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Resonant standing surface waves excited by an
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Evgeny Mogilevskiy1, S. Kalenko1,2, E. Zemach2,3 and L. Shemer1,†
1School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
2Soreq Nuclear Research Center (SNRC), Yavne, Israel
3Sami Shamoon College of Engineering, Beer Sheva, Israel

(Received 13 March 2024; revised 15 May 2024; accepted 19 May 2024)

Resonant standing waves excited on the water surface in a deep narrow rectangular
cavity by a fully immersed cylinder harmonically oscillating in the vertical direction
are studied theoretically and experimentally. The effect of the finite wavemaker size is
considered in the framework of the potential two-dimensional flow theory. Nonlinearities
and weak dissipation at solid surfaces are accounted for. The spatio-temporal structure
of the waves in the presence of detuning between the forcing and the natural frequency
of the system is analysed. The variation of the surface shape in space and time studied
in experiments supports the assumption of two-dimensional flow. The finite size of the
wavemaker causes a downshift of the effective resonant frequency of the cavity; this effect
is enhanced by the nonlinearity. For small amplitude waves, the surface elevation evolution
in time is decomposed into the sum of the time-periodic function, corresponding to the
forcing frequency, and its second harmonic; the shape of the wavenumber spectra of these
components depends on the forcing frequency. For larger wave amplitudes, additional
peaks in the frequency spectrum appear. The theoretical predictions are compared with
the experimental results.

Key words: surface gravity waves, general fluid mechanics

1. Introduction

Resonant periodic waves, either at the free surface or internal, can be observed in
rectangular and cylindrical cavities (Stoker 1992), as well as in basins with a more
complicated shape (Rycroft & Wilkening 2013; Geva et al. 2021). In the framework of
linear theory, the governing equations and boundary conditions define the dispersion
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relation between the wavevectors and frequencies. In a closed cavity partially filled with
liquid, a discrete wave vector spectrum of standing gravity waves excited by either random
or regular forcing is defined by the geometry. If dissipation is weak, only those permitted
standing waves can exist in the cavity; when not sustained by sufficient forcing, they decay
due to the friction at the cavity’s walls (Keulegan 1959; Hill 2003). The external energy
input enables sustainable standing waves; it also introduces to the system frequencies
present in the forcing spectrum. If the forcing spectrum contains frequencies sufficiently
close to those corresponding to one of the possible spatial wave modes, the linear model
predicts the excitation of a forced steep standing wave in the cavity. In this case, the
contribution of dissipation and nonlinearity needs to be considered (Moiseev 1958).

Resonant surface standing gravity waves in rectangular cavities generated in
experiments by lateral harmonic oscillations were studied by Faltinsen (1974), Lepelletier
& Raichlen (1988) and Faltinsen et al. (2000); excitation by rolling motion was applied in
Grotle, Bihs & Æsøy (2017). The wave amplitudes in those experiments were determined
by measuring the instantaneous surface elevation at several locations within the cavity.
The associated theoretical models that account for cubic nonlinearities lead to the Duffing
equation for the amplitude of the resonant mode (Faltinsen 1974; Hill 2003). The resulting
response curve pattern varies qualitatively depending on the ratio between the resonant
wavelength and the mean liquid depth. For surface gravity waves in a cavity with depth H̃,
the radian frequency ω̃ is related to the wave vector k̃ = (k̃x, k̃y), x and y being horizontal
orthogonal coordinates, by the dispersion relation ω̃2 = g|k̃| tanh(|k̃|H̃), where g is the
acceleration due to gravity, |k̃|2 = (k̃2

x + k̃2
y), tildes denote dimensional values. For the

deep-water case (|k̃|H̃ � 1), the response curve corresponds to the softening spring, and
the effective resonance frequency decreases with an increase in the forcing amplitude.
In shallow water |k̃|H̃ � 1, an opposite effect is observed (Ockendon & Ockendon 1973).
Numerical simulations of waves excited by cavity motion (Frandsen 2004; Liu & Lin 2008)
support those conclusions for an arbitrary harmonic excitation. Excitation of standing
waves by a pair of piston-type wavemakers at opposite walls of a rectangular cavity is
equivalent to lateral shaking, as long as the friction at the walls can be neglected (Agnon
& Bingham 1999; Paprota 2023). A pair of pistons has also been used to generate standing
internal waves (Thorpe 1968).

Wave tanks can be seen as cavities with sidewalls at x̃ = 0 and x̃ = L̃, wavemaker at
ỹ = 0 and waves allowed to propagate to ỹ → ∞. For sufficiently deep water, standing
waves with wavevector components k̃x,n = nπ/L̃, n being the mode number, can be excited
in such facilities by a specially configurated wavemaker located at one end of the tank
(Barnard, Mahony & Pritchard 1977; Kit, Shemer & Miloh 1987), provided the forcing
is periodic at frequency ω̃ sufficiently close to one of the natural tank frequencies ω̃n =
ω̃(k̃x,n, 0). For small detuning |ω̃/ω̃n − 1| � 1, the dispersion relation requires a non-zero
wavevector component along the tank |k̃y| � k̃x,n. In the framework of the linear theory
(Wehausen 1974; Shemer, Kit & Miloh 1986; Fu et al. 2017), for forcing at frequency ω̃ <
ω̃n, k̃y is imaginary and the standing wave envelope decays with distance as exp(−|k̃y|ỹ). At
forcing frequencies ω̃ exceeding ω̃n, the wavenumber component k̃y is real; the standing
wave envelope propagates as a slow running wave along the test section. Close to the
resonance, where linear inviscid theory predicts large amplitudes and thus breaks down,
nonlinear effects need to be considered (Kit et al. 1987). The temporal and spatial evolution
of the resonant standing waves in the vicinity of resonance is adequately described by
the cubic Schrödinger equation (CSE). It was demonstrated by Shemer & Kit (1988) that
manipulating dissipation at solid surfaces by adding roughness element faces can strongly
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affect the observed standing wave pattern. The results of the CSE model that accounts
for dissipation at sidewalls and at the wavemaker yield both qualitative and quantitative
agreement with experiments carried out in the vicinity of the linear resonant frequency.
Computations carried out on the basis of this theoretical model accurately predict the
diverse patterns observed for such directly excited resonant standing waves as a function of
the forcing amplitude and frequency, such as appearance and propagation along the tank of
envelope solitons, Fermi–Pasta–Ulam recurrence at slow time scale, chaotic modulation,
hysteresis, etc. (Shemer 1990).

Cross-waves represent another example of the two-dimensional system with
qualitatively different behaviour in the x̃ and ỹ directions. Those resonant standing waves
in a long rectangular wave tank can be excited by a plane wavemaker that operates
at a sufficiently high amplitude at a frequency close to the double natural frequency
corresponding to the tank width, 2ω̃n (Jones 1984; Lichter & Shemer 1986). The
resulting cross-waves, in this case excited by subharmonic parametric resonance, may have
amplitudes higher than those of propagating waves at the wavemaker forcing frequency.
Those nonlinear cross-waves are also described by CSE; the difference between the
theoretical models describing standing waves that are generated directly at the wavemaker
forcing frequency, and parametrically excited subharmonic cross-waves, is mainly in
the boundary condition applied at the wavemaker (Kit & Shemer 1989; Shemer & Kit
1989). Wave patterns identified in parametrically excited subharmonic standing wave
fields resemble those observed in the case of direct excitation; however, due to the more
complicated wave generation mechanism, the CSE-based cross-wave model only yields
qualitative agreement with experiments.

All those studies consider standing waves in rectangular basins for which the linear
theory allows the existence of standing waves with wave vectors k = (k̃x, k̃y) that satisfy
the linear dispersion relation, with at least one of the wavevector components being real,
while the other one can be either real or imaginary. Contrary to that, we study here standing
waves excited in a deep stationary narrow rectangular cavity with length L̃ and width
B̃ � L̃. The narrow geometry eliminates the possibility of existence of standing waves
with cross-cavity wavenumber component k̃y < π/B̃. Therefore, when waves are excited
in such a cavity at a frequency ω̃ close to that of one of the natural longitudinal standing
waves ω̃n = ω̃(πn/L̃), the linear deep water dispersion relation ω̃2 = g|k̃| is not satisfied
for a single longitudinal spatial mode. In view of these considerations, the resonant
standing waves under constraints imposed by the geometry need to contain additional
wave components at the forcing frequency but with a discrete wavenumber spectrum. The
resulting complicated wave field is considered in the present experimental and theoretical
study.

The remainder of the paper is organized as follows. Section 2 describes the experimental
facility and presents the initial observations. The theoretical model given in § 3 contains
linear theory for infinitely small waves and its extension that accounts for weakly nonlinear
effects. The theoretical results are validated by comparison with measurements in § 4. The
concluding remarks are given in § 5.

2. Experimental facility

Experiments are performed in a rectangular cavity with length L̃ = 772 mm and width
B̃ = 160 mm that is made of clear glass and filled with water to a depth of H̃ ∼ 400 mm
(figure 1). The walls of the cavity are high enough to prevent water splashing out.
Waves are excited by a cylinder with the radius R̃ = 21 mm and length a few millimetres
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h̃

L̃
H̃

z̃

Ã sin ω̃ t̃

x̃

Figure 1. The scheme of the problem.

shorter than B; its axis spans the cavity parallel to the short wall. The wavemaker is placed
under the water surface with its centre at depth h̃. A computer-controlled linear motor
(Linmot C20) forces it to oscillate harmonically in the vertical direction with the amplitude
Ã and radian frequency ω̃; the amplitude is limited so the cylinder does not cross the liquid
surface. The controller sets the parameters with a precision of 0.01 ms for the period and
0.05 mm for amplitude. The wave excitation by the immersed cylinder has mostly been
used so far for the internal waves in stratified liquids (Mowbray & Rarity 1967; Sutherland
et al. 1999). Despite the extensive coverage in the literature of the hydrodynamics of
the oscillating immersed bodies (Sumer & Fredsøe 2006), the theory of surface waves
generated by a vertically oscillating cylinder is not yet sufficiently developed.

