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Abstract

Organismal morphology was at the core of study of biodiversity for millennia before the
formalization of the concept of evolution. In the early to mid-twentieth century, a strong
theoretical framework was developed for understanding both pattern and process of morpho-
logical evolution, and the 50 years since the founding of this journal capture a transformational
period in the quantification of morphology and in analytical tools for estimating how morpho-
logical diversity changes through time. We are now at another inflection point in the study of
morphological evolution, with the availability of vast amounts of high-resolution data sampling
extant and extinct diversity allowing “omics”-scale analysis. Artificial intelligence is accelerating
the pace of phenomic data acquisition even further. This new reality, in which the ability to
obtain data is quickly outpacing the ability to analyze it with robust, realistic evolutionary
models, brings a new set of challenges. Phylogenetic comparative methods have provided new
insights into the processes generating morphological diversity, but the reliance on molecular
data and resultant exclusion of fossil data frommost large phylogenetic trees has well-established
negative impacts on evolutionary analyses, as we demonstrate with examples of standard single-
rate evolutionary models, mode- and rate-shift models, and a recently described Ornstein-
Uhlenbeck climate model. Further development of methods for phylogenetic comparative
analysis of high-dimensional data is needed, but existing tools can refine our understanding
and expectations of morphological evolution and the generation of morphological diversity
under different scenarios, as we demonstrate with analyses of placental skull evolution through
the Cenozoic. Fully transitioning the study of morphological evolution into the omics era will
involve the development of tools to automate the extraction of meaningful, comparable
morphometric data from images, integrate fossil data into large phylogenetic trees and down-
stream evolutionary analyses, and generate robust models that accurately reflect the complexity
of evolutionary processes and are well-suited for high-dimensional data. Combined, these
advancements will solidify the emerging field of evolutionary phenomics and appropriately
center it around the analysis of deep-time data.

Non-technical Summary

Organismal morphology was at the core of study of biodiversity for millennia before the
formalization of the concept of evolution. In the early to mid-twentieth century, a strong
theoretical framework was developed for understanding both pattern and process of morpho-
logical evolution. The 50 years since the founding of this journal capture a transformational
period for the study of evolutionary morphology, in both how it is measured and how changes
through time are reconstructed. We are now at another key transition point in the study of
morphological evolution, with the availability of vast amounts of high-resolution data sampling
living and extinct species allowing “omics”-scale analysis. Artificial intelligence is accelerating
the pace of phenomic (high-dimensional, organism-wide) data collection. This new reality, in
which the ability to obtain data is quickly outpacing the ability to analyze it with robust, realistic
evolutionary models, brings a new set of challenges. Fully transitioning the study of morpho-
logical evolution into the omics era will involve the development of tools to automate the
extraction of meaningful, comparable morphometric data from images, integrate fossil data into
large phylogenetic trees and downstream evolutionary analyses, and generate models that
accurately reflect the complexity of evolutionary processes and are well-suited for high-
dimensional data. Combined, these advancements will solidify the emerging field of evolution-
ary phenomics and appropriately center it around the analysis of deep-time data.

Introduction

The study of morphological evolution is, in a sense, as old as biology, with pre-Darwinian
attempts to classify the world—from the scala naturae, or Great Chain of Being, to early
representations of the tree of life—being based on an intuitive sense of the hierarchy of
anatomical complexity (Gontier 2011). For millennia, the study of morphology was relatively
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qualitative and descriptive, although often insightful, but more
quantitative approaches began appearing in the nineteenth century,
with the first descriptions of phenomena such as Cope’s rule (Cope
1885a,b,c), which proposed an evolutionary trend toward increased
body size in lineages. Many of the key foundational concepts for the
quantitative study of morphological evolution appeared during the
modern synthesis of the mid-twentieth century, from adaptive
landscapes to radiations (Wright 1932; Dobzhansky 1937; Simpson
1944). Since then, quantification of morphology has benefited from
many transformational shifts. Computational power is one, and
phylogenetics is another, allowing for explicit analysis of change
along lineages. Coupled with access to seemingly limitless amounts
of data, advancements in paleobiology, as well as in molecular and
developmental biology, have spurred new understanding of how,
when, and why morphologies evolve.

As a result of these advancements, there has been a huge increase
in interest andwork in the field ofmorphological evolution over the
last few decades, with increasing numbers of publications using the
term “morphological evolution” or “evolutionary morphology”
year after year (Fig. 1). Many of the foundational concepts in the
study of morphological evolution were laid down in a period
coincident with the founding of this journal (Gould 1966, 1970,
1971, 1980; Lewontin 1966; Raup 1966; Eldredge and Gould 1972;
Van Valen 1973; Pilbeam and Gould 1974; Lande 1976; Gould and
Eldredge 1977; Gould and Lewontin 1979). A transition point in the
study of morphological evolution can be identified around 1990,
closely following the paleobiological revolution (Sepkoski and Ruse
2015) and the establishment of analytical paleobiology. Fittingly,
the 1990s saw the publication of some of themost influential papers
in the areas of macroevolution, disparity, and morphological evo-
lution published (Gould 1988, 1991; Arnold 1992; Foote et al. 1992;
Foote 1993a,b, 1994, 1997a,b; Wills et al. 1994; Fortey et al. 1996;
Jablonski et al. 1997).

Recent years have heralded in many ways another transition
point in the study of morphological evolution. The explosion of
imaging tools and online databases for capturing organismal form
in unprecedented detail (Houle et al. 2010; Goswami 2014; Boyer
et al. 2016; Davies et al. 2017) represents a new leap forward in the
study of morphology, bringing the study of phenotype firmly into
the “omics” age. The integration of morphometrics and evolution-
ary modeling over the past few decades is now reaching a new stage
of innovation, as large-scale multivariate analyses are increasingly
achievable (e.g., Clavel et al. 2015; Cooney et al. 2017; Arbour et al.
2019; Price et al. 2019; Booher et al. 2021; Coombs et al. 2022;
Goswami et al. 2022; Navalón et al. 2022). These innovations bring

new possibilities for improving our understanding of the evolution
of organismal form and diversity, as well as broadening the avail-
ability of free tools and open data to a wider pool of global scientists
(Revell 2012; Goswami 2014; Boyer et al. 2016; Rolfe et al. 2021).
Here, we review major areas of interest in the study of morpholog-
ical evolution, focusing on new methods and their impact on the
field. We demonstrate with a worked example how better data and
methods can improve our understanding of the tempo andmode of
morphological evolution, both through refined modeling of com-
plex scenarios and greater resolution in empirical analyses. In total,
we present a view of a field in its prime, with evolutionary phe-
nomics presenting huge potential for transforming our understand-
ing of life on Earth in the past, present, and future.

