ of (2.7). We then have, by our 
construction of U1, for the elements xl9 x2 of ^3, 

*iP(0i> • • •, 0'r)x2, 
and hence, since p<q, 

*iq(0[, • • •, 6r)xz. 

Consequently, by the definition of join, for some k>29 

XiZXK • • •, 00*2, 
so that, by our construction of U\9 all formulas (2.6) of t/ |are true, with 6[ replacing 
0{ and where tu9 tv are now polynomial symbols of the type r of V. Forming 
t'u9 t'v as in Algorithm 2.1, we obtain a r-realization UT

k of Uk. Moreover, in <P/0̂  
each t'u=t'v in UT is true. Since $/0^ is free we conclude that UT

k are identities of 
each algebra in V. 

Conversely, suppose that for some k and r-realization UT
k of Uk9 U

T
k are identities 

of V. Let 3t e F and suppose ul9 u2 e 31 and dl9. . . , dr e 0(3t) are such that 

i * iP(0 i , . . . , 0r)w2. 

Then for some elements w3,. . . , un e 31 all of the formulas (2.4) of U1 are true. 
We must show that 

i*ig(0i, • • , 0 > 2 , 

for which it suffices to show that 

Uiq\dl9. . . , dr)u2. 

This means we must find elements t*9 . . . , t^ e 31 so that for each formula (2.6) 
of U\9 **0^*- To do this set t* =ti(ul9... , un) for each polynomial symbol tt 

occuring in Uk. We then have, since all of the formulas of U1 (and in particular 
(2.7)) are true, by the substitution property for the congruence 6i9 

'* = tjul9. . . , un%t'u{ul9. . . , un) 
and 

'? = M>i> • • > UfdOiKb*!,. . . , un). 
7 
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But t'u(ul9 . . . , wj = ^(t/ l 5 . . . , un) by the corresponding identity (2.8) of UT
k. 

Hence we conclude that t^d^* for each formula (2.6) of U%. This completes the 
proof. 

To prove Theorem 1.1 we first state Wille's algorithm in terms of Algorithm 2.1 : 

ALGORITHM 2.3. Let p and q be polynomials in the variables 6l9... , dr which 
may involve any of the operations V, A, ;. For each n>2 apply Algorithm 2.1 to the 
formula 

Pn<1 
to construct, for each k>2, a finite set Untk of formulas of unspecified type. 

Applying Algorithm 2.3 we conclude, by Theorem 2.2, that for any variety V 
of type T, pn<q is true in 0(21) for all 21 e V if and only if there is a k=k(n)>2 
and a r-realization UT

nik of Untk such that UT
ntk are identities of V. The proof of 

Theorem 1.1 is then immediate from the observation that p<q in 0(2t) if and only 
ifpn<q in 0(21) for all n>2. 

3. Local varieties. The following is our analog, for local varieties, of Theorem 
2.2. 

THEOREM 3.1. Let p be join free and for each integer k>2 let Uk be constructed 
by Algorithm 2.1. For any algebra 2t of type r,p<q is true in 0(23)/br all 23 e L(2I) 
if and only if for each finite subset Fofty there is an integer k=k(F)>2 and a T-
realization Uk of Uk such that Uk are identities of F. 

We start with 

LEMMA 3.2. Let F be a finite subset of% and let g be the subalgebra 0/21, with 
universe [F], generated by F. Let 3̂ be the ^-free polynomial algebra with n free 
generators. Then there is a congruence cfronty such that S$j<f> e L(2I) and for tly t2ety, 
h $ h if and only iftx and t2 agree on F. 

Proof. Let the generating set of 3̂ be K={xl9 . . . , xn}. )̂S consists of all poly­
nomial symbols of type r in which any of the variables of K occur, two polynomial 
symbols tl9 t2 being considered equal provided t1=t2 is an identity of g. 