The forcing frequency was set in the vicinity of the selected natural frequency∣∣∣∣ω̃2 − g
πn

L̃

∣∣∣∣ � g
πn

L̃
= gk̃n, (2.1)

where n is the natural frequency number. Experiments were performed at n = 2 and 3 that
correspond to the wavelengths λ2 = 772 mm and λ3 = 514 mm (k̃2 = 8.14 × 10−3 mm−1,
k̃3 = 12.21 × 10−3 mm−1), long enough to neglect the capillarity effects. For these
wavelengths, the wave periods are T2 = 0.7032 s and T3 = 0.5741 s, and corresponding
radian frequencies are ω̃2 = 8.9353 s−1 and ω̃3 = 10.943 s−1 satisfying the deep-water
dispersion relation. The wavemaker is placed at the distance of L̃/n from the left wall,
corresponding to the wave antinode.

The wavemaker moves at the prescribed frequency and amplitude for more than 700Tn,
much longer than the experimentally determined duration of the transient process that does
not exceed approximately 150Tn, after which a nearly constant wave amplitude is attained.
The wave field is illuminated by LED panels attached to the back wall of the cavity and is
recorded at 50 fps by a CCD camera (resolution 2048 by 540 pixels) placed in front of the
cavity at a horizontal distance of 2 m from the front wall. The camera’s vertical position
is 80 cm above the level of the unperturbed water surface. The image is focused on the
front wall and the intersection of the free surface with the front wall is clearly seen in the
captured images as a black line (figure 2). The vertical lines in the image are the metal
rod holding the wavemaker, the joint between two LED panels and the temperature sensor,
from left to right. For each frame, the edge detection is performed by analysing a vertical
column of pixels corresponding to each lateral position x̃: the location of the point with the
maximal vertical pixel intensity derivative defines the instantaneous interface coordinate
ζ̃ (t̃, x̃). A snapshot of a ruler taken by the camera serves for calibration; the pixel size,

990 A12-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

50
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.509


Resonant standing waves excited by an oscillating cylinder

Figure 2. A typical example of the captured image (case I). The movie in supplementary material shows two
periods in time for case II slowed down by a factor of 5.

Case n h̃ (mm) κ 102s Subcase Ã (mm) 102ε δ

I 3 52 0.103 0.37
a 1 1.2 0.108
b 3 3.6 0.156
c 4.5 5.5 0.179

II 2 78 0.046 0.27 a 3.8 3.1 0.112
b 6.75 5.5 0.136

III 2 98 0.036 0.27 a 4.6 3.8 0.112
b 8.3 6.8 0.136

Table 1. Experimental parameters.

corresponding to 0.34 mm in the horizontal direction and 0.315 mm in the vertical one,
does not change throughout the picture. Experiments were performed for a range of wave
periods in the vicinity of T2 and T3 for several wavemaker amplitudes Ã and depths of the
wavemaker h̃. The parameters of the experiments are summarized in table 1, the definitions
of the dimensionless parameters are provided in the text below.

The experiments demonstrated resonant-type dependence of the wave amplitude on
frequency; the effective resonance frequency corresponding to the maximum wave
amplitude depends on the wavemaker amplitude and is always below the natural frequency
of the rectangular cavity ω̃n. The wavemaker motion and the surface oscillations above the
wavemaker are approximately in phase for frequencies exceeding the effective resonance
frequency ω̃eff . Contrary to that, they are in opposite phases at frequencies below ω̃eff .
Figure 2 indicates that the flow is essentially two-dimensional, justifying the assumption
that the waves are characterized by a scalar wavenumber. The boundary conditions at the
sidewalls prescribe the discrete spectrum and, unlike the case of the semi-infinite cavity
considered by Fu et al. (2017), the small width of the cavity prevents spatial modulation.
For the forcing frequencies ω̃ deviating somewhat from ω̃n, only a superposition of the
multiple spatial modes is needed to satisfy the boundary conditions, resulting in the
non-sinusoidal shape of the free surface, as shown in figure 2 and the movie from the
supplementary material available at https://doi.org/10.1017/jfm.2024.509. The deviation
of the surface from the sinusoidal shape manifests itself at several scales, including steep
segments visible in figure 2 and in the movie near the wavemaker. These gravity–capillary
ripples with a length of approximately 2 cm decay before reaching the cavity walls and
thus do not affect the standing wave pattern (Shemer & Chamesse 1999).
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3. Potential flow

The theory describing the phenomena observed in the experiments is now presented.
Two-dimensional potential periodic flow at the wavemaker frequency ω̃ in infinitely deep
water is considered.

The flow is considered in a non-inertial frame of reference where the finite-size
wavemaker does not move, but the liquid far away from it has a uniform non-zero
velocity corresponding to that of the wavemaker at any given instant. The flow potential is
decomposed into a part representing the forcing, and a linear combination of eigenmodes
for the cavity with the fixed immersed wavemaker. The forcing potential tends to that of
the uniform flow at infinite depth; the eigenmodes vanish there. The free surface boundary
conditions provide the equations needed to determine the expansion coefficients into the
series of the eigenmodes.

The eigenfrequencies and eigenmodes of the system are considered first, taking into
account the finite size of the wavemaker. For infinitely weak forcing, a linear problem
is then solved, providing surface shapes and allowing estimates of contributions due to
viscous dissipation at different solid surfaces. In the next weakly nonlinear approximation,
the finite amplitude of the surface waves is accounted for small relative detuning∣∣∣∣ ω̃2 − ω̃2

n

ω̃2
n

∣∣∣∣ � 1. (3.1)

3.1. Mathematical formulation

3.1.1. Governing equations
In the absolute frame of reference, the centre of the wavemaker at the mean depth h̃ below
the unperturbed water level moves vertically with the velocity

Ũ(t̃) = Ãω̃ cos ω̃t̃. (3.2)

The wavemaker frequency ω̃ is in the vicinity of the nth natural frequency of the cavity

ω̃n =
√

gk̃n. Horizontally, the wavemaker is at the first antinode of the natural eigenmode,

at the distance of L̃/n from the left wall. In the non-inertial frame of reference connected to
the wavemaker, the effective gravity is g + Ãω̃2 sin ω̃t̃. Cartesian coordinates are used; the
origin of the system is located above the wavemaker at the unperturbed water level and the
x̃, ỹ and z̃ axes are directed along the long and short cavity walls and upward, respectively.
The flow is in (x̃, z̃) plane.

The dimensionless parameters characterizing the forcing frequency α, the wavemaker
amplitude ε and the effective gravitational acceleration w are defined using the
dimensional ω̃−1

n , k̃−1
n and the wavemaker amplitude Ã as the scales of time, spatial

coordinates and the surface elevation

α = ω̃2

gk̃n
= ω̃2

ω̃2
n
, ε = k̃nÃ, w = α−1 + ε sin t. (3.3a–c)

The dimensionless coordinates are denoted by the same symbols without tildes, and the
horizontal coordinates of the walls are

xL = −π, xR = (n − 1)π, (3.4a,b)
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while the dimensionless wavemaker immersion depth and radius are

h = k̃nh̃, R = k̃nR̃. (3.5a,b)

For n = 2, 3 in the present experiments (see table 1), h ∼ 10−1, R ∼ 10−1, ε ∼ 10−2,
|α − 1| ∼ 10−2. The dimensionless potential Φ related to the dimensional one Φ̃ by

Φ̃ = Ãω̃k̃−1
n Φ, (3.6)

satisfies the Laplace equation

∇2Φ = 0. (3.7)

The following boundary conditions are imposed. At infinite depth, the disturbances vanish,
and only the frame movement is retained, thus

∇Φ = − cos tez at z → −∞. (3.8)

The non-penetration conditions at the cavity walls and the wavemaker lead to vanishing
derivatives of the potential in the normal to the solid surface direction

∂Φ

∂x
= 0 x = xL, xR, (3.9)

∂Φ

∂n
= 0 at x2 + (z + h)2 = R2. (3.10)

The free surface z = εη is defined in the moving frame of reference as

η = ζ̃

Ã
− sin t, (3.11)

the kinematic and dynamic boundary conditions are

∂Φ

∂t
+ ε

2
(∇Φ)2 + (α−1 + ε sin t)η = 0, (3.12a)

∂η

∂t
+ ε

∂η

∂x
∂Φ

∂x
= ∂Φ

∂z
, (3.12b)

or, equivalently, in the Newman (2018) form

∂2Φ

∂t2
+ (α−1 + ε sin t)

∂Φ

∂z
+ 2ε∇Φ · ∇ ∂Φ

∂t
+ ε2

2
∇Φ · ∇(∇Φ · ∇Φ)

− ε cos t
α−1 + ε sin t

[
∂Φ

∂t
+ ε

2
∇Φ · ∇Φ

]
= 0, (3.13a)

η = − 1
α−1 + ε sin t

[
∂Φ

∂t
+ ε

2
∇Φ · ∇Φ

]
. (3.13b)

The two evolution equations (3.12) are more convenient for simulations of transient waves,
while (3.13) is preferable for semi-analytical studies of periodic regimes and used in the
sequel.

Since the time derivatives appear in the free-surface boundary condition only,
the solution is represented as a linear combination of functions of spatial variables
with time-dependent coefficients. This linear combination is decomposed into two
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parts: forcing potential Φ0 that corresponds to fluid motion in a cavity of infinite vertical
extent due to the prescribed forcing motion of the cylinder, and the eigenmodes Φm
that satisfy linear homogeneous boundary conditions at z = 0 and correspond to the
eigenfrequencies determined together with the eigenmodes.