Quantifying Morphology

Morphology can and has been measured in numerous ways. For
centuries, discrete (usually binary), meristic, and univariate traits
have dominated, and in many ways still do. Discrete traits continue
to be the primary morphological data for phylogenetic analysis,
particularly those incorporating taxa without molecular data avail-
able, which includes nearly all extinct species (Lee and Palci 2015).
Discrete and meristic data also form the primary data for much of
the foundational and continuing work on morphological disparity
and evolutionary tempo (Briggs et al. 1992; Foote 1992a, 1994,
1995, 1999; Wills et al. 1994; Brusatte et al. 2008; Halliday and
Goswami 2016; Halliday et al. 2016; Deline and Ausich 2017; Clark
et al. 2023), as they offer the benefit of being readily applicable to
incomplete taxa or thosewith preservational deformation, as well as
being better suited to taxa with variable numbers of elements or
those without clear homology across structures (Briggs et al. 1992).
Univariate data similarly offer numerous benefits, including being
more directly comparable across disparate taxa; faster to capture,
which often translates into larger sample sizes; and easier to mea-
sure, even with preservational differences, particularly for soft-
bodied taxa or spirit-preserved specimens. As a result, traits like
body size continue to dwarf other measures of morphological
evolution (Gould 1966; Jablonski 1996; Butler and Goswami
2008; Venditti et al. 2011; Evans et al. 2012; Clavel and Morlon
2017; Benson et al. 2018; Cooney and Thomas 2021; Burin et al.
2023). Linear measurements of specific structures also offer the
benefit of being more readily translatable to developmental, func-
tional, and biomechanical properties, such as lever arms or hydro-
dynamics (Wainwright 2007; Cardini and Polly 2013; Price et al.
2019, 2022). Even with the explosion of omics in molecular ana-
lyses, studies linking morphological and molecular evolution on a
macroevolutionary scale frequently use full genomes but only one
or a handful of univariate or discrete phenotypic traits (Fondon and
Garner 2004; Lartillot and Poujol 2011; Zhang et al. 2014; Levy
Karin et al. 2017; Partha et al. 2017, 2019;Wu et al. 2017; Yuan et al.
2021; Christmas et al. 2023), despite the capacity to capture dense
shape data with geometric approaches and its frequent usage in
microevolutionary analyses, such as quantitative trait locus studies
(e.g., Alexandre et al. 2015; Maga et al. 2015; Fruciano et al. 2016).

Comparison of forms via geometric differences also has a long
history (Thompson 1917), but this has proliferated in recent
decades with the development of geometric morphometrics
(i.e., landmark- and semilandmark-based morphometrics; Gower
1975; Mardia et al. 1979; Bookstein 1986, 1991;Mardia and Dryden
1989; Rohlf and Bookstein 1990; Dryden and Mardia 1992;
Adams et al. 2013; Gunz and Mitteroecker 2013; Mitteroecker

Figure 1. Increasing number of publications using the term “morphological evolution”
or “evolutionary morphology” according to Web of Science (data downloaded on
October 30, 2023). A transition point is visible around 1990, with a marked increase in
use of these terms in publications after that time.
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and Schaefer 2022), as well as other multivariate quantifications of
shape, from outlines (Rohlf 1986; Foote 1993a; Crampton 1995;
Bookstein 1997; Haines and Crampton 2000; Hopkins 2014) to
surfaces (Wang et al. 2019; Kirveslahti and Mukherjee 2021).
Geometric approaches offer several benefits over linear morpho-
metrics, including explicitly capturing shape and allowing more
precise identification of points of difference between specimens.
However, there are also drawbacks to geometric approaches,
including limitations in identifying homologous points in disparate
organisms and sensitivity to registration approach (e.g., covariation
induced by Procrustes superimposition; Zelditch and Swiderski
2023) and deformation (Angielczyk and Sheets 2007). There are
several recent overviews of geometric morphometric approaches
(Adams et al. 2013; Mitteroecker and Schaefer 2022), and so a full
review is not provided here, but despite the shortcomings (and
indeed, all methods have shortcomings), it is uncontroversial that
the capacity to capture and compare complex shapes, particularly in
three dimensions, has revolutionized the study of morphological
evolution and produced novel understanding of the primary axes of
variation across diverse organisms.

It is in this realm of 3D morphometrics that we have seen the
most gains in recent years. At present, the most common
approaches to studying morphology remain length measurements
or small numbers of landmarks, which utilize only an infinitesimal
amount of the possible data available in these images. This con-
straint is due largely to the time requirements and accessibility of
tools for imaging, segmentation, andmorphometric data collection.
However, high-resolution imaging has become increasingly acces-
sible, with photogrammetry (e.g., Falkingham 2011; Mallison and
Wings 2014) and surface scanners proving low-cost options, and
micro-computed tomography and even synchrotron scanning
becoming more widely available. Possibly even more influential is
the rapid growth of online databases for 3D images (Goswami 2014;
Boyer et al. 2016; Cross 2017; Davies et al. 2017), which provides
access to scans across the globe without the need to travel for
primary data collection. The scale of generation of new scans has
also increased with the introduction of robotic arm systems to
autoload specimens and allow for mass scanning of specimens
(Rau et al. 2021). Computational power to process large numbers
of images has similarly increased, with computer vision and deep
learning approaches to segmentation making rapid image analysis
of massive tomographic datasets entirely feasible (Lösel et al. 2020;
Shu et al. 2022; Toulkeridou et al. 2023; He et al. 2024a; He et al.
2024b; Mulqueeney et al. 2024b). These advancements mean that
the time constraint in quantitative analysis of evolutionary mor-
phology will imminently shift from obtaining and processing
images to collecting morphometric data from those images.

There have also been some promising forays using computer
vision and deep learning analysis of images to capture established
types ofmorphometric data, including 2D outlines and 3D volumes
and surface areas (Hsiang et al. 2018) and placement of landmarks
in 2D (Porto and Voje 2020) and 3D (Percival et al. 2019; Devine
et al. 2020; Porto et al. 2021). The geometric morphometric appli-
cations, while promising, have been applied primarily within indi-
vidual species, and it remains to be seen whether automated
landmark placement can be successfully scaled up to datasets with
higher levels of variation (He et al. 2024a). Moreover, the desire to
fully leverage the data in high-resolution 3D images is reflected in
the outpouring of new methods that sample shape more densely
than the more established approaches noted earlier, for example,
through surface sliding semilandmarks (Gunz and Mitteroecker
2013; Bardua et al. 2019), pseudolandmarks (Boyer et al. 2015), or

entirely landmark-free approaches. Some of the landmark-free
approaches available for comparative biological analysis include
generalized Procrustes surface analysis (Pomidor et al. 2016),
deterministic atlas analysis in Deformetrica (Durrleman et al.
2014; Bône et al. 2018; Toussaint et al. 2021), spherical harmonics
(McPeek et al. 2008; Shen et al. 2009), eigenshapes (MacLeod 1999),
and topological transforms (Wang et al. 2019; Kirveslahti and
Mukherjee 2021), as well as alphashapes for shape complexity
(Gardiner et al. 2018). These approaches have various strengths
and weaknesses, as expected (Bardua et al. 2019; Goswami et al.
2019; Marshall et al. 2019; Mulqueeney et al. 2024a), and the choice
of what kind of morphometric data to use is invariably dependent
on the goal of a given study and the challenges and limitations of the
study system. While semilandmark approaches provide high-
resolution descriptors of morphology, they can be time-consuming
to implement (Bardua et al. 2019). Although there are some auto-
mated options for intraspecific analyses (Porto et al. 2021; Devine
et al. 2022), as noted earlier, most implementations for analyses
spanning species will require at least some manual placement of
landmarks and curves, with an automated procedure to place
surface semilandmarks based on the positions of the former (e.g.,
as in the R package Morpho; Schlager 2017). One the other hand,
the ability to isolate shape changes in specific regions or to look at
integration across different regions is one key factor that may argue
against using methods that are not pinned to homologous points,
such as pseudolandmark and other landmark-free approaches. Of
course, to be biologicallymeaningful, all of these approaches should
be applied to structures that are homologous, even if individual
pseudolandmarks or control points are not, and there are undeni-
able benefits to the speed and detail provided by methods that do
not require manual collection of morphometric data. These
approaches may also benefit studies of ontogenetic and soft-tissue
datasets, in which homologous points are difficult to trace even in
unambiguously homologous structures (Toussaint et al. 2021; Lan-
zetti et al. 2022). Figure 2 demonstrates a sample of the range of
morphometric approaches available, from linear morphometrics,
through geometric morphometrics with landmarks and curve and
surface sliding semilandmarks, and finally to two landmark-free
approaches—deterministic atlas analysis and alphashapes—show-
ing the difference in resolution of data but also the relationship to
homology in each approach.

