H-EXTENSION OF RING
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A ring R is called an H-ring if for every x € R there exists an integer
n = n(z) > 1such that z"—x e C, where C is the center of R. I. N. Herstein
proved that H-rings must be commutative [See 3 pp. 220—221]. We now
introduce the following definition.

DeFINITION. R and R’ are two rings, we say R is an H-extension of R’
if R’ is a subring of R and for any z € R, there exists an integer n > 1
(depending on z) such that 2" —=z e R'.

In this paper we shall show how the Jacobson radical of R is related to
that of R’ (Theorem 1) and then we shall give some information about
H-extension of a commutative one-sided ideal {(Theorem 2). An example
is also given at the end of section 2 to show in general we can not arrive
at the sharper conclusion that an H-extension of commutative ideal is
commutative.

1

In this section, we denote R as an H-extension of a subring R’ and
J(R), the Jacobson radical of the ring R. It is well known J(R) can be
characterized as the intersection of all primitive ideals of R or it is the set
{x € R|zR is a right quasi-regular right ideal of R}. We shall prove the
theorem 1 as follows, the proof was patterned after the argument of the
paper of Armendariz [1].

LemMA 1.1. (1). For any x € R, there exists an arbitrarily high n such
that x"—zx € R'.
(2). Al nilpotent elements of R belong to R’.

Proor. (1) If this is false we have an integer m which is the largest
m such that zm—x e R'. Let us choose another # >>1 which satisfies
(x™)*—2z™ e R', then ™ —z = (™ —a™)+ (z™—=z) € R’. This is contra-
dictory to the maximality of m. (2) Let 2™ = 0. Choose N > m so that
¥ —z e R, since ¥ = 0, and we have z € R'.

We now consider the n-square matrix ring I', (» > 1) over a ring I’
with unit element. If I, is an H-extension of a subring B, then by

n
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Lemma 1.1 B contains all nilpotent elements, in particular, the matrices
E,;d(i #j,d e I') and therefore the matrices E;;d = E;;dE,,. So we have:

Lemma 1.2, If the n-square matriz ring I, (n > 1) is an H-extension
of a subring B. Then I', = B.

LeEmMA 1.3. If R is a division ring, then R’ is also a division ring.

ProOOF. Let 0 5= z € R’, then there exists an integer # > 1 such that
b = (x')"—=z! € R'. Multiplying & by 2" and ™! respectively, we see that
1 and z~! belong to R’. So R'is a division ring.

Now let R be a primitive ring and R’ 5% 0. By the theorems appearing
in [3] chapter II, R can be considered as a dense subring of the ring of all
linear transformations of a vector space V. If the dimension of V is one,
R is a division ring. Then by Lemma 1.3 R’ is also a division ring. This
proves R’ is a primitive ring. If the dimension of V is larger than one, then
considering V as a right faithful module over R’ we shall prove it is an
irreducible module as follows: Let v; be a non-zero fixed element of ¥ and
v, any element of V. There exists a 2-dimensional vector subspace V, which
contains v, and v,. Let U ={xeR|V,2CV,}, K= {xeR|V,x = (0)},
U, =U n R'. Because R is dense, U/K is isomorphic to the full ring of
linear transformations of V,. Moreover, it is clear that U/K is still an
H-extension of its subring (U;+K)/K. So by Lemma 1.2 we have
U|K = (U,+K)/K. This assures there exists a linear transformation € R’
that sends v, to v,. From this we see any element of V is the form v, for
some z € R’, in other words V is a cyclic R’-module with every non-zero
element as a generator. This proves V is irreducible. So we have the
following:

LEmMMA 1.4. If R is a primitive ring and R’ £ 0, then R’ is a primitive
ring.

REMARK. Some one may wonder in Lemma 1.4 R’ is always equal to
R. Here we give a primitive ring which is an H-extension of some proper
subring. Let Z, be the prime field of characteristic p and R be a ring of
linear transformations of an infinite dimensional vector space M over Z,,.
Here R is so chosen that the matrices of its elements have the form
-4 -
d

d 0
a
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and R’ is the ring of the form
- 4 -
0
0 0

where A is an arbitrary finite square matrix and d is any element of Z,.
Then for any a4 € R, we have a?—a € R’. Moreover R is a primitive 1ing
[See 3 p. 36 example 3].

THEOREM 1. If R is an H-extension of a subring R’, then

J(R) AR = J(R).

ProoF. Let z € J(R) n R’. We want to prove that any y e zR" has a
right quasi inverse in R’. Since y € zR’ C xR, there is z € R such that

() y+z—yz = 0.