The solutions for Φ and η are assumed to have the following form:

Φ = −Φ0 cos t +
∞∑

m=1

cm(t)Φm, (3.14)

η = − sin t +
∞∑

m=1

bm(t) cos
(m

n
(x + π)

)
. (3.15)

The first term in (3.15) represents the contribution of the frame’s motion in absolute
coordinates; the unperturbed surface corresponds to bm = 0 for all m. For the periodic
regime, the instant amplitudes of the spatial modes cm and bm are decomposed into Fourier
series

Φ = 1
2

[
−Φ0 eit +

∞∑
l=1

∞∑
m=1

c(l)m Φm eilt + c.c.

]
, (3.16)

η = 1
2

[
ieit +

∞∑
l=0

∞∑
m=1

b(l)m cos
(m

n
(x + π)

)
eilt + c.c.

]
, (3.17)

where c.c. stands for complex conjugate. For numerical calculations, the infinite series in
(3.16), (3.17) are truncated. The term ‘harmonic’ is used in the sequel for the temporal
Fourier decomposition, while ‘modes’ and ‘eigenmodes’ denote the corresponding spatial
decomposition into the series of cos(m(x + π)/n) and Φm, respectively, at any given
instant.

3.1.2. Forcing potential
The forcing potential Φ0 is a solution of the problem

∇2Φ0 = 0 xL < x < xR, (3.18a)

∂Φ0

∂x
= 0 x = xL, xR, (3.18b)

∂Φ0

∂z
→ 1 z → −∞, (3.18c)

∂Φ0

∂x
→ 0 z → −∞, (3.18d)

∂Φ0

∂n
= 0 at x2 + (z + h)2 = R2, (3.18e)

that does not account for boundary conditions at the free surface and thus is not unique. For
definiteness, assume the symmetry relative to z = −h plane and consider a superposition
of the uniform flow and an infinite series of multipoles placed at the centre of the
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x–2

r–2

x–1 x0 x1 x2 x

z

r–1 r0 r1 r2ϑ1 ϑ2

ϑ–2 ϑ–1
ϑ0

Figure 3. Locations of the multipoles and auxiliary polar coordinates. The real flow domain is shaded.

wavemaker and symmetrical points relative to the walls (xq,−h), as shown in figure 3

Φ0(x, z) = z + a0 +
∞∑

p=1

∞∑
q=−∞

(
apq

cos pϑq

rp
q

+ bpq
sin pϑq

rp
q

)
, (3.19a)

x − xq = rq cosϑq, z + h = rq sinϑq, (3.19b)

x0 = 0, (3.19c)

xq = 2xL − x|q|−1 q < 0, (3.19d)

xq = 2xR − x−|q|+1 q > 0, (3.19e)

where rq and ϑq are polar coordinates with the centre at points (xq,−h). For R � 1, the
contribution of high-order multipoles is negligible, and (3.18) is equivalent to the classical
problem of a uniform flow past a cylinder, so that the solution Φ0

0 corresponds to the
superposition of a uniform flow with velocity ∂Φ0/∂z = 1 and a dipole in the centre of
the cylinder

Φ0
0 = z + R2

x2 + (z + h)2
(z + h). (3.20)

The function Φ0
0 serves as an initial approximation that is improved by an iterative

numerical procedure (see Appendix A) that treats the boundary conditions at the walls
in the presence of a finite-sized cylinder more accurately. Once all coefficients with apq
and bpq in (3.19) are determined, a constant a0 is found from the condition∫ xR

xL

Φ0 dx = 0. (3.21)

The forcing potential produces the terms of the order of Φ0(x, 0) in the free surface
boundary conditions (3.13); they decrease with the increase of h. Denote the reference
value of Φ(x, 0) as the transmitting factor κ; it depends on the geometry only

Φ0(x, 0) ∼ κ = R2

h
= k̃n

R̃2

h̃
. (3.22)

For the parameters of the experiment, κ ∼ 10−1.

3.1.3. Eigenmodes
The eigenmodes Φm are non-trivial solutions of the eigenvalue problem with zero
boundary conditions at the walls (3.9), at the wavemaker (3.10) and at z → −∞; the linear
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boundary conditions at z = 0 correspond to a periodic flow with an unknown frequency
α

1/2
m

∇2Φm = 0 xL < x < xR, z < 0, (3.23a)

∂Φm

∂n
= 0 at x2 + (z + h)2 = R2, (3.23b)

∂Φm

∂x
= 0 at x = xL, xR, (3.23c)

−αmΦm + ∂Φm

∂z
= 0 at z = 0, (3.23d)

∇Φm → 0 at z → −∞. (3.23e)

General properties of the solutions of the Laplace equation ensure that the eigenvalues
αm are real and correspond to real frequencies. Functions Φm form a complete orthogonal
system; applying the Green theorem, one obtains∫ (n−1)π

−π

Φm1(x, 0)Φm2(x, 0) dx = 0 m1 /= m2, (3.24)

and ∫ (n−1)π

−π

Φm(x, 0) dx = 0 ∀m. (3.25)

The eigenmodes Φm and the eigenvalues αm differs from those for the pure rectangular
cavity

Φ0
m = cos

(m
n
(x + π)

)
exp

(m
n

z
)
, α0

m = m
n
, (3.26a,b)

by the values of the order of κ . Appendix B provides the proof and the details
of the numerical method. The normalized by the parameter κ forcing potential, the
eigenfunctions Φm at the free surface and their deviation from Φ0

m are shown in figure 4.
The eigenvalues are calculated analytically in the limit R � 1 (Appendix C). The

deviation of αn from unity in this limit is given as

1 − αn = κ
2 exp(−h)

πn

[
(−2h + 2h2 − h3) tan−1

√
2

h
− 2

√
2h +

√
2h2

]
+ O(κ2). (3.27)

Figure 5 shows this deviation for the natural frequencies n = 2, 3. The approximate
expression (3.27) is quite accurate for h exceeding unity, where the effect of the finite
wavemaker size decays with its depth of immersion h. However, in the whole range of
the parameters used: R < h < 5R, R ∼ 10−1, the relative error in applying the asymptotic
(3.27) remains below 15 %.

3.2. Linear theory
Consider first the dimensionless wavemaker amplitude ε � 1 and assume that the ratio of
amplitudes of the wavemaker and the wave is bounded. Neglecting nonlinear terms, one
obtains a closed-form expression for the potential and surface elevation. The dissipation
due to the effect of viscosity in the Stokes layer is considered as one of the mechanisms
that limit the wave amplitude.
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Figure 4. Normalized forcing potential (a,d), eigenmodes (b,e), and their normalized deviations from cosines
(c, f ) for non-symmetrical case I (a–c) and symmetrical case II (d–f ) described in table 1.
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1.5
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Analytic

Analytic
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1
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 α
n

κ
–
1
π
n(

1
 –

 α
n)

/
2

0

Figure 5. Absolute (a) and normalized (b) values of the detuning for R̃ = 21 mm and n = 2, 3 calculated
numerically and analytically by (3.27).

3.2.1. Potential
Linearization of (3.13) and shift of the free-surface boundary conditions to the unperturbed
level lead to the simplified boundary conditions

∂2Φ

∂t2
+ α−1 ∂Φ

∂z
= 0 at z = 0, (3.28a)

η = −α∂Φ
∂t

at z = 0. (3.28b)

The modulation of gravity and the displacement of the free surface due to the motion of
the frame of reference are negligible at this order.
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The potential and the surface elevation for the periodic flow regime are expressed
through their complex-valued amplitudes Φ̂ and η̂, respectively,

Φ = 1
2Φ̂ eit + c.c., η = 1

2
η̂ eit + c.c. (3.29a,b)

The boundary conditions for those amplitudes Φ̂, η̂ are given by

−αΦ̂ + ∂Φ̂

∂z
= 0 at z = 0, (3.30a)

η̂ = −iαΦ̂ at z = 0, (3.30b)

∇Φ̂ = −ez at z → −∞. (3.30c)

Applying the decomposition (3.16)

Φ̂ = −Φ0 eit +
∞∑

m=1

c(1)m Φm, (3.31)

and using the boundary conditions at the free surface yields the equations for the
coefficients c(1)m in the expansion of the potential

−
(

−αΦ0 + ∂Φ0

∂z

)
+

∞∑
m=1

c(1)m Φm(−α + αm) = 0. (3.32)

For brevity, define the scalar product 〈·, ·〉 and norm ‖·‖ for the functions of two spatial
variables via their values at z = 0

〈 f (x, z), g(x, z)〉 =
∫ (n−1)π

−π

f (x, 0)g(x, 0) dx, ‖ f ‖2 =
∫ (n−1)π

−π

f 2(x, 0) dx. (3.33a,b)

The coefficients c(1)m are obtained from (3.32) invoking the orthogonality of the systemΦm

c(1)m = 1
−α + αm

1
‖Φm‖2

〈
−αΦ0 + ∂Φ0

∂z
, Φm

〉
. (3.34)

For α close to unity, all coefficients c(1)m except for m = n change insignificantly with α,
while c(1)n tends to infinity at α = αn. Once the potential Φ̂ is known, the surface elevation
can be found from (3.30).