These innovations are pushing the study of phenotype fully into
the omics age, in which the quality and density of morphological
data are approaching that of molecular data, with resultant
improvements in our ability to understand the evolution of mor-
phology. What remains unclear is how comparable these different
approaches and the results from their analyses are. A number of
studies have demonstrated that analyses using, for example, rela-
tively few landmarks versus dense landmarks differ in the phylo-
genetic, ecological, and allometric signals captured (Marshall et al.
2019; Wimberly et al. 2022). Others demonstrate that landmark-
free approaches may capture overall shape to a similar level as
geometric morphometric approaches when the elements of a struc-
ture do not substantially shift in their relationships, but can diverge
markedly when there are large changes in the contributions of
individual elements to the overall shape of a structure. For example,
deterministic atlas analysis of mammal skulls (Fig. 2E; Mulqueeney
et al. 2024a) captured the classic brachycephalic to dolichocephalic
axis of mammal skull variation that linear morphometric analysis
supports (Cardini and Polly 2013), but failed to capture the axes of
shape variation returned with sliding semilandmarks that discrim-
inate individual cranial elements, which have markedly different
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contributions to overall skull shape in different clades (Goswami
et al. 2022, 2023). We fully expect that these approaches will
continue to develop and proliferate with the expansion of interest,
data, and automated tools, allowing for unprecedented detail in the
analysis of evolutionary morphology and the formalization of the
field of evolutionary phenomics.

Morphospaces and Morphological Diversity

Macroscale study of diversity has long been the domain of species
numbers, for many reasons. Uncertainty about what qualifies as a
species notwithstanding (Zachos 2016), taxonomic diversity is
easier to measure, particularly across different organisms
(Sepkoski et al. 1981; Benton 1995; Benson et al. 2021). Yet, there
is an inherent appreciation that evolution is not just a matter of
numbers but also of kinds or varieties (Thomas and Reif 1993). A
clade with a large number of fairly similar species has likely expe-
rienced a very different evolutionary history than a clade with a
small number of highly dissimilar species. Moreover, morphology
reflects numerous aspects of an organism’s biology, and thus mor-
phological diversity provides novel understanding of ecological,
physiological, and developmental diversity and of organism–envi-
ronment interactions, among many other important topics. As
such, the study of morphological diversity, or disparity, is one that
has reshaped the study of morphological evolution, particularly
during the pivotal period of the 1990s that saw an explosion of
macroevolutionary studies of morphology. The continuing interest
in disparity stems from its broad relevance; quantifying the distri-
bution of morphological variation in the past and present informs
numerous topics, from key innovations to developmental and
functional constraints to extinction selectivity and response

(Briggs et al. 1992; Wills et al. 1994; Jernvall et al. 1996; Foote
1997a; Eble 2000; Hopkins 2014; Hughes et al. 2015; Goswami et al.
2016; Halliday and Goswami 2016; Benson et al. 2018; Puttick et al.
2020;Dickson et al. 2021; Burin et al. 2023;Clark et al. 2023;Wang and
Zhou 2023). Analysis of disparity, particularly using variance-based
metrics (Foote 1997a), may also be less susceptible to sampling
bias than is taxonomic diversity, and thus may be better suited for
accurate representation of patterns in deep time, which inevitably
sample only a fraction of past life (Foote 1993a,b, 1996, 1997a,b).
As with quantification of morphology, there are many approaches
to quantification of disparity, all of which have pros and cons that
have been recently reviewed (Guillerme et al. 2020a,b).

Most studies of morphological disparity begin with a morpho-
space. Morphospaces have long been used to represent variation in
biological form, both realized and theoretical. As such, they are useful
for many topics of interest, from identifying physical mechanisms of
(and constraints on) shape formation (Raup 1966; Chirat et al. 2013;
McGhee 2015; Gerber 2017) to identifying gaps in observed mor-
phologies to quantifying shifts in organismal variation through time
(Foote 1994, 1995; Holliday and Steppan 2004; Wesley-Hunt 2005;
Halliday and Goswami 2016) to estimating adaptive landscapes
(McGhee 2006; Chartier et al. 2014; Dickson et al. 2021; Jones et al.
2021). Morphospaces can be constructed from just a few traits or can
use dimensionality reduction approaches such as principal compo-
nents analysis (PCA) to synthesize vast numbers of traits into a much
smaller number of primary axes of variation, which can then be
meaningfully interrogated and understood. Morphospaces are now
common in quantitative studies ofmorphology, but they have impor-
tant limitations that depend both on the type of data being input
and the use of the morphospace for further analysis (Mitteroecker
and Huttegger 2009; Polly and Motz 2016; Gerber 2017; Polly 2023).

Figure 2. Linear, geometric, and landmark-freemorphometric approaches, demonstrated on a 3Dmesh of amammal skull, Arctictis bintuong (MNHN 1936-1529). A, Common linear
measurements, which often span elements and cannot be further localized, but are faster to obtain, more easily comparable across disparate taxa, and potentially more
translatable to some aspects of function. B, Type 1 and type 2 3D landmarks, manually placed on points of unambiguous biological homology (Rohlf and Bookstein 1990; Bookstein
1991). C, Sliding semilandmark curves (gold) manually placed to link landmarks (red) and defining element boundaries, which can add substantial shape information over
landmarks alone (Gunz and Mitteroecker 2013; Bardua et al. 2019; Goswami et al. 2019). D, Surface sliding semilandmarks, here defining individual cranial elements, automatically
placed using a template and based on position relative to manually placed landmarks and curves (Gunz and Mitteroecker 2013; Bardua et al. 2019). E, Deterministic atlas
analysis, which uses control points (red) to represent points of high variation across a sample and quantifies deformations from the mean shape as momenta from a flow field
(Durrleman et al. 2014; Bône et al. 2018; Toussaint et al. 2021). F, Alphashapes, which measure a shape’s complexity as the level of refinement needed to match an original shape
(Gardiner et al. 2018).
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Thus, it is critical to carefully consider whether input data are appro-
priate for visualization or further analysis using a morphospace
approach. For example, traits that are not independent or that lack
a common scale or scale relationship can create patterns that are not
biologically meaningful (Mitteroecker and Huttegger 2009). How-
ever, for most studies of evolutionary morphology, a morphospace
will be the first port of call and often provides unexpected insights into
macroevolutionary patterns, particularly for understudied clades.

While examples ofmorphospaces in evolutionary studies abound,
the most famous is undeniably Raup’s (1966) shell coiling morpho-
space, which used four parameters to define a theoretical morpho-
space for all shelled invertebrates and plotted their empirical (largely
estimated) distributions within it. Its influence endures because it is
generally recognized to be both the first explicit use of this approach
to understand the distribution of organismal form and the first
interrogation of the factors underlying that distribution. As such,
its impact stretches fromevo-devo to paleobiology (Mitteroecker and
Huttegger 2009; Gerber 2017; Polly 2023). Equally influential, how-
ever, are the iconic stacked morphospaces from Foote’s series of
studies in the 1990s, which used discrete trait data to quantify and
track changes in morphological variation through time in various
clades ofmarine invertebrates (Foote 1993b, 1994, 1995, 1999). These
morphospaces, and the associated disparity metrics, provided new
perspective on the evolution of morphological diversity and for
understanding how its relationship with taxonomic diversity pro-
vides novel insights into evolutionary processes (Foote 1992b, 1993a,
b, 1997b). High taxonomic diversity but lowmorphological diversity
is suggestive of a constraint or radiation driven by isolation or habitat
contraction (Fig. 3A, top left), whereas high morphological diversity
with low taxonomic diversity suggests an early burst of morpholog-
ical evolution (Fig. 3A, top center), compared with unhindered,
trend-free morphological diversification in line with taxonomic
diversification (Fig. 3A, top right). Shifts in disparity and morpho-
space occupation that result in decreases in morphological diversity
later in clade evolution (as indicated in the bottom two rows of
Fig. 3A and in 3B,C) also provide insight into whether and how

evolutionary processes are selective or not selective. For example,
Foote’s analysis of blastoids (Foote 1993b) demonstrates diffusion
throughmorphospace (Fig. 3B) andmatched increases in taxonomic
and morphological diversity early in clade evolution (Fig. 3C). Later
declines in taxonomic diversity are not accompanied by reductions in
disparity, suggesting that taxonomic extinctions were nonselective
for morphology (Foote 1993b).