Set E=FK c [F]K=E, so that E is finite. ^3, which is isomorphic with a sub-
algebra of g^, is naturally homomorphic to a subalgebra of ^E and if we take <j> 
to be the kernal of this homomorphism, then for ^-congruence classes of 3̂ 
(denoted by the subscript (/>), 

[ti\Xl9 • • • , Xn)]<l> = = L^V^IJ • • • 5 Xn)\<t> 

if and only if t1{e{x^)9 . . . , e(xn)) = t2(e(x1)9. . . , e(xn)) for all e e E9 i.e.: if and 
only if t1 and t2 agree on F. Further, 3̂/</> is isomorphic with a subalgebra of ^E 

and thus, by the finiteness of E9 locally satisfies the identities of g(3), and hence 
locally satisfies the identities of 2t, i.e. : 3̂/<£ e L(2I). 

(3) This is easily verified directly. See Lemma 4.1 of [9] or Proposition 3.1 of [5]. 
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Proof of Theorem 3.1. First suppose that p<q is true in 0(2?) for all 23 e L($i). 
Let K={xl9... , xn} be the set of variables introduced by Algorithm 2.1 in the 
construction of U1, Fa finite subset of 9t and E=FK as in the lemma. By the lemma 
we conclude that p<q is true in ©($/<£). 

Next, for each 0i occurring mp<q9 and referring to (2.7), set 

Ei = {e eE:e{xh) = e(xkl\ . . . , e(xJ8) = e(xks)} 

and define the congruence d'i on Ŝ by 

if and only if *i(e(xi),... , ^(xn))=^2(^(^i)5... ? e(*«)) for all e ei^.. Since 
Ei ç £ w e have 0*i><£. Hence if 0J is the congruence on 3̂/<£ induced by Q'i9 we 
have, by our construction of U1, for the elements [x^9 [x2]^ of $/<£ and the binary 
re la t iona l , . . . , 6?) o n W^> 

[x i iéKf l î , . . . . 0;)[*2]*. 

But since/?<# is true in ©($/$)> this implies that for some k>29 

[*MXei..., e;)[*2v 

This means, by our construction of V\9 that for each formula (2.6) of Xj\9 the 
formula 

is true in *P/<£, where tu9 tv are now polynomial symbols of type r. Forming the 
t'u and ^ by equating variables as specified in Algorithm 2.1, it is clear from the 
definitions of <j> and Q\ that t'u=t'v for all values of xl9... , xn in F. Since this is 
true for each equation in Uk9 we have completed the first half of the proof. 

Conversely, suppose that for each finite subset F of 3t there is an integer k>2 
and a r-realization U£ of Uk such that UT

k are identities of F. Let S e L(9t) and 
suppose wx, u2 e S and §l9... 9§re 0(93) are such that 

WlX l̂* • • > £ > 2 -

Then for some elements w3,... , un G 23 all of the formulas (2.4) of U1 are true. 
Let G={ul9. . . , wj. Then there is a finite subset F of 91 such that each identity 
of F is an identity of G. Hence there is a & and a r-realization [/£ of Uk such that 
the equations TJk are identities of G. 

We must show that u1q(dl9. . . , 6r)u2 and hence it suffices to show (as in the 
proof of Theorem 2.2) that «i#fc(0i, . . . , 0r)w2. We must therefore find elements 
'*>.. . , f«fc of 33 so that for each formula (2.6) of [/£, f J0</*. To do this we again 
set t*=tt(ul9. . . , un) and proceed exactly as in the proof of Theorem 2.2. This 
completes the proof of Theorem 3.1. 
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REMARK. It is to be emphasized that the integer k of Theorem 3.1 in general 
depends on the congruence cf> of Lemma 3.2 and hence on the subset F of 31. 

Turning now to the general case where neither p nor q are necessarily join free, 
Theorem 1.3 now follows directly from Theorem 3.1 and Algorithm 2.3 together 
with the observation that for all algebras 31 and 33 e L(3l), p<q is true in 0(33) if 
and only ifpn<q is true in 0(33) for all n>2. 