3.2.2. Effect of viscosity
In the presence of weak kinematic viscosity ν, dissipation may appear due to internal
friction both in the bulk and at rigid boundaries. The bulk dissipation manifests itself
in the dynamic free-surface boundary condition by a dimensionless term of the order
k̃2

nν/ω̃ ∼ 10−5 and can be neglected. The wall friction results in thin Stokes layers at
all rigid surfaces. The reference thickness of the Stokes layer is

√
ν/ω̃; for water waves

in the present experiments with frequencies ω̃ ∼ 10 s−1, it is approximately 0.3 mm.
Considering the dimensionless Stokes layer thickness as a small parameter, the correction
to the potential solution is introduced.
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Resonant standing waves excited by an oscillating cylinder

Following Mei (1989), Kit & Shemer (1989) and Hill (2003), a method to account
for the Stokes layer corrections for potential flow with arbitrary time-periodic potential
Φ is applied. To satisfy the no-slip boundary conditions in the Stokes layers at all rigid
boundaries, a rotational correction to the potential solution needs to be introduced

∂V
∂t

= ∂2V
∂ξ2 , V|ξ=0 = −∂Φ

∂τ
, (3.35a,b)

where V is the tangential velocity, and ξ and τ are the coordinates normal and tangential
to the surface, respectively, normalized by

s =
√

k̃2
nν

ω̃
∼ 10−2. (3.36)

For time-periodic flows with unit radian frequency, the amplitude Φ̂ is defined by (3.30).
Introducing complex amplitude V̂

V = 1
2 V̂ eit + c.c., (3.37)

yields

V̂ = − ∂Φ̂

∂τ

∣∣∣∣∣
ξ=0

exp
(

−1 + i√
2
ξ

)
. (3.38)

This correction needs to be calculated for two linearly independent tangential velocity
components at any rigid surface. Two types of rigid surfaces need to be considered
separately: (i) the sidewalls and wavemaker, which both have a normal in the (x, z) plane;
and (ii) the front and back walls with the normal that is orthogonal to the plane of the basic
flow.

For type (i) surfaces, there is only one velocity component with a non-zero value of
∂Φ̂/∂τ . In this case, there is a mass exchange between the Stokes layer and the bulk
flow, resulting in a correction s((1 − i)/

√
2)Φ̂v for the potential Φ̂. The amplitude of the

correction Φ̂v is the solution of the problem

∇2Φ̂v = 0, (3.39a)

∂Φ̂v

∂n
= −∂

2Φ̂

∂τ 2 at rigid surfaces, (3.39b)

∂Φ̂v

∂n
= 0 z = 0, (3.39c)

Φ̂v → 0 z → −∞. (3.39d)

The non-trivial Neumann boundary conditions are imposed at the sidewalls and the
wavemaker surface; the solution is found numerically.

For type (ii) boundaries (the front and back walls), the velocity in the Stokes layer has
non-zero x and z components. For any fixed y, these components are proportional to ∇Φ̂,
ensuring that the y-component of the velocity is identically zero. The Stokes layer affects
the bulk flow through the kinematic free surface boundary condition. The liquid velocity
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at the free surface deviates from the bulk value ∂Φ̂/∂z in the vicinity of the walls by the
value

Ŵ = −∂Φ̂
∂z

exp
(

−1 + i√
2
ξ

)
. (3.40)

The corrected kinematic free-surface boundary condition reads

iη̂ = ∂Φ̂

∂z
+ Ŵ. (3.41)

Integrating across the cavity yields

iη̂ = ∂Φ̂

∂z

[
1 − 2s

B
1 − i√

2

]
, (3.42)

where B = k̃nB̃ ∼ 1 is the dimensionless cavity size in the y-direction. Note that the
correction Φ̂v is not involved in the free-surface boundary condition since ∂Φ̂v/∂z = 0
at z = 0.

Corrected due to the presence of the Stokes layer boundary condition for the potential,
(3.30) is

−α
(
Φ̂ + s

(1 − i)√
2
Φ̂v

)
+ ∂Φ̂

∂z

[
1 − 2s

B
1 − i√

2

]
= 0 at z = 0. (3.43)

To solve the problem, the corrections forcing potential Φv0 and eigenmodes Φvm are
calculated from (3.39) substituting Φ0 and Φm as Φ̂, respectively. Following (3.16), the
solution is represented as

Φ̂ = −Φ0 +
∞∑

m=1

c(1)m Φm, Φ̂v = −Φv0 +
∞∑

m=1

c(1)m Φvm, (3.44a,b)

with the identical coefficients c(1)m in both decompositions. The values of c(1)m are obtained
similarly to the inviscid case.

The relative contribution of the different dissipation mechanisms is estimated:
dissipation at the sidewalls and the wavemaker associated with Φ̂v and at the front and
back walls associated with the additional term in the kinematic boundary condition that is
proportional to B−1. The problem (3.43) is solved using three assumptions:

(i) full dissipation with all terms proportional to s retained;
(ii) dissipation on sidewalls and the wavemaker corresponding to an infinitely wide

cavity, keeping terms with Φ̂v but omitting those proportional to B−1;
(iii) dissipation at the front and back walls only corresponding to the narrow cavity,

keeping the term with B−1 but omitting those with Φ̂v .

In figure 6, the dependence of the inverse amplitudes |c(1)n |−1 of the resonant eigenmode
obtained under these three assumptions is compared with the results of the inviscid model.
The dissipation limits the maximum amplitude and downshifts the effective resonant
frequency. The minimum inverse amplitude is zero for the inviscid model and is finite
in the presence of any dissipation mechanism. The dissipation at the front and back walls
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2.0

Dissipation model

None

(i)

(ii)

(iii)

1.5

1.0
|c n

|–
1

0.5

–0.04 –0.03

α – 1

–0.02
0

Figure 6. Inverse amplitude of the dominant coefficient |c(1)n | for case I and different assumptions adopted for
dissipation.

dominates over the other mechanisms. Keeping the terms corresponding to the assumption
(iii) only, the equation for potential becomes

−αΦ̂ + ∂Φ̂

∂z

[
1 − 2s

B
1 − i√

2

]
= 0, (3.45)

yielding the solution for c(1)m

c(1)m = 1
−α + αvm

1
‖Φm‖2

〈[
−αΦ0 + ∂Φ0

∂z

(
1 − 2s

B
1 − i√

2

)]
, Φm

〉
, (3.46a)

αvm = αm

[
1 − 2s

B
1 − i√

2

]
. (3.46b)

The phase of the resonant eigenmode is equal to the argument of c(1)n , it is strongly
dependent on α and changes from π to 0 in the vicinity of αn.

3.2.3. Surface elevation
The surface elevation amplitude is found from (3.30) as

η̂ = −iα
(
Φ̂ + s

(1 − i)√
2
Φ̂v

)
, (3.47)

which, under assumption (iii), is simplified to

η̂ = −iαΦ̂. (3.48)

The decomposition of the surface shapes onto modes (3.17) reads

η̂ = i +
M∑

m=1

b(1)m cos
(m

n
(x + π)

)
, b(1)m = |b(1)m | exp

[
i
(
θm + π

2

)]
, (3.49a,b)

where |b(1)m | and θm are the amplitudes and the phases of the mth mode. The shift of π/2 is
introduced to define the phase θm relative to the wavemaker’s absolute displacement that
is proportional to sin t.
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(c) (d )
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k(1

) |
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m = 1
m = 2
m = 3

m = 2

m = 4

m = 6

m = 4
m = 5

θm

π

π/2
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) |
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0 –0.06 –0.04 –0.02

α – 1
0

–0.06 –0.04 –0.02 0 –0.06 –0.04 –0.02 0

Figure 7. Amplitudes (a,c) and phases relative to the wavemaker absolute displacement (b,d) of major spatial
modes for the cases I (a,b) and II (c,d) described in table 1; solid and dashed lines correspond to full Stokes
layer dissipation and the inviscid model.

For any α, the surface shape is a superposition of an infinite number of spatial modes,
including those with wavenumbers lower than n (m = 1, 2 in case of n = 3). Figure 7
presents the dependence of the spatial modes’ amplitudes on the detuning α − 1. Note
that, for (α − 1) � κ , the linear theory predicts a cosinusoidal free-surface shape with a
relatively small amplitude. For the resonant mode (m = n), the surface elevation above the
wavemaker is in anti-phase with the wavemaker below the resonance and in-phase above
it. In the framework of inviscid theory, those phases are either 0 or π, but the jump is
smoothened by viscous dissipation. The phases of non-resonant modes (m /= n) change
both at the resonance and at zero detuning.

3.3. Weakly nonlinear effects
The only mechanism limiting the wave amplitude near the resonance in the linear theory
is the viscous dissipation in the Stokes layers. This theory predicts the maximum wave
amplitude that exceeds that of the wavemaker by an order of magnitude (figure 7), violating
the assumptions of the linear theory. The nonlinear effects resulting from the finite wave
steepness thus become relevant. To this end, Moiseev (1958) suggested an approach that
accounts for higher-order terms in the expansion of the free-surface boundary conditions.
Matching the cubic nonlinear terms and the forcing term at the forcing frequency imposes
a limit on the amplitudes of the forced resonant waves. A similar approach was applied for
the analysis of nonlinear sloshing waves by Faltinsen (1974) and for the derivation of the
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cubic Schrödinger equation (Kit et al. 1987) for a description of spatially and temporally
evolving resonant standing waves in a long tank. The present analysis follows those studies.

In the following, the potential is rescaled to reflect the balance between the forcing
and the cubic nonlinear terms. For the steady-state regime, the equation for the resonant
eigenmode is then obtained; the qualitative analysis presents major features introduced by
nonlinearity. The resulting solution for potential allows description of the spatio-temporal
structure of the surface elevation.