The expected amount of disparity in a clade is intimately linked to
the evolutionary process, which involves both the diversification
dynamic, such as the rate of turnover in lineages, and how traits
have evolved in lineages. This interplay can complicate interpretation
of patterns of disparity, as a homogeneous process of trait evolution
can shows changes in disparity through time that reflect solely the
effects of speciation and extinction events (i.e., the branching pattern
in a tree; see, for instance, O’Meara et al. 2006: fig. 2). One way to
capture this aspect is to focus on the contributions of subclades to
overall disparity (Foote 1993a, 1997b). While it is possible to assess
this aspect without a resolved phylogenetic tree (Foote 1993a), this is
more robustly accomplished with methods quantifying disparity
through time using an explicitly phylogenetic framework. The most
commonly applied approach at present is subclade disparity (Harmon
et al. 2003) as implemented in the R package geiger (Harmon et al.
2008; Slater andHarmon 2013), whichmeasures how the partitioning
of morphological variation has changed through a clade’s evolution.
Phylogeny-based approaches also allow the benefit of point estimates
of disparity, rather than binning taxa into coarse time intervals, which
may introduce additional biases into analyses (Guillerme and Cooper
2018). Another benefit of a phylogenetic framework is that also allows
for ancestral-state estimation at internal nodes (Halliday and Gos-
wami 2016) and comparisons with expectations under different
evolutionary models (Harmon et al. 2003; Slater et al. 2010; Slater
and Harmon 2013). For example, using a recently published mor-
phometric dataset of placental mammal skulls (Goswami et al. 2022),
we plotted first the empirical data (322 species spanning the Eocene to
Recent; black dots in Fig. 4) using a stacked PCA binned by Cenozoic
epochs. We then ran 100 simulations estimating disparity using a

Figure 3. The relationship between morphological and taxonomic diversity provides insight into evolutionary processes, as described in Foote (1993b). A, Foote 1993b: fig. 1:
Idealized diversity histories of a clade under different scenarios of diversification (top row) and decline (middle and bottom row). B, Foote 1993b: fig. 2: Stacked morphospaces
showing shifts in blastoid morphology through the Paleozoic. C, Foote 1993b: fig. 3: showing concordant early increases and discordant later declines in disparity (top) and
taxonomic diversity (bottom). Figure reproduced from Foote (1993b).
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Brownian motion (BM) model and a dated phylogeny for the sample
and binned these into the same time bins (red dots in Fig. 4, left).
While the empirical and simulated data are largely similar, it is
apparent that the empirical data have not diffused throughmorpho-
space as a strict BM model would estimate. Rather, placental mam-
mals have stayed largely constrained into a single region of
morphospace, with the exception of a distinct “whale” space, suggest-
ing that convergence (or constraint) has dominated placental mam-
mal evolution (Goswami et al. 2022). As discussed and demonstrated
further later in this paper, although most simulations of disparity
expectations rely on a simple BM model (Harmon et al. 2003; Slater
et al. 2010), more complex models can also be applied, as in Figure 4
(right, green dots), in which disparity was instead simulated using a
variable-rate BM model with a lambda tree transformation, esti-
mated from analysis in BayesTraits v. 3 (Venditti et al. 2011;
Goswami et al. 2022). From these brief introductory examples, it
is clear that analysis of disparity is one of many areas that has been
transformed by the development of phylogenetic comparative
methods (PCMs).

Enter Phylogeny and the Rise of PCMs

Ever since Darwin sketched the first explicitly evolutionary tree
(Darwin 1859), reconstructing the relationships among organisms
has been a primary concern for biologists. While morphological
data had been the cornerstone of phylogenetic analysis for decades
(Hennig 1965), the advent of molecular phylogenetics saw a rapid
increase in the number and stability of evolutionary trees for extant
taxa, while overturning some long-held hypotheses of relationships
among even well-studied clades. As evolutionary trees became
more available, it became increasingly possible to incorporate
understanding of relationships into estimation of evolutionary
patterns and processes. Incorporating phylogeny into comparative
analyses is particularly critical for the study ofmorphology, because
it is well understood that organisms share evolutionary history and
thus cannot be treated as wholly independent data points in a
statistical analysis (Felsenstein 1985).

The past two decades have seen a surge in the development of
PCMs dedicated to the study of morphological evolution. These
methods are increasingly applied to reconstructing trait evolution,
including that of complex shapes, and identifying the factors
underlying their evolution across short to large timescales. There
are several recent reviews of this topic (Hernández et al. 2013;
Pennell and Harmon 2013; Garamszegi 2014; Goolsby 2015; Coo-
per et al. 2016; Cornwell and Nakagawa 2017; Adams and Collyer
2018, 2019; Uyeda et al. 2018; Clavel and Morlon 2020; Harmon
et al. 2021; Soul andWright 2021), and thus we focus here on a key

aspects: incorporation of fossil data and extension to multivariate
data and to more complex evolutionary models.

Fossils Are Critical for Accurate Estimation of Evolution

The molecular revolution, the increasing availability of robust,
dated phylogenies for many clades, and the development of phy-
logenetic comparative approaches have fostered the studies of
morphological evolution and macroevolution in general over the
past few decades. However, one negative side effect of the explosion
ofmolecular phylogenetics is the reduced use ofmorphological data
in large-scale phylogenetic analyses. This in turn has hindered
incorporation of fossils into large evolutionary trees and prevented
the widespread integration of fossil data in phylogenetic compar-
ative studies, despite recognized benefits (Slater andHarmon 2013).
There has been substantial progress in dating fossil and mixed
extant and fossil cladograms (Stadler 2010; Bapst 2013; Luo et al.
2020) and incorporating fossil taxa using morphological informa-
tion along with molecular data using “total evidence” approaches
(Pyron 2011, 2017; Ronquist et al. 2012; Álvarez-Carretero et al.
2019), as well as the recently developed “metatree” approach (Lloyd
and Slater 2021). Morphometric data may also assist with resolving
these issues, with development of new approaches to estimating
divergences using both molecular and morphometric data, while
accounting for population-level variance and trait covariances
(Álvarez-Carretero et al. 2019). There are also established approaches
for incorporating partial information from fossils into phyloge-
netic comparative studies (Slater et al. 2012a,b). Nonetheless,
there are still significant barriers to generating phylogenetic trees
that include fossils at the same scale as those for extant taxa,
including continuing conflict between molecular and morpholog-
ical (extant and fossil) trees in both topology and divergence
estimation (Foley et al. 2016; Sauquet and Magallón 2018; Lyson
and Bever 2020), and much work needs to be done to integrate
fossils into large phylogenetic trees and downstream analyses.
Fortunately, most PCMs are known to be relatively robust to
unresolved trees (Martins 1996; Martins and Housworth 2002;
Stone 2011), and extensions to a general time-variable model
allow for analysis of trends in continuous character evolution
without a fully resolved phylogeny (Hunt 2006, 2007b; Finarelli
and Goswami 2013; Raj Pant et al. 2014).