4. Extensions. Applying Theorem 1.3 to each of p<q and q<p, we easily see 
that Theorem 1.3 remains true iîp<q is replaced by the equationp=^. In the same 
way we conclude 

COROLLARY 4.1. Theorem 13 remains true ifp<q is replaced by any finite set 
of inequalities or equalities. 

Finally let E be any equational theory of the type of algebras having operation 
symbols V, A, and ;. Let 

Pi = 4i> P2 = <?2> • - • 
be a (possibly countable) basis for E. Let Ul

n>k be the (finite) set of equations of 
unspecified type which may be effectively determined from n, k and p—q^ We then 
have 

COROLLARY 4.2. For any algebra 31 of type r, the equations of E are true in 
0(33)/or all 33 G L(3I) if and only if for each n>2 and finite subset F tf/31, there is a 
sequence s=(kly k2, . . .) (depending on n and F) and a r-realization UT

ntS of 

Un,s = UlM U U2
nM u • • • 

such that UT
ntS are identities of F. 

For varieties this specializes to 

COROLLARY 4.3. For every variety V of algebras of type r, the equations of E are 
true in 0(33) for all S eV if and only if for each n>2 there is a sequence s= 
(kl9 k2, . . .) (depending on n) and a r-realization UT

ntS of Un>s such that UT
n>s are 

identities of V. 

5. Remarks, (a) It is easy to see that the sets of identities Unik are not inde­
pendent and, in fact, if n<m then Untk are deducible from Um>k. Thus the last 
clause of the statement of Theorem 1.3 can be weakened to read "for each finite 
subset F of the universe of% there are infinitely many integers n>2for which there 
is an integer k=k(n, F) • • •" etc. 

(b) Let S be a finite set of equalities and inequalities. We might distinguish two 
special cases from the general characterizations of Theorem 1.3 and Corollary 4.1 
by the following definitions : 

S has a finite characterization if there is a finite set U of equations of unspecified 
type with the property: For each algebra 31 of type r, S are true in 0(33) for each 
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23 G L(9T) if and only if for each finite subset F of % there is a UT consisting of 
identities of F. 

S has a one parameter characterization if there is a sequence U^ U2,.. . of 
finite sets of equations of unspecified type with the property : For each algebra % 
of type r, S are true in 0(23)/or each 23 e L(2t) if and only if for each finite subset 
Fof% there is an integer k=k(F) and a UT

k consisting of identities of F. Charac­
terizations of this type constitute a natural generalization to local varieties of 
Malcev conditions in the sense of [3]. 

Analogous definitions can be formulated for the special case of varieties in 
light of Theorem 2.2. 

From the proofs of Theorems 2.2 and 3.1 it is easy to see that if S consists of a 
finite set of equations involving no occurrences of the join operation, then S has a 
finite characterization. Malcev's characterization of permutability is typical of this 
case. On the other hand, Jonsson's and Day's results show that distributivity and 
modularity each have one parameter characterizations for varieties. 

To obtain a one parameter characterization using either Theorem 1.3 or 2.2 it 
would evidently suffice to show that there is an integer n such that for all m>n and 
for all &ï>2 there is an r for which Um>r is deducible from Un>k. For example 
Jonsson's and Day's characterizations of distributivity and modularity are each of 
the form U3>2, U3iZ, UZA,. . . where the U3ti are produced by Algorithm 2.3. 
Corresponding to their proofs of the sufficiency of their conditions one can actually 
find, in each case, for given m>2 and some r—r(m, k), a deduction of Um,r from 
UZtk. Either by this method or direct examination of their proofs one sees that their 
Malcev conditions become "local Malcev conditions" in the more general context 
of local varieties. 

It would be interesting to know of some direct criteria for determining when one 
parameter characterizations are available, and correspondingly, for determining 
when Theorems 1.3 and 2.2 are the best one can do. 
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