3.3.1. Solution structure
To study the effect of finite wave amplitude, the dimensionless wave steepness δ = k̃nã
is introduced, where ã is the dimensional scale of the surface elevation amplitude. The
Moiseev (1958) matching condition between the cubic nonlinearity and the forcing yields
the following relation between δ, the dimensionless wavemaker amplitude ε and the
transmitting factor κ , introduced in (3.22):

δ3 = εκ. (3.50)

The dimensional velocity amplitude at the surface scales as ω̃ã, the spatial scale k̃−1
n

defines the new scaling for potential

Φ̃ = k̃−1
n ω̃ãϕ, (3.51)

ensuring ϕ ∼ 1. From (3.51) and (3.6), ãϕ = ÃΦ and

δϕ = εΦ. (3.52)

The boundary condition at the free surface (3.13) is rewritten as

∂2ϕ

∂t2
+ (α−1 + ε sin t)

∂ϕ

∂z
+ 2δ∇ϕ · ∇ ∂ϕ

∂t
+ δ2

2
∇ϕ · ∇(∇ϕ · ∇ϕ)

− ε cos t
α−1 + ε sin t

[
∂ϕ

∂t
+ δ

2
∇ϕ · ∇ϕ

]
= 0 at z = εη, (3.53a)

η = − 1
α−1 + ε sin t

δ

ε

[
∂ϕ

∂t
+ δ

2
∇ϕ · ∇ϕ

]
at z = εη. (3.53b)

And at z → −∞

∇ϕ → −ε
δ

ez cos t. (3.54)

In this study, the values of the independent parameters ε ∼ 10−2 and δ ∼ 10−1;
adopting Moiseyev’s approach suggests retaining in the Taylor expansion of the boundary
conditions (3.53) the terms up to O(δ2). Neglecting higher order in δ terms allows us to
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keep the terms O(ε) only, yielding

∂2ϕ

∂t2
+ α−1 ∂ϕ

∂z
+ δ

[
2∇ϕ · ∇ ∂ϕ

∂t
− α

∂ϕ

∂t
∂

∂z

(
∂2ϕ

∂t2
+ α−1 ∂ϕ

∂z

)]
+ δ2

[
1
2
∇ϕ · ∇ (∇ϕ · ∇ϕ)− 2α

∂ϕ

∂t
∂

∂z

(
∇ϕ · ∇ ∂ϕ

∂t

)
+ α

(
∂ϕ

∂t
∂2ϕ

∂t∂z
− 1

2
∇ϕ · ∇ϕ

)
∂

∂z

(
∂2ϕ

∂t2
+ α−1 ∂ϕ

∂z

)

+ α2

2

(
∂ϕ

∂t

)2
∂2

∂z2

(
∂2ϕ

∂t2
+ α−1 ∂ϕ

∂z

)]

+ ε

[
sin t

∂ϕ

∂z
− cos t

∂ϕ

∂t

]
+ O(δ3, δε, ε2) = 0, (3.55a)

η = −δ
ε
α

{
∂ϕ

∂t
+ δ

[
1
2
∇ϕ · ∇ϕ − α

∂ϕ

∂t
∂2ϕ

∂t∂z

]

+ δ2

[
−α

2
(∇ϕ · ∇ϕ) ∂

2ϕ

∂z∂t
− α

2
∂ϕ

∂t
∂

∂z
(∇ϕ · ∇ϕ)+ α2

2

(
∂ϕ

∂t

)2
∂3ϕ

∂z2∂t

]

− εα
∂ϕ

∂t
sin t + O(δ3, δε, ε2)

}
, (3.55b)

where all functions and their derivatives are evaluated at z = 0.
In view of the modified (3.55), it is convenient to use in solution (3.15) the potential

ϕ0 = O(1) that corresponds to the vanishing velocity at z → −∞, instead of the rescaled
forcing potential Φ0 defined by (3.18)

ε

δ
Φ0 = ε

δ
z + εκ

δ
ϕ0. (3.56)

The time-dependent coefficients cm(t) in (3.16) are represented as a sum of temporal
harmonics with integer frequencies and slowly varying amplitudes. The slow time of δ2t is
defined by the scales of the forcing potential. As in Moiseev (1958), the analysis is limited
to the two lowest harmonics

ϕ(t, x, z) = 1
2

{[
−ε
δ

z − δ2ϕ0(x, z)+ ε

δ

∞∑
m=1

c(1)m (δ2t)Φm(x, z)

]
eit

+ ε

δ

∞∑
m=1

c(2)m (δ2t)Φm(x, z) ei2t

}
+ c.c. + higher temporal harmonics. (3.57)

The eigenmode with m = n at the first harmonic is in resonance and makes the major
contribution to the potential. By definition of the scale for ϕ (3.51), it has an amplitude of
the order of unity. For brevity, denote

Cn = ε

δ
c(1)n ∼ 1, (3.58)

and introduce the functions F1 and F2 of the order of unity for non-resonant eigenmodes
at the first and of the second harmonics. The former has the amplitude of δ2, the same as
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Resonant standing waves excited by an oscillating cylinder

forcing; the latter is, generally, of the order of δ

δ2F1(δ
2t, x, z) = ε

δ

∞∑
m=1,m /= n

c(1)m (δ2t)Φm(x, z), (3.59a)

δF2(δ
2t, x, z) = ε

δ

∞∑
m=1

c(2)m (δ2t)Φm(x, z). (3.59b)

The function F1 is orthogonal to Φn, since Φm is orthogonal to Φn for any m /= n. The
transformed form of the solution reads

ϕ(t, x, z) = 1
2

{[
−ε
δ

z − δ2ϕ0(x, z)+ Cn(δ
2t)Φn(x, z)+ δ2F1(δ

2t, x, z)
]

eit

+ δF2(δ
2t, x, z) ei2t

}
+ c.c. + higher temporal harmonics. (3.60)

The solution is substituted to the free-surface boundary condition (3.55). Considering the
leading terms in (3.55) at the first harmonic only, one obtains

CnΦn

[
−1 + αn

α

]
+ O(δ2) = 0. (3.61)

The existence of the non-trivial solutions limits the range of the detuning values considered

α − αn ∼ δ2. (3.62)

The solution process continues as follows. First, considering the terms of O(δ)
that correspond to the second harmonic defines the connection between the resonant
eigenmode and the second harmonic. Then, the nonlinear effects at the first harmonic are
accounted for, leading to a nonlinear equation for Cn. The amplitudes of the non-resonant
eigenmodes at the first harmonic are found to finalize the solution of the problem for the
potential. The surface elevation is then found.

3.3.2. Potential
The equation at the second harmonic is

(
−4F2 + α−1 ∂F2

∂z

)
− i

2
C2

n

[
−2∇Φn · ∇Φn + αΦn

(
−∂Φn

∂z
+ α−1 ∂

2Φn

∂z2

)]
− 3iCn

ε

δ
Φn + O

(
δ2, ε,

ε2

δ

)
= 0. (3.63)

This approximation does not contain time derivatives of F2; the second harmonic depends
on slow time δ2t parametrically via Cn. If 4α is not an eigenvalue, this equation has a
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unique solution

F2 = i
2

C2
n

∞∑
m=1

1
−4 + αm/α

〈P, Φm〉
‖Φm‖2 Φm − iCn

ε

δ
Φn + O

(
δ,
ε

δ

)
, (3.64a)

P = −2∇Φn · ∇Φn + αΦn

[
−∂Φn

∂z
+ α−1 ∂

2Φn

∂z2

]
. (3.64b)

For brevity, the normalized amplitude of the second harmonic f2 is introduced

F2 = i
2

C2
n f2 − iCn

ε

δ
Φn. (3.65)

A non-trivial expression for the second harmonic distinguishes the present problem with a
finite wavemaker from the pure rectangular cavity case (Faltinsen 1974). In the latter case,
the first term in P is constant, yielding zero contribution in F2, while the second one is
proportional to −1 + α/αn ∼ δ2, which is below the considered order of magnitude. The
function f2 is of the order of unity. The numerator 〈P, Φm〉 is of the order of κ for any
m, since the deviation of the eigenmodes Φm from those for the pure rectangular cavity
is caused by the presence of the wavemaker. From (3.27), the denominator for m = 4n
is also of the order of κ . Therefore, the major contribution to the surface shape at the
second harmonic comes from the eigenmode that is in resonance defined by the deep-water
dispersion relation.

In the framework of the inviscid model, the solution does not exist for α = α4n/4; the
amplitude of the second temporal harmonic is then infinite. In the vicinity of the resonance
for the double frequency, the basic assumption of the model that

‖F2‖ � ‖CnΦn‖, (3.66)

is violated. The dissipation due to the Stokes layers is negligible at the considered order of
magnitude; however, accounting for this mechanism regularizes the solution and does not
introduce a significant error in the domain of the model validity.

The terms of the order of δ2 at the first harmonic give an equation for Cn and the
expression for F1, defining the solution

2iC′
nΦn + δ−2Cn

[
−Φn + α−1 ∂Φn

∂z

]
+

[
−F1 + α−1 ∂F1

∂z

]
−

(
−ϕ0 + α−1 ∂ϕ0

∂z

)
+ |C2

10|C10

{
−∇Φn · ∇f2 + α

[
f2

(
−∂Φn

∂z
+ α−1 ∂

2Φn

∂z2

)
− 1

2
Φn

(
−4
∂f2
∂z

+ α−1 ∂
2f2
∂z2

)]
+ 3

8
∇Φn · ∇ (∇Φn · ∇Φn)

− 1
2
αΦn

∂

∂z
(∇Φn · ∇Φn)+ 1

4
αΦn

∂Φn

∂z
∂

∂z

(
−Φn + α−1 ∂Φn

∂z

)
− 3α

8
∇Φn · ∇Φn

∂

∂z

(
−Φn + α−1 ∂Φn

∂z

)
+ α2

8
Φ2

n
∂2

∂z2

(
−Φn + α−1 ∂Φn

∂z

)}
+ O

(
δ,
ε

δ

)
= 0, (3.67)

where primes denote derivative with respect to the slow time δ2t. The inertia force as well
as the terms corresponding to the wavemaker displacement are negligible at this order.