It is crucial that these barriers to the inclusion of fossils are
overcome, because there is extensive evidence that fossil data are
critical for accurate analysis of macroevolutionary patterns (Slater
et al. 2012a; Finarelli and Goswami 2013; Slater and Harmon 2013;
Raj Pant et al. 2014), for many reasons. Fossils provide unique
factual observations in analyses, in contrast to reconstructed states,
which typically cannot, for example, estimate states outside the
sampled (i.e., extant) range, although we know that trait distribu-
tions change markedly through a clade’s history (Finarelli and
Goswami 2013; Raj Pant et al. 2014). The impact of these effects
is seen in analysis of evolutionary trends, such as Cope-Depéret’s
rule of body-size increases over time (Finarelli and Goswami 2013;
Bokma et al. 2016; Benson et al. 2018). In fact, identifying a trended
BM model requires fossil data. Not only does the incorporation of
fossils help in assessing evolutionary processes, but it also allows
improved estimation of parameters (Ané 2008; Slater et al. 2012a;
Ho and Ané 2014a), specifically by constraining their estimation
(reduced variation around parameters) compared with studies on
extant-only datasets (Finarelli and Goswami 2013). For instance,
the ancestral-state estimate in a BM process (although it is

Figure 4. Stacked principal component analyses (PCAs) showing empirical (black dots)
and simulated disparity through Cenozoic epochs for a sample of placental mammal
skulls (Goswami et al. 2022). Left: simulations (n = 100) of a single-rate Brownianmotion
(BM) model (red dots). Right: simulations (n = 100) with a variable-rate BM model with
lambda tree transformation (green dots).
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unbiased) is said to not be consistent because it is not improved by
increasing the sample size (i.e., the variance around the parameter
estimate is not reduced with infinitely large phylogenies of extant
taxa). Instead, only the incorporation of fossil data improves
ancestral-state estimates and detection of shifts in traits (Ané
2008). Similarly, in an Ornstein-Uhlenbeck (OU) process, a mod-
ified random walk in which a trait evolves toward an optimum
value, estimating the primary optimumvalue and the ancestral state
is possible only with fossils (Ho and Ané 2013, 2014a; Fig. 5). The
ability to detect time-dependent models, in which the rate changes
as a function of time—such as in an early burst model, in which rate
decreases through time, as is hypothesized for adaptive radiations,
or an accelerated change (AC) model, in which rates increase
exponentially through time (Blomberg et al. 2003)—may also be
severely affected by exclusion of fossils (Slater et al. 2012a).

Fossil data not only assist in estimating and constraining the
parameters of evolutionary models, but they are also critical for
distinguishing different processes. For example, consider the OU
process and the AC models mentioned earlier. The expected covari-
ance matrices for both of these models are proportional on ultra-
metric trees (trees inwhich all tips are equidistant from the root, as in
extant-only trees; Uyeda et al. 2015). Because of that, they have
identical likelihoods and thus cannot be distinguished. However,
they can be distinguished on non-ultrametric trees (i.e., trees that
include fossils; Slater et al. 2012a). Similarly, changes in evolutionary
dynamics (e.g., shifts fromconstrained evolution to radiation, such as
after an extinction event), are also largely identifiable only with trees
incorporating fossils (Slater and Harmon 2013; Clavel et al. 2015).
For example, we can simulate an ecological release model (or the
related, but slightly more complex release-and-radiate model), in
which a clade is governed by an OU process due to some extrinsic
constraint such as competition until a shift point, after which a BM
model dominates (Fig. 6). Thismodel was applied by Slater (2013) to
mammalian body-size evolution before and after the end-Cretaceous
mass extinction, to test the hypothesis that non-avian dinosaurs
constrained body-size evolution in mammals before the dinosaur
extinction. In our simulations (Fig. 6), we observe that the log-

likelihood profile is almost flat around the simulated value (alpha
= 2, dashed line in Fig. 6B) of the OU process for all simulated
datasets when an ultrametric tree (extant only) is used. This indicates
that with comparative datasets made only of extant species, such a
scenario cannot be retrieved. In contrast, with non-ultrametric (fossil
+ extant) trees, the (negative) log-likelihood profile shows an opti-
mum around the simulated value, allowing recovery of the shift in
processes through the evolutionary history of the clade.

As shifts in evolutionary dynamics are often driven by extrinsic
events, such as mass extinctions or global warming/cooling, these
examples and simulations demonstrate that fossil data will be
critical for understanding how species respond to changes in their
environments. Nonetheless, while the importance of including
fossils into macroevolutionary analyses is clear, the challenge of
doing so may appear daunting given the issues noted earlier with
producing comprehensive phylogenetic trees, as well as well-known
issues with sampling and preservation of fossil material, especially
for 3Dmorphometric studies. There is hope here as well, though, as
previous studies have shown that the incorporation of even a small
proportion of fossil data into comparative studies is sufficient to
differentiate competing evolutionary scenarios (Slater et al. 2012a;
Clavel et al. 2015; Uyeda et al. 2015). We demonstrate this effect
here with simulations of a modified OU process that introduces a
powerful new approach to modeling factors that may influence
morphological evolution through deep time.

Some of our recent work has focused on explicitly considering
variation in extrinsic factors, such as temperature or precipitation,
into models of morphological evolution by allowing parameters to
track the extrinsic factor as it changes through time (Clavel and
Morlon 2017; Brinkworth 2019). This approach has previously
been described for a BM model in which the evolutionary rate is
not constant and instead is dependent upon a continuous climatic
variable (Clavel and Morlon 2017). The relationship between evo-
lutionary rate and the climatic variable (which can be any variety of
extrinsic factors) could be linear or exponential, or indeed could
better relate to a derivative of the factor (i.e., tracking change or rate
of change, rather than a raw value). Here, we describe an extension
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of this climatic model wherein the model of trait evolution corre-
sponds instead to a generalized OU process (also called Hull-
Whitemodel) of the formdX tð Þ= α θ tð Þ�X tð Þ½ �dt + σdB tð Þ, where
αcontrols the strength of selection toward a moving optimum θ tð Þ,
and σcontrols the generation of random fluctuations (as applied in
Troyer et al. 2022). The optimum in this climatic-OU simulation
changes through time according to the following linear equation:
θ tð Þ= θ0 + β×T tð Þ, where θ0 is the optimum at the root of tree,
T tð Þ is a climatic function, for instance, the temperature curve
estimated from benthic foraminifera oxygen isotopes (e.g., Cramer
et al. 2011; Westerhold et al. 2020; as applied in Troyer et al. 2022);
and β is the parameter controlling the relationship and the effect of
the climate/environment on the optimum trajectory (Brinkworth
2019). Note that when β= 0, this model reduces to a classical OU
process with a fixed optimum.

In the simulations displayed in Figure 7, the climatic OUprocess
was simulated on birth–death trees subsampled to 164 species with
various proportions of fossils (from 0%, i.e., only extant species, to
50% fossils). The tree height was scaled to 60 Ma before simulating
the trait process to represent an optimum chasing climate change
over a major part of the Cenozoic period. On each tree, the traits
were simulated with combinations of increased strength of selec-
tion ( α= 0:006,0:012,0:035,0:056,0:116½ �corresponding to various
phylogenetic half-lives (from 0.5 to 10, represented by line opacity
in the plot) and varying strengths of association with the temper-
ature curve, from negative to positive (β= �5,�1,0,1,5½ �). Our
results show the proportion of time the climatic-OU process was
favored over alternative processes (BM, OU, early burst (EB),
trended BM, and climatic-BM) according to the corrected Akaike
information criterion (AICc). As expected, with β= 0, we see that

the OU and climatic-OU share the model support (~50%). In the
other simulations, we observe increased support for the climatic-
OUmodel with both increased effects (β= �5or β= 5) and strength
of the α parameter. Importantly, for the largest effects, only 5% of
fossils in the tree were sufficient for detecting the climatic-OU
process. In stark contrast, when the analyses are conducted on
extant species only, the climatic-OU is never recovered as the
best-fitting model. This is evident in the solution (the expected
value, or optimum, for each lineage in the tree) to this generalized
OU given by the following equation:

E X tð Þ½ �= θ0e�αt +
Z t

0
αeα s�tð Þ θ0 + βT sð Þ½ �ds (1)

The integral on the right part of this equation is going from 0 (the
root) to t (the tip value) and shows that when species are all
contemporary, the changes in the optimum (expected value)
through time will not be identifiable. This example thus definitively
illustrates the need to incorporate even a small number of fossils in
comparative studies to identify complex evolutionary scenarios,
including those of particular relevance to the current environmen-
tal crisis.