Now for some # = n(z) > 1, 2*—z € R’. Then y(z"—z2) = yz"—z2—y e R'.
This implies yz"—z e R’. Multiply (#) from right by 2"! and we get
yzhl = Yyt —2z" = yz"—2z— (2" —z) € R’. Again multiply ¥ on the left and
2"2 on the right of y = yz—2 and we get y22"—2 € R'. Repeating the process
n—1 times, we get

yzeR, z=ypi—y=yyz—y)—y= - =y lz—y"'—---yeR.

Consequently xR’ is a right quasi-regular right ideal of R’, so z € J(R').
The opposite inclusion can be proved as follows: If P is a primitive
ideal of R, R/P is a primitive ring and an H-extension of (R'4-P)/P. By
Lemma 1.4 (R'4+P)/P ~ R'/(P n R’) is a primitive ring, so Pn R’ is a
primitive ideal of R’. We have:
J(R)n R = ( N P)nR =n (PnR)2J(R).

P: primitive ideal of R

COROLLARY. R s semi-simple if and only if R’ is semi-simple.

2

W. S. Martindale III defined an y-ring as a ring R in which »"®*—w
belongs to the center C of R for every commutator w of R and proved in
his paper [4] that every commutator of an y-ring is contained in the center.
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In this section we can obtain a parallel result about an H-extension of an
one-sided ideal.

We first cite a theorem which is proved in Carl Faith’s [2 p. 47] as
follows. Let ¢[X] be the polynomial ring over the field ¢ and [«,, - - -, «,, X]
denote the subring of $[X] generated by X and r fixed non-zero elements
&, * *°, o, in the field ¢, and set:

() N(ag, &) = {Xn_Xn+1p(X)|p(X) € fay, o, X, m=1,2,--}

THEOREM (Faith). Let D be a division algebra over the field ¢, and let A be
a subalgebra such that to each d e D there corresponds mnon-zero elements
oy, ", a, €@ (depending on d) such that for each ae $(d) there exists
f(X) €N, satisfying f,(a) €A, where Ny = N(oy, -, a,) s a set of the
type (). Then D is a field.

If R is a division ring and an H-extension of a commutative subring
R’, by Lemma 1.2 R’ is a division subring. So R’ contains the prime field ¢
of R. We can consider R as a division algebra over ¢ and R’ its subalgebra.
Furthermore it is clear that every = € R satisfies the condition of the above
theorem if we take all «; are 1. So R is commutative.

LemMmA 2.1. If R is a semi-simple H-extension of a commutative subring
R’, then R is commutative.

Proor. It is sufficient to prove this for a primitive ring, because R
is a subdirect sum of primitive rings and the H-extension property is
inherited by homomorphic images. In this case R ought to be a division ring,
otherwise, by [3 p. 33 proposition 3] it contains a subring U which has a
homomorphic image isomorphic to the complete matrix ring I', (n > 1)
over a division ring I'. As I, is an H-extension of the homomorphic image
U of U ~n R, by Lemma 1.2, we have I, = U’. But U’ is still commutative
since it is the homomorphic image of the commutative ring U n R’. This
is contradictory. So R is a division ring. Now by Faith’s theorem we see R
is commutative.

LeEmMa 2.2. If R is an H-extension of a commutative subring R’, then
every commutator w = xy—yx of R belongs to J(R).

Proor. R/J(R) is an H-extension of its commutative subring
(R'+J(R))/J(R), where (R'+J(R))/](R) is isomorphic to R'/(J(R) n R’).
By Theorem 1 R’/(J(R) n R’) = R'[J(R’) which is semi-simple. So R[] (R)
is commutative by Lemma 2.1. The residue class of a commutator @ modulo
J(R) is zero. This implies w = ay—yz € J(R).

LemmaA 2.3. If R is an H-extension of a commutative vight ideal I, then
every commutator w = xy—yx 1s nilpotent.
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Proor. By Zorn’s Lemma we can find a maximal commutative subring
R’ of R, which contains I. Let w = xzy—yz, y € R’, there exists an integer
n = n(w) > 2 such that w"—w eI, hence
(0" —w) (xy—yx) = (w"—w)ry—y(w"—w)r = (w"—w)ry— (W"—w)ry = 0.
The quasi-regularity of »"! (by Lemma 2.2) forces: w(zy—yx) = 0,
in other words w? = 0. These kinds of w belong to I by Lemma 1.1.

Now J(R) shall be proved commutative as follows: If a € J(R), there
exists an integer m > 2 such that a™—a e I. Then for any y € R’

(a7 —a) (xy—yz) = (ry—yx)(