990 A12-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

50
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.509


Resonant standing waves excited by an oscillating cylinder

In the two-step solution, the scalar product of the equation with Φn first determines Cn;
then, the function F1 is found in the second step from considering the scalar products with
Φm, m /= n. The qualitative properties of the solution are solely defined by the value of Cn.
Denoting the normalized detuning β as

β = −δ−2
(
−1 + αn

α

)
, (3.68)

one obtains the equation for Cn

2iC′
n − βCn + 1

‖Φn‖2

〈(
−ϕ0 + α−1 ∂ϕ0

∂z

)
, Φn

〉
+ |Cn|2Cn

〈Q, Φn〉
‖Φn‖2 = 0, (3.69)

where Q stands for terms with |Cn|2Cn in (3.67). Accounting for the presence of the Stokes
layers at the front and back walls replaces the coefficient α−1 of the ∂Φn/∂z in the linear
term by

α−1
[

1 − 2s
B

1 − i√
2

]
, (3.70)

introducing the imaginary part of the order of δ−2s/B ∼ 10−1. After correction of β due
to dissipation, the equation reads

2iC′
n − βdCn + 1

‖Φn‖2

〈(
−ϕ0 + α−1 ∂ϕ0

∂z

)
, Φn

〉
+ |Cn|2Cn

〈Q, Φn〉
‖Φn‖2 = 0, (3.71a)

βd = −δ−2
(

−1 + αn

α

[
1 − 2s

B
1 − i√

2

])
. (3.71b)

Equation (3.71) is the Duffing equation simplified for the case of the sinusoidal forcing at
a small detuning (McCartin 1992).

3.3.3. Qualitative analysis
For the steady-state regime, the terms with slow-time derivatives in (3.69), (3.71) vanish,
and the equations become algebraic. Note a limit transition for δ → 0: in this case,
normalized detuning affected by viscosity βd is at least of the order of δ−2s/B � 1. Large
βd implies |Cn| � 1 and a negligible contribution of the nonlinear terms. The value of Cn

coincides with c(1)n given by (3.30) rescaled by (3.58). Physically, this means that for weak
forcing, the amplitude at the resonance is mostly defined by the viscous dissipation rather
than by the nonlinear effects.

For the inviscid model, the amplitude of the resonant mode is governed by (3.69) that
has real coefficients that change weakly for α in the vicinity of αn. For qualitative analysis,
the equation with the coefficients calculated at α = αn is used. Equation (3.69) has only
real solutions, the number of roots varies from one to three, depending on the value of the
normalized detuning β; absolute values of the roots are plotted in figure 8. If three roots
exist, only solutions with maximum and minimum absolute values are stable (McCartin
1992). A system that starts from rest reaches the steady state with the smallest possible
amplitude (Stoker 1992). The transition from single multiple solutions corresponds to the
maximum amplitude for the steady-state regime attained from rest (effective resonance).
The transition occurs at the value of β = βeff that depends on the geometry of the
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3
Case I II III

Stable, minimum

Stable, maximum

Unstable

Jump2

1

–2 –1 0

β

1 2

|Cn|

0

Figure 8. Amplitude of the resonant eigenmode for the inviscid model as a function of normalized detuning
for cases I, II and III (table 1).

Case βeff |Cn eff |
I −0.73 1.89
II −0.956 2.16
III −0.952 2.31

Table 2. Effective resonance parameters.

system and defines the variation of the effective resonance frequency αeff with the forcing
amplitude

αeff = αn(1 − βeff δ
2) = αn(1 − βeff κ

2/3ε2/3). (3.72)

The maximum eigenmode amplitude |Cn eff | corresponding to β = βeff + 0 is presented
in table 2 along with the normalized detuning values βeff for cases considered in the
experiments.

Equation (3.71) that accounts for the dissipation differs from the inviscid (3.69) by
a forcing amplitude-dependent complex coefficient. However, the dependence of the
resonant eigenmode amplitude |Cn| on the forcing frequency α remains qualitatively the
same (figure 9). The position of the effective resonance (maximum amplitude) shifts
toward lower frequencies when the forcing amplitude increases. If nonlinearity prevails
over dissipation, the response curve becomes asymmetric; multiple solutions appear in a
certain range of frequencies, while the phase dependence on frequency becomes S-shaped.
The transition from one stable branch to another implies a jump-like change in phase.

When dissipation is accounted for, for forcing amplitude ε exceeding the critical level
that depends on dissipation, a frequency range appears where multiple solutions exist
(figure 10). With the increase in the forcing amplitude, this frequency range expands
and shifts downwards. Its upper limit changes slowly, while the lower one quickly
leaves the vicinity of the resonance. The increase of dissipation increases the critical
value of the amplitude corresponding to multiple solutions and shifts the frequency
diapason downwards. The dependence of the effective resonance frequency on the forcing
amplitude has three segments. At infinitely small amplitudes, it is downshifted from the
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Resonant standing waves excited by an oscillating cylinder

3

2

1

|Cn|

0
–0.06 –0.04 –0.02

α – 1
0 –0.06 –0.04 –0.02

α – 1
0

(b)(a)
π

π/2

0

γ

Figure 9. The amplitude (a) and the phase (b) of the resonant eigenmode as a function of detuning, Cn =
|Cn| exp(iγ ). Black, red and blue lines correspond to subcases Ia, Ib and Ic. Solid, dashed and dotted lines
are as in figure 8. Thin lines show the results of the inviscid model; thick ones correspond to Stokes layer
dissipation with the value of coefficient adopted from the experiments. Gaps in the thin lines denote the region
where the inviscid model ceases to be applicable.

–0.02

–0.04

α
 –

 1

–0.06
0 0.02

ε
0.04

Multiple solutions

Eigenvalue

s = 0

s = s1
s = 1.5s1

0.06

Figure 10. The multiple solution existence domain for parameters of case I. Dashed lines show parameters of
the maximum amplitude, s1 denotes the values of s in table 1.

eigenfrequency αn due to dissipation and weakly depends on the amplitude. At the next
stage, the effective resonance is defined by the nonlinear effects only; the results for the
models with dissipation and without it coincide. For larger ε, the effective resonance
frequency depends on the forcing amplitude similar to the inviscid case (3.72), but the
coefficient is slightly different.

3.3.4. Surface elevation
The surface elevation given by (3.55) consists of four terms: shift due to the movement of
frame of reference, time-independent offset, the first and second harmonics

η(x) = 1
2

[ieit + η0(x)+ η1(x) eit + η2(x) ei2t] + c.c. + higher temporal harmonics,

(3.73a)
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η0 = −δ
2

ε
α

{ |Cn|2
2

[
1
2
∇Φn · ∇Φn − αΦn

∂Φn

∂z

]
+ O

(
δ,
ε

δ

)}
, (3.73b)

η1 = − iδ
ε
α

{
CnΦn + δ2

[
F1 − ϕ0 + |Cn|2Cn

4
∇f2 · ∇Φn − α|Cn|2|Cn

2
∂f2Φn

∂z

+ |Cn|2Cn

4

(
−α

2
Φn

∂

∂z
(∇Φn · ∇Φn)− α(∇Φn · ∇Φn)

∂Φn

∂z
+ 3α2

2
Φ2

n
∂2Φn

∂z2

)]
+ O(δ3, δε)

}
, (3.73c)

η2 = −δ
2

ε
α

{
2iF2 + C2

n

2

[
1
2
(∇Φn · ∇Φn)+ αΦn

∂Φn

∂z

]
+ i
ε

δ
CnαΦn + O(δ, ε)

}
.

(3.73d)
The spatial modes are

η0 =
∞∑

m=1

b(0)m cos
(m

n
(x + π)

)
, η1 =

∞∑
m=1

b(1)m cos
(m

n
(x + π)

)
, (3.74a,b)

η2 =
∞∑

m=1

b(2)m cos
(m

n
(x + π)

)
, (3.74c)

b(1)m = |b(1)m | exp
[
i
(
θ(1)m + π

2

)]
, b(2)m = |b(2)m | exp iθ(2)m . (3.74d,e)

The shift in defining the phases for the first harmonic is consistent with the linear theory.
The leading term defining the surface elevation amplitude at the antinode at the first

harmonic is δ|Cn|/ε. At the effective resonance, it is δ|Cn eff|/ε and scales as δ−2, see
(3.50). The resonant eigenmode constitutes the major contribution to the first harmonic.
The 2nth and 4nth eigenmodes dominate the second harmonic. The 2nth eigenmode is
also present for the nonlinear standing waves in the pure rectangular cavity (Stiassnie &
Shemer 1984); the 4nth eigenmode arises due to deviation of the eigenfunctions from
sinusoidal shape caused by the finite size of the wavemaker. The relative displacement of
the wavemaker manifests itself in the last term of the second harmonic only.

4. Comparison with experimental results and discussion

The comparison between the theory and experiments focuses on the following features of
the flow:

(i) surface elevation at the antinode in the absolute frame of reference denoted by

ζ∗(t) = η(t, 0)+ sin t; (4.1)

(ii) free-surface shape in the absolute frame of reference

ζ(t, x) = η(t, x)+ sin t; (4.2)

(iii) frequency spectra of ζ∗(t) as well as wavenumber spectra of separate band-pass
filtered frequency harmonics of ζ(t, x).

An essentially nonlinear temporally modulated regime at large enough forcing at the
frequencies near the effective resonance frequency is described in the last subsection.
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–4

6

(a) (b)
α α

0.945 0.956 0.967 0.962 0.976 0.990

3

0ζ*

–3

–6
0 0.5 1.0

t/(2π)

1.5 2.0 0 0.5 1.0

t/(2π)

1.5 2.0

Figure 11. Surface elevation at the antinode for subcases Ib and IIIa (panels a and b, respectively).

0

10–1

100

101

1 2

l
3 4 0

10–1

100

0.945

0.956

0.967

101

1 2

l
3 4

|ζ∗(l)|

α

0.962

0.976

0.99

α

(a) (b)

Figure 12. Frequency amplitude spectra of the surface elevation at the antinode for subcases Ib (a) and IIIa
(b). Notation as in figure 11. The normalized l = 1 corresponds to the forcing frequency; for visibility black
bars are shifted by 0.1 to the left and blue bars by 0.1 to the right.