Big Phenomes, Big Analytical Headaches

As detailed earlier, there have been numerous advances in the
collection of 3D images and in collecting dense morphometric data
from specimens, catapulting the study of morphological evolution
fully into the omics arena. However, as evidenced by many recent
studies of body-size evolution, and all of the examples presented
earlier, the vast majority of work modeling morphological
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evolution has focused on univariate data. Some approaches to
rectify the methodological discordance between multivariate data
and univariate methods include reducing multivariate data to
individual principal components (PCs), but this is problematic if
only one or a few principal components are analysed (Uyeda et al.
2015; Clavel and Morlon 2020). Methods are increasingly being
developed that are suited to multivariate data (Revell and Collar
2009; Bartoszek et al. 2012; Clavel et al. 2015; Caetano and Harmon
2017; Goolsby et al. 2017; Bastide et al. 2018), as well as extensions
of conventional multivariate statistical approaches to account for
phylogenetic relatedness (Revell and Harrison 2008; Revell 2009;
Clavel and Morlon 2020). Applying these methods to multivariate
data, however, does bring challenges. Morphometric datasets using
2D and 3D landmarks are often described as high-dimensional,
because the number of descriptors (coordinates) p is often greater
than the number of individual observations n. Most conventional
multivariate statistical approaches, such as multivariate regressions
and multivariate analyses of variance (MANOVAs), suffer from
low statistical performances when p approaches n, or cannot be
used at all when p > n. Geometric morphometric datasets bring
additional challenges, because the steps of the Procrustes superim-
position (rotation, translations, and scaling) used to align speci-
mens to a common conformation lead to the loss of several
dimensions (four for 2D and seven for 3D data; Rohlf 1999)
irrespective of the number of variables. For these reasons, dimen-
sionality of the shape space (or tangent space) is often either
reduced to a handful of PCs that are used in downstream analyses,
or the complete set of coordinates is analyzed using simpler

statistics (e.g., the Procrustes analysis of variance [ANOVA] of
Goodall [1991], which assumes that the variance is isotropic and
identical at each landmark).

Multivariate PCMs, including evolutionary model-fitting pro-
cedures, also suffer from high dimensionality, because the tradi-
tionally used likelihood techniques are not applicable (Clavel et al.
2015). Moreover, the use of data-reduction techniques, such as
PCA, may lead to biased estimates and affect model comparison
or statistical tests in PCMs (Uyeda et al. 2015; Clavel and Morlon
2020), as well as biasing analyses of datasets containing autocorre-
lations (Bookstein 2012). Phylogenetic PCA (Revell 2009; Polly
et al. 2013) can rescue these issues but is essentially limited to the
Brownian motion process at present. In recent years, there have
been several attempts at developing model-fitting approaches and
statistics that are directly applicable to these high-dimensional
comparative datasets using different strategies (Adams 2014a,b;
Goolsby 2016; Adams and Collyer 2018; Tolkoff et al. 2018; Clavel
et al. 2019; Clavel and Morlon 2020; Hassler et al. 2022). For
instance, “distance”-based techniques were proposed to circumvent
the constraints of the huge covariance matrices used in likelihood-
based approaches (Adams 2014a,b; Adams and Collyer 2018).
However, as in related techniques such as the permutational mul-
tivariate analysis of variance (PERMANOVA) used in ecology or
the Procrustes ANOVA discussed earlier (Goodall 1991; Anderson
2001), distance-based PCMs ignore the covariances in multivariate
datasets when computing their statistics and are limited to Brow-
nian motion. In consequence, these approaches are highly sensitive
to departure from these assumptions (Warton et al. 2012; Clavel
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The climatic-OU process was simulated on birth–death trees subsampled to 164 species with various proportions of fossils (from 0%, i.e., only extant species, to 50% of fossils). On
each tree, the traits were simulatedwith combinations of increased strength of selection (α = [0.006, 0.012, 0.035, 0.056, 0.116] corresponding to various phylogenetic half-lives from
0.5 to 10) represented by lines’ opacity in the plot, and varying strengths of association with the temperature curve, from negative to positive (β = [�5,�1, 0, 1, 5]), represented in the
separate insets. The plot shows the proportion of time the climatic-OUprocess was favored over alternative processes according to the corrected Akaike information criterion (AICc)
across 100 simulated datasets for each parameter combinations.

Morphological evolution in a time of phenomics 203

https://doi.org/10.1017/pab.2024.35 Published online by Cambridge University Press

https://doi.org/10.1017/pab.2024.35


and Morlon 2020). The pseudo-likelihood technique proposed by
Goolsby (2016), or more precisely the pairwise composite likeli-
hood (PCL), allows for extension beyond classical Brownian
motion process by offering a likelihood-based technique to infer
parameters and compare alternative evolutionary models. PCL is
efficient and fast (Goolsby 2016; Clavel et al. 2019), but it is not
invariant to rotation and is thus not applicable to geometric mor-
phometric datasets because of the arbitrary orientation of the
baseline shape (Rohlf 1999; Adams and Collyer 2018). Penalized-
likelihood (PL) techniques also allow estimating and fitting alter-
native models and can alleviate issues related to rotation invariance
(Clavel et al. 2019; Clavel and Morlon 2020). These approaches
show performances comparable to the PCL for estimating parame-
ters and outperform conventionally used data-reduction techniques
or distance-based approaches, but they are computationally costly
and may not scale easily to datasets composed of more than 2000–
4000 dimensions (a common situation with the use of sliding semi-
landmarks or pseudolandmarks in 3Dgeometricmorphometrics). In
asymptotic conditions (when n >> p), the PL approach reduces to the
classical likelihood techniques. Recently, Bartoszek et al. (2023)
showed that better-defined algorithms and use of appropriate cor-
rections after data transformations (e.g., rotation of the data) can be
used to circumvent some issues linked with working with large
multivariate datasets. However, these recommendations do not nec-
essarily apply to the specific case of geometric morphometric data,
because there is no reference orientation one can use to devise a
correction term.

Phylogenetic factor analysis was also recently proposed as an
efficient way to model complex high-dimensional datasets using a
handful of latent factors (Tolkoff et al. 2018; Hassler et al. 2022).
This technique uses a promising probabilistic framework for data
reduction; however, it is also currently limited to Brownian motion
and might suffer from rotation-invariance issues such as those
faced by classical factor analysis. These methods are in ongoing
development to address these issues. For instance, several algo-
rithms have been proposed to improve and speed up the compu-
tation ofmultivariate likelihood in PCMs (Pybus et al. 2012; Ho and
Ané 2014b; Clavel et al. 2015; Goolsby et al. 2017; Bastide et al. 2018;
Caetano and Harmon 2019; Mitov et al. 2020), and further tech-
niques (e.g., machine learning approaches) might be envisioned to
study high-dimensional datasets, such as geometric morphometric
datasets, with the various constraints, such as rotation invariance,
accompanying these datasets.

Another key aspect to consider is the trade-off between the
morphological complexity captured by modern morphometrics
and the number of parameters thatmust be estimated by themodels
to improve biological realism and interpretability. To avoid over-
fitting and difficulties in optimizing parameter-rich models, most
developments for high-dimensional comparative datasets men-
tioned earlier are based on simpler assumptions—for instance, that
multivariate OUhas a simple structure with same parameter shared
across traits, sometimes called the “scalar OUmodel” (Bastide et al.
2018; Clavel et al. 2019)—than state of the art multivariate models.
While some maximum-likelihood implementations allow the esti-
mation of rates or adaptive optimum in different lineages or clades
across traits in multivariate datasets (Revell and Collar 2009; Bar-
toszek et al. 2012; Clavel et al. 2015; Caetano and Harmon 2017),
these approaches usually require that the parts of the tree where the
shift occurred be known a priori (mapped) or for those areas of the
tree to be reconstructed independently. More recently, maximum-
likelihood and PL implementations have been proposed that can
detect the position of these shifts automatically in multivariate

datasets (Khabbazian et al. 2016; Bastide et al. 2018). Similarly,
some Bayesian implementations using reversible jumps with Mar-
kov chain Monte Carlo algorithms (RJMCMC; e.g., in RevBayes
[Höhna et al. 2016] and BayesTraits [Venditti et al. 2011]) relax
these assumptions by allowing the estimation of rates changes in
different parts of the tree without any prior knowledge on the
position of the shifts. As a prior on the number of shifts is, however,
usually needed, these methods are based on the Occam’s razor
principle that a limited number of changes are needed to model
the data. A model with branch-specific trait changes has previously
been developed (Lemey et al. 2010), but has not—to the best of our
knowledge—been applied to morphometric datasets. Although
these RJMCMC approaches are more flexible, it should be noted
that to cope with the rapid increase in number of parameters, all of
these approaches alsomake some simplifying assumptions—just as
with the methods for high-dimensional datasets described previ-
ously—compared with the full models employed in “mapped trees”
methods. For instance, none of these approaches can be employed
on high-dimensional datasets without relying on some sort of data-
reduction techniques; they either assume that traits evolved inde-
pendently of each other (Khabbazian et al. 2016) or that the
evolutionary correlations between traits are homogeneous across
the tree (Lemey et al. 2010; Venditti et al. 2011; Höhna et al. 2016;
Bastide et al. 2018) and that rate changes are shared across traits.

Future developments will have to overcome these various chal-
lenges imposed by parameter-rich models and high dimensionality
of modern datasets, because at present, our ability to generate high-
quality, phenomic-scale data, as discussed earlier, is outpacing the
capacity of evolutionary analyses, most of which rely on relatively
simple models of evolution or are only suited to univariate or low-
dimensional data. Nonetheless, even with existing methods, we
already have the means to assess the processes underlying observed
patterns withmore complexity and accuracy than is usually applied,
as we demonstrate by returning to the topic of disparity.

Expectations of Disparity under Alternative Evolutionary
Models

It is intuitive that there is a close relationship between morpholog-
ical disparity and the evolutionary processes unfolding along a tree
or a time series. Hunt (2012) showed that the rate of phenotypic
evolution in time-series data necessarily depends on the generating
process. Relatedly, O’Meara et al. (2006) showed that the expected
disparity under a homogeneous Brownian motion can depend on
the dynamics of speciation and extinction, that is, the branching
pattern or shape of the tree, as the accumulated variance depends
on species’ coalescence times. And yet, although they are ultimately
inseparable, we often find discrepancies between rate and disparity
in empirical datasets (Goswami et al. 2014; Felice et al. 2018). Part
of understanding this inconsistency requires us to confront our
expectations—specifically, our Brownian expectations. As dis-
cussed earlier, disparity through time (DTT) plots have become
ubiquitous in studies of morphological evolution, and for good
reason: they provide a clear picture of how the distribution of
morphological variation changes through time. As noted earlier,
when paired with an understanding of evolutionary relationships,
DTT plots provide insight into the evolutionary dynamics of a clade,
by measuring whether disparity is concentrated between clades
(subclade disparity approaches 0) or within clades (subclade dispar-
ity approaches 1). In most implementations, the empirical DTT plot
is compared with a Brownian expectation (e.g., Slater et al. 2010;
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Navalón et al. 2022). While modeled disparity cannot take into
account factors such as selective extinction, there are many reasons
why disparity may depart from a Brownian expectation, the simplest
being that the Brownianmodel is a poormodel for the data. Thus, it is
sensible to model disparity using a model that better fits the data.
We have mentioned a variety of models, from a single-rate BM
model to various implementations of OU processes to time-
dependent models, including both AC and EB models. In the
following section, we consider some of these models as we dem-
onstrate the impact of evolutionary model on expectations of
disparity with a worked example from our recent study of mammal
skulls (Goswami et al. 2022).

Estimating Disparity under Different Evolutionary Models:
A Worked Example of Mammal Evolution

DTT plots (Harmon et al. 2003) were computed on 67 PCs that
captured 95% of the total variance for a dataset of 322 placental
mammals, with skull shape quantified with 66 landmarks and
688 sliding semilandmarks (black curve on Fig. 8). The DTT curves
were estimated on 1 Myr time bins (mean binned subclade dispar-
ity) using modified codes from Navalón et al. (2022). We estimated
through simulations the 95% confidence envelope for the DTT
under four alternative models (BM, OU, EB, and a variable-rate
BMmodel with a lambda tree transformation) to compare it to that
of the empirical DTT. For each process, 100 datasets were generated
with the simulate function with parameters from model fit by PL
using the mvgls function in mvMORPH R package v. 1.1.8 (Clavel
et al. 2015). The variable-rate lambda model was estimated in a
previous study (Goswami et al. 2022) using the RJMCMC algo-
rithm implemented in BayesTraits v. 3 (Venditti et al. 2011). To
simulate the data under that process, we first used the average
branch-specific rates from the BayesTrait MCMC output to scale
the branch lengths of the placental phylogenetic tree. This branch
length–transformed tree was then used inmvgls to fit a multivariate
“lambda” model and to simulate new datasets using the simulate
function. Because the parameter that describes the decay in rate in
the EB model was estimated close to zero on the empirical data—
that is, the process behaves like BM—we further simulated DTT
with various strengths of early burst to illustrate more standard
expectations (Fig. 8A). To do so, we simulated decays representing
2, 5, and 10 half-lives elapsing over the 80 Myr of the placental tree
used in the analysis. That is, a mild early burst with a rate that
decays by half after 40 Myr (2 half-lives) or a strong EB with a rate
that decays by half after only ~8Myr (10 half-lives). Overall, we can
see that the EB (Fig. 8A) and OU processes (Fig. 8B) show a low fit
to the empirical DTT and that their trajectories tend toward the
opposite corners of the DTT plot. Specifically, the EB model pre-
dicts greater disparity between clades than is observed for most of
the Cenozoic, while the OU model tends to homogenize variation
across clades. The BM process is reasonable in capturing the main
disparity pattern, but it misses some bursts in disparity and does not
appropriately accommodate the disparity near the present (Fig. 8C),
in contrast to the BM variable-rate model (Fig. 8D). This example
demonstrates how we can already accommodate complex models
into well-established analyses, such as morphological disparity, and
how doing so may relieve some of the perceived incongruence of
evolutionary rate and disparity and more accurately identify where
disparity diverges frommore accurate expectations. This is, of course,
important, because not all differences observed in rates and disparity
are due to methodological oversimplification; some of the incongru-
ence is an accurate reflection of underlying biological factors, as
discussed later.

From Pattern to Process

Quantifying morphology and changes in it across clades, space, or
time is inherently interesting, but is rarely the goal of a study.
Rather, we generally seek to understand why certain morphologies
exist, why they vary, and how they change.We can discriminate this
into two key areas, determining which factors are associated with
morphological variation and which processes underlie morpholog-
ical variation. Factors associated with morphological variation can
be both intrinsic to the organism, such as ecology, life history,
function, or physiology, or extrinsic, such as environment and
competition (Baab et al. 2014; Goswami et al. 2016; Arbour et al.
2019; Felice et al. 2019a; Fabre et al. 2020; Bardua et al. 2021). The
associations of these various factors and morphology can be
assessed statistically using regressions, including the phylogenetic
regressions discussed earlier, in which specimens are phylogenet-
ically structured and a phylogeny is available (Goswami et al. 2022).
Biotic interactions are another key factor driving trait evolution, but
although there are many methods for integrating species interac-
tions into models of trait evolution for univariate traits (Drury et al.
2016; Bartoszek et al. 2017; Clarke et al. 2017; Manceau et al. 2017;
Quintero and Landis 2020), there are none at present for high-
dimensional data.