4.1. Surface elevation at the antinode
The typical measured dependence on time of the surface elevation at the antinode ζ∗(t)
is shown in figure 11 for the frequencies below, near and above the effective resonance,
equally spaced in α. The frequency spectra of those signals plotted in figure 12 represent
the data collected over the last 500 out of the total 700 recorded for each frequency
forcing period; the camera rate corresponds to approximately 32 frames per period.
Those spectra exhibit major contributions at the forcing frequency as well as significant
peaks at the double and triple frequencies; the average value is also non-zero. Higher
harmonics are negligible; no notable peaks are observed at other frequencies. Figure 13
corresponds to the strongest forcing applied in the present experiment (subcase Ic) at
the effective resonance frequency. Slow time modulation of the signal ζ∗(t) is observed
(a); the modulation manifests itself in appearance of side peaks near the principal
harmonics (b).

In figure 14, the measured amplitudes |ζ (1)∗ | and phases θ(1) of the first harmonic are
compared with the results of the weakly nonlinear theory (3.73). The theoretical model
correctly predicts the resonance frequency and the dependence of the phase on frequency.
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Figure 13. Surface elevation (a) at the antinode and its frequency spectrum (b) of the surface elevation at the
antinode for subcase Ic near the resonance (α = 0.953).
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Experiment
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(d) (e) ( f )

Figure 14. Amplitudes (a–c) and phases (d–f ) of the first harmonic of surface elevation oscillations at the
antinode. Columns correspond to cases I, II and III, see table 1; s1 is the value of s in table 1.

At the forcing frequency, the amplitudes in the experiments are consistently lower than
those predicted by the model. The variations of the amplitude of the second harmonic |ζ (2)∗ |
and of the mean value |ζ (0)∗ | with frequency plotted in figure 15 agree qualitatively with
the theoretical predictions: the nonlinear effects are much weaker below the resonance
than above it. Note that, below the resonance, the minimum instantaneous depth of the
wavemaker is reduced significantly due to the phase relations.

The discrepancies between the model and the experiment may be attributed to the
following sources. The model apparently underestimates the dissipation, since the Stokes
layers at sidewalls and the wavemaker as well as the dissipation due to the energy transfer
to capillary ripples are neglected. Besides, Kit & Shemer (1989) showed that phenomena
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Figure 15. Amplitudes of the second harmonic (a–c) and the time-averaged value (d–f ) of the surface
elevation at antinode; notation as in figure 14.

like vortex shedding at the wavemaker may become significant. The dissipation coefficient
s therefore is seen as an empirical parameter of the order of magnitude defined by
(3.36). Figures 14, 15 present the theoretical results corresponding to the value of s
derived from the experiments (table 1), as well as for dissipation enhanced by a factor
of 2. The enhancement of dissipation improves the agreement between computations and
experiments.

The parameters at the effective resonance are summarized in figure 16. For each subcase,
the effective resonance is defined as the frequency at which θ(1) = π/2. The amplitudes
in the (a) are normalized by inviscid model prediction

(|ζ (1)∗ |)i = δ

ε
|Cn eff | = κ

δ2 |Cn eff |. (4.3)

The vertical axis in the (b) for frequencies corresponds to (3.72) with parameters given
in table 2. The normalized resonance amplitude |ζ (1)∗ |/(|ζ (1)∗ |)i tends to unity as the
forcing amplitude increases. For weak forcing, the amplitude is mainly limited by viscous
dissipation; the contribution of dissipation decreases as the waves become steeper. The
complicated dependence of the normalized resonance frequency on the forcing amplitude
is reproduced in the experiments.

4.2. Spatial structure of the wave
The actual field of view in the experiment covers 76 % of the cavity width; the areas
near both sidewalls are beyond the frame (figure 2). In addition, in case I, corresponding
to the shortest principal mode (n = 3), the image of the cylinder occasionally prevents
identification of the surface above the wavemaker (see the movie in the supplementary
material). This masking does not occur for deeper located wavemaker in cases II and III
with the longer principal mode (n = 2). The image of the wavemaker holder and the joint
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Figure 16. Scaled amplitudes (a) and frequencies (b) at the effective resonance; s1 denotes the value of s in
table 1.
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Figure 17. The band-pass filtered shape of the surface elevation: at the forcing frequency shown in black and
corresponding to the left axes; second harmonic in red and time average in blue corresponding to right axes.
Panel (a) corresponds to the odd mode n = 3 (subcase Ib, α = 0.958), panel (b) to the even mode n = 2
(subcase IIIa α = 0.976).

between two LED panels also mask some parts at the free surface image. All masked
points are not taken into account in the following data processing (figure 17).

The edge detection algorithm provides the instantaneous free-surface shape ζ(t, x)
for each image. The signal is then truncated to the last 500 periods of the wavemaker
oscillations to eliminate transient effects. For each available horizontal location x, the
time-averaged surface elevation ζ (0)(x) is calculated and the signal is band-pass filtered
around the forcing frequency and its second harmonic within the limits of ±1 %. The
resulting surface elevations shapes ζ (1)(t, x) and ζ (2)(t, x) are shown in figure 17 at the
instant corresponding to maximum surface elevation at the forcing frequency; the shape
of ζ (0)(x) is shown as well.

In each frame, the data are extrapolated to cover all horizontal locations within the
cavity. Linear extrapolation is applied to fill the gaps caused by masking. At both sides
beyond the camera field of view, the constant surface elevation value corresponding
to the last available point is prescribed. The spatial Fourier analysis is then applied to
the resulting surface shapes. Figure 18 shows typical wavenumber spectra at the forcing
frequency, its second harmonic and the time-averaged shape; their structure agrees with
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Figure 18. Amplitude wavenumber spectra for forcing frequency, its second harmonic and the time-averaged
shape (from left to right). (a–c) Correspond to n = 3 (subcase Ib α = 0.958); (d–f ) to n = 2 (subcase IIIa
α = 0.976).

the theoretical predictions. For ζ (1), apart of the resonant mode, the spectra contain
contributions from the the neighbouring wavenumbers (m = 2, 4 for n = 3, and m = 4,
the closest even mode, for n = 2). For ζ (2), the spectra have two prominent peaks at
m = 2n and m = 4n. The dominant contribution to the spectra of ζ (0) comes from m = 2n.
The structure of the wavenumber spectra remains qualitatively the same for different
forcing frequencies. The dependence of amplitudes on forcing frequency is in qualitative
agreement with those shown in figure 14.

To recover the shape of the resonant eigenmode from the experiments, the relative
contributions of the non-resonant modes at the forcing frequency |b(1)m /b(1)n | are
considered. The theoretical result (3.73) implies that the surface shape is mostly defined
by the eigenmode Φn. The relative contributions of other eigenmodes are of the order of
δ2C2

1 at the resonance and κ at off-resonant conditions; both values do not exceed 10 %,
for all experimental conditions. The shape of the wavenumber spectra is nearly retained for
all forcing frequencies. Figure 19 shows the relative amplitudes of the major non-resonant
modes for different forcing amplitudes. The collapse of the curves for different forcing
amplitudes supports the assumption that the values reflect the wavenumber spectra of the
eigenfunction; the variation of the relative amplitude with the forcing frequency is in order
of magnitude agreement with the theoretical predictions.

4.3. Modulated regime
The slow modulation of the surface elevation amplitude is observed at near-resonance
frequencies for the largest amplitude at n = 3 (subcases Ib and Ic). The dependence of
the amplitude on forcing frequency exhibits a dip right above the resonance frequency
(figure 14a); the frequency spectra for the surface elevation at the antinode at these forcing
conditions have multiple peaks (figure 13b). The slow-time modulation manifests itself
in appearance of additional peaks adjacent to those present in the frequency spectra of
the steady regime. The major additional peaks correspond to αl = 0.662 and αr = 1.29,
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Figure 19. Relative amplitudes of the non-resonant spatial modes.
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Figure 20. Surface elevation band-pass filtered at side spectral peaks in the vicinity of the second (a) and
fourth (b) eigenfrequencies. The forcing frequency corresponds to α = 0.956.

which are close to non-resonant eigenvalues α (α2 = 0.649, α4 = 1.303). The dimensional
frequencies of the side peaks ω̃l and ω̃r around the forcing frequency ω̃ satisfy the resonant
four-wave interaction condition

ω̃l + ω̃r = 2ω̃, (4.4)

within 2 % accuracy. The appearance of side peaks is observed in a narrow range of forcing
frequencies. The detailed investigation of the variation of those side peaks with fine tuning
of the forcing frequency cannot be carried out due to finite frequency resolution in the
present experiments.

The band-pass filtering of the surface elevation at the side peaks ωl and ωr yields
the surface elevations ζ (l) and ζ (r) that are close to the second and fourth eigenmodes
(figure 20). They are excited in the experiments since the nonlinearity contributes to the
second temporal harmonic with the terms that contain all spatial eigenmodes. The shift of
the eigenfrequencies from the values corresponding to those in a pure rectangular cavity
allows for satisfying of the resonant four-wave interaction condition (4.4) for frequencies,
while the non-orthogonality of the nonlinear terms to all eigenmodes allows relaxation of
the resonant condition on the wavenumbers.
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5. Conclusions

It is demonstrated that the resonant standing waves excited in a narrow rectangular cavity
by an immersed wavemaker exhibit features that qualitatively distinguish them from the
classical sloshing waves generated by the cavity oscillations. In the present case, the
wavevector is effectively a scalar, thus the free-surface boundary condition cannot be
satisfied by a single spatial mode if the forcing is applied at a frequency that deviates
from the natural frequency of the cavity. The theory of a small fully immersed wavemaker
is developed. Unlike the case of the oscillating cavity, the free-surface boundary conditions
for the adopted method of excitation remain unchanged, however, the non-penetration
boundary conditions at the wavemaker modify the resonant frequencies and the spatial
eigenmodes. The resonant frequencies downshift and the resonant spatial eigenmodes
deviate from those of the cavity.