These associations can provide deep insight into the drivers of
morphological variation, disparity, and change, but they often
provide little information on the specific pathways of that change.
For that, we need to access information on how morphology is
generated, which requires understanding of genetic and develop-
mental patterning of morphology. While much early work on
comparative development laid the foundations for this topic
(Thompson 1917), the rise of comparative genomics and evolu-
tionary developmental biology has provided novel insights into
how morphologies form and change (Noden 1983; Sears 2004;
Sears et al. 2007; Brugmann et al. 2010; Young et al. 2010, 2014;
Zhang et al. 2014; Green et al. 2017; Bouwman et al. 2018; Claes
et al. 2018; Salzburger 2018; Jebb et al. 2020; Yuan et al. 2021; Zhou
et al. 2021; Brandon et al. 2022; Carbeck et al. 2023). Now, it is
plausible to quantify shape changes through time and tie them to
specific changes in genetic architecture or developmental pathways.
The opposite is equally possible—starting from a quantification of
development and estimating what morphologies could and could
not evolve, similar to Raup’s (1966) coiling morphospace but with
far greater resolution (Young et al. 2014). Linking phylogeny and
developmental data in comparative analysis also allows estimation
of ancestral developmental pathways, essentially creating hypoth-
eses of developmental patterning for taxa that will likely never be
sampled directly (White et al. 2023).

Of course, the vast majority of biological diversity is extinct.
While extracting genomes for species that went extinct in the last
fewmillion years is increasingly possible, the fact remains that there
is almost no record of genetic or developmental data for the
millions of fossil species that have inhabited this planet before
modern times, or even for most species alive today. How then
can we access this information to link pattern to process across
the diversity of living and extinct species? Morphological integra-
tion and phenotypic modularity are concepts that are inherently
about the relationships among traits but are of widespread interest
because those relationships reflect the underlying developmental
and genetic architecture of those traits (Wagner 1996; Wagner and
Altenberg 1996; Klingenberg 2013; Zelditch and Goswami 2021).
Integration refers to the relationships among components within a
structure, andmodularity refers to the decomposition of a structure
into quasi-autonomous, highly integrated modules. Thus,
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quantitative analysis of the covariances among phenotypic traits
allows one to access the intrinsic processes generating those traits,
even when direct genetic or developmental data are not available, as
is the case for the vast majority of extinct and rare species. Linking
trait integration andmodularity to specific processes is complicated
by overlapping effects (Hallgrímsson et al. 2009), but even where
the precise cause of a pattern of integration and modularity is not
identifiable, phenotype alone, even from fossil species, is suffi-
cient to estimate those relationships and then identify where in
evolutionary history those relationships and their underlying
architecture have changed (e.g., Goswami 2006; Webster and
Zelditch 2011a, b; Goswami et al. 2015; Felice et al. 2019b; Love
et al. 2022).

These relationships among traits also have important conse-
quences for the evolution of species, and, by extension, the evolu-
tion of biodiversity, as trait covariances are a primary influence on
the variation of individual traits. Strong integration among traits
can limit the ability of individual traits to vary and evolve in some
directions, while facilitating their evolution in other directions
(Schluter 1996; Steppan 1997; Steppan et al. 2002; Marroig and
Cheverud 2005; Renaud et al. 2006, Hunt 2007a; Rhoda et al. 2023).
This tendency will leave some areas of morphospace unexplored,
while likely promoting homoplasy and convergence in other areas
(Goswami et al. 2014; Felice et al. 2018). Importantly, this con-
straint on direction of evolution does not necessarily similarly limit
pace of evolution and thus trait integration is one biological cause
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Figure 8. Empirical (black line) vs. expected disparity (relative subclade disparity) for placental mammal skull evolution simulated under four evolutionary models: A, Early burst
with three alternative parameterizations; B, Ornstein-Uhlenbeck (OU); C, single-rate Brownian motion (BM); D, variable-rate BM with a lambda tree transformation, estimated in
Goswami et al. (2022). Dashed lines are 95% confidence intervals, and dotted lines are the mean expectation.
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for discordance between evolutionary rate and disparity, as
described by the fly-in-the-tube model of evolution for integrated
phenotypes (Felice et al. 2018).

This effect of trait integration has led to the hypothesis that
modularity has increased over evolutionary time to circumvent
these potentially constraining effects. There is, however, no con-
clusive analysis on trends inmodularity at present, although there is
certainly variation in modularity across major clades (e.g., Gos-
wami 2006; Felice et al. 2019b). It is likely that modularity, like
complexity (Marcot and McShea 2007), fails to show biased evo-
lution when rigorously assessed, despite reasonable hypotheses for
a trend toward increasedmodularity (Wagner andAltenberg 1996),
but this remains to be tested with sufficient comparative data. One
of the major hindrances in assessing trends in modularity and
integration is that many of the major shifts in patterns of modu-
larity are observed between large clades, with a high degree of
conservation in pattern (if not in magnitude) within major ver-
tebrate clades (Goswami 2006; Porto et al. 2009; Felice et al. 2019b;
Watanabe et al. 2019; Bardua et al. 2020; Fabre et al. 2020; Navalón
et al. 2020). Assessing trends in modularity thus requires robust
comparisons across long-diverged clades, which is difficult with
standard geometric morphometric approaches because of the
paucity of homologous landmarks in disparate taxa. Moreover,
as the key shifts occurred in stem taxa or early representatives of
major extant clades, testing this hypothesis requires assessing
phenotypic modularity and integration with sufficiently large
sample sizes of individual fossil species. This is because it is at
the species level where those trait relationships shape variation
and, ultimately, evolutionary trajectories (rather than at the level
of evolutionary modularity and integration, where the effect, but
not the cause, may be discerned). This is but one of many funda-
mental questions on the drivers and constraints onmorphological
evolution that will hopefully be addressed by better approaches to
quantifying and comparing morphology on macroevolutionary
scales and with direct data from extinct species.

Shifting Bottlenecks, Beyond Data Limitations to Methods
Limitations

Centuries of study have provided a rich theoretical framework for
the study of evolutionary morphology, but just in the past decade, a
monumental shift has occurred in its analysis.Whereas the limiting
factor has been data collection and quality, access to online data-
bases and imaging tools is making it increasingly possible to gather
multivariate data from thousands of specimens within a few years.
Ready access to high-performance computing clusters and stable
freeware is an equally important factor for the explosion in scale of
evolutionary morphology studies. The rise of artificial intelligence
and the application of deep learning and computer vision to image
data are already pushing the timescales for data collection from
several years to a few hours, although there are still significant issues
to resolve for ensuring biologically meaningful comparisons of
shape. We can now foresee a day in just a few years when it will
be possible to obtain dense morphometric data for hundreds of
thousands of species and marry these data with phylogenetic,
ecological, life-history, biotic, and geographic information. Where
then are the new bottlenecks and next frontiers for the study of
morphological evolution? It is undeniable that the size and com-
plexity of phenomic-scale datasets are presently outpacing the
ability of analytical tools to robustly reconstruct morphological
evolution with high-dimensional data, particularly those that sam-
ple a large number of species in a phylogenetic framework. In this

regard, the scale and quality of morphological data are rapidly
catching up with their molecular counterparts and presenting
new opportunities for robust analysis of the genome–phenome
relationship. Going forward, the key areas for improving the study
of morphological evolution will be automating the extraction of
meaningful, comparablemorphometric data from images, integrat-
ing fossil data into large phylogenetic trees and downstream evo-
lutionary analyses, generating robust models that accurately reflect
the complexity of evolutionary processes, and developing methods
that are well suited for high-dimensional data. Combined, these
advancements will solidify the emerging field of evolutionary
phenomics and appropriately center it around the analysis of
unambiguously critical deep-time data.
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