The two-dimensional potential solution is found as a superposition of the forcing
potential that describes the wavemaker motion, and the combination of eigenmodes of the
homogeneous problem. The linear inviscid theory predicts infinite wave amplitude at the
resonant frequency of the system ‘cavity+wavemaker’. The shift of the resonant frequency
from that of the pure cavity depends on the wavemaker size and its immersion depth:
it vanishes with a decrease in the size and an increase in the depth of the wavemaker.
Two factors limit the wave amplitude: the viscous dissipation and the nonlinear transfer of
the energy to higher temporal harmonics. The first mechanism dominates at small forcing
amplitudes; the dissipation mostly occurs in the Stokes layers at the front and back walls of
the cavity. For stronger forcing amplitudes, the nonlinear effects become essential and lead
to a further downshift of the effective resonance frequency as well as to the distortion of
the symmetry of the dependence of the excited standing wave amplitude on the detuning.

The theoretical model implies that the wave amplitude is governed by the Duffing
equation, predicting that multiple solutions exist below the effective resonance.
Accounting for viscous dissipation leads to the appearance of a critical forcing amplitude:
multiple solutions exist for forcing larger than the critical one. Below the effective
resonance, the surface elevation above the wavemaker is in antiphase with the wavemaker;
the phase jumps at the effective resonance, and the oscillations are nearly in phase for
higher frequencies. The amplitudes below the effective resonance are smaller than those
above it.

Frequency scans in the vicinity of the natural frequencies of the cavity with the resonant
mode numbers n = 2 and n = 3 have been performed for different wavemaker amplitudes
and immersion depths. For the variety of operational conditions, the measured temporal
variation of the surface elevation at the standing wave antinode above the wavemaker and
the corresponding frequency spectra are compared with the theoretical predictions. The
Stokes layer model somewhat underestimates the effect of dissipation. The experimental
results for the effective resonance amplitude and frequency agree well with computations
when the value of the dissipation coefficient is taken twice that corresponding to the Stokes
layer-based approach.

To identify spatio-temporal structure of the waves, at all captured in the experiment
horizontal locations, band-pass filtering around the forcing frequency and its second
harmonic was applied; the time-averaged values of the surface elevation were calculated.
The comparison between the measured and theoretically obtained wavenumber spectra of
the waves is carried out for the instants corresponding to the maximum amplitude of the
standing wave. Nonlinear effects at stronger forcing manifest themselves in the appearance
of the second frequency harmonic in surface elevation variation with time and non-trivial
spatial variation of its time-averaged value. As expected, at the forcing frequencies below
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the effective resonance, the amplitudes of those harmonics are significantly smaller than
at those above it.

At the first frequency harmonic, the resonant nth mode dominates the wavenumber
spectrum, while the closest possible modes (second and fourth for n = 3 and fourth for
n = 2) contribute significantly. At the second harmonic, there are two clusters in the
spectrum: in the vicinity of (2n)th mode and (4n)th. The (2n)th mode is also present
in the pure cavity, while the (4n)th arises from the lack of orthogonality of the nonlinear
term to all eigenmodes. The spatial distributions of the time-averaged surface elevation
for all operation conditions are similar to those for nonlinear standing waves in the pure
cavity; the wavenumber spectra exhibit a pronounced peak at (2n)th mode.

At large forcing amplitude, four-wave resonant interactions result in temporal
modulation of the surface elevation. The frequency spectra have additional peaks
at non-resonant eigenfrequencies satisfying the near resonant four-wave interaction
conditions. The appearance of those wave quartets is caused by the shift of the
eigenfrequencies from those for the pure cavity due to the finite wavemaker size.

Supplementary movies. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.509.
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Appendix A. Calculation of forcing potential

We look for the solution for the problem (3.18) in the form

Φ0(x, z) = −z + a0 +
∞∑

p=1

∞∑
q=−∞

(
apq

cos pϑq

rp
q

+ bpq
sin pϑq

rp
q

)
, (A1a)

x − xq = rq cosϑq, z + h = rq sinϑq, (A1b)

x0 = 0, (A1c)

xq = 2xL − x|q|−1 q < 0, (A1d)

xq = 2xR − x−|q|+1 q > 0. (A1e)

The coefficients apq and bpq represent the intensities of multipoles placed in the centre
of the wavemaker and the points obtained by reflections from the walls. The index
p corresponds to the type of the multipole (p = 1, 2, 3, . . . to dipoles, quadrupoles,
hectopoles, etc.), the value of q states the number of the reflections (q = 0 corresponds
to the wavemaker, negative and positive values stand for the reflections from the left and
the right walls, see figure 3).
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The values of these coefficients are found by the following iterative numerical
procedure. Consider the function

Φ0
0 = −z − R2

x2 + (z + h)2
(z + h) = h − r0 cosϑ0 − R2 cosϑ0

r0
, (A2)

where r0, ϑ0 are polar coordinates relative to the centre of the wavemaker. The function
Φ0

0 has the form (A1) with the single non-zero coefficient a10 and satisfies the boundary
conditions at infinity and at the wavemaker, but has a residual of the order of R2 for the
wall boundary conditions. The image source method corrects the potential to satisfy the
wall boundary conditions by placing those dipoles at all reflections xq: a1q = −R2, for all
q. The resulting function

Φ1
0 = h − r0 cosϑ0 +

∞∑
q=−∞

(
−R2 cosϑq

rq

)
, (A3)

violates the exact boundary conditions at the wavemaker, as the normal derivative there
is non-zero and proportional to R2. A series of multipoles at the wavemaker corrects
these boundary conditions and implies a change of the coefficients from the Φ1

0 by a
value proportional to R2. The next iteration is obtained following the same procedure; the
iterations quickly converge if R2 � 1.

The numerical algorithm deals with truncated series; it is used to calculate the
corrections for the multipoles’ intensities. Calculations show that the contribution of the
far reflections and high-order multipoles are negligible (accuracy of 0.1 % attained for
|q| ≤ 2 and p ≤ 10, R ∼ 10−1).

The solution presented can be generalized for the case of finite cavity depth by
introducing another set of multipoles located at the points (xq,−2H + h), where H is
dimensionless depth of the cavity.

Appendix B. Calculation of eigenmodes

To calculate the eigenfunctions Φm, an additional linearly independent system Ψm is
constructed applying the approach used for finding the forcing potentialΦ0. The boundary
condition at the free surface is not considered; it is required, however, that the function Ψm

tends to the pure cavity eigenmode Φ0
m far from the wavemaker. Consider the problem

∇2Ψm = 0 xL < x < xR, z < 0, (B1a)

∂Ψm

∂x
= 0 x = xL, xR, (B1b)

∇Ψm → 0 z → −∞, (B1c)

∂Ψm

∂n
= 0 at x2 + (z + h)2 = R2, (B1d)

and the solution in the form

Ψm = cos
(m

n
(x + π)

)
exp

(m
n

z
)

+ ψm, (B2a)

ψm = a(m)0 +
∞∑

p=1

∞∑
q=−∞

(
a(m)pq

cos pϑq

rp
q

+ b(m)pq
sin pϑq

rp
q

)
. (B2b)
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The first term varies at a characteristic length of the order of unity; it defines a nearly
uniform flow at the wavemaker scale R. At the lowest order in R, the sum in (B2) is a
dipole potential that corresponds to a uniform flow past a cylinder at depth z = −h. The
sum has just one non-zero term

a(m)10 = m
n

exp
(
−m

n
h
)

R2, (B3)

and ψm turns into

ψ0
m = m

n
exp

(
−m

n
h
) R2(z + h)

x2 + (z + h)2
(1 + O(R)). (B4)

More accurate values for the coefficients a(m)pq , b(m)pq are found by the iterative numerical
procedure used for the forcing potential (Appendix A). The functions Ψm form a complete
system, but they are neither orthogonal nor are they eigenfunctions of the Laplace operator.
The eigenfunctions Φm are found as a linear combination of Ψm

Φm =
∞∑

j=1

μmjΨj, (B5)

the coefficients μmj and the eigenvalues αm arise from the solution of the eigenvalue
problem

∞∑
j=1

μmj
∂Ψj

∂z
= αm

∞∑
j=1

μmjΨj. (B6)

The algebraic set of equations for μmj and αm is obtained by multiplication of both parts
of (B6) by orthogonal functions, e.g. cos(l(x + π)/n), and integration over x ∈ [xL, xR].
The problem is then solved numerically for the truncated series.

Appendix C. Calculation of eigenfrequencies for R � 1

The problem (B6) for the eigenvalues αm admits an approximate analytical solution under
the assumption of small wavemaker size that allows for the use of expression (B4) for ψm
in (B2).

The eigenvalue problem (B6) is equivalent to
∞∑

j=1

μmj

[
∂Ψj

∂z
− αmΨj

]
= 0. (C1)

Considering the truncated series and transforming the problem into the algebraic
eigenvalue problem, one gets the equation for a determinant of the following matrix:

|Am
jl | = 0, (C2a)

Am
jl =

∫ (n−1)π

−π

[
∂Ψj

∂z
− αmΨj

]
cos

(
l
n
(x + π)

)
dx. (C2b)

The diagonal elements of the matrix are

Am
jj = πn

2

(
j
n

− αm

)
+

∫ (n−1)π

−π

[
∂ψj

∂z
− αmψj

]
cos

(
j
n
(x + π)

)
dx, (C3)
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while non-diagonal elements are small and have the order of κ . The determinant of the
matrix is

|Am
jl | = Am

mmD + O(κ2), D =
M∏

j=1,j /= m

[
πn
2

(
j
n

− αm

)]
+ O(κ) = O(1), (C4)

and the principal term vanishes when Am
mm = 0.

The value of αn is obtained by considering m = n. One gets an approximate analytical
solution by accounting only for the contribution from the area between the neighbouring
nodes Ψn, assuming ψn and ∂ψn/∂z are negligible otherwise. The integrals are calculated
by taking cos(x + π) = −[1 − x2/2] and the coordinates of the nodes as ±√

2, yielding
the expression (3.72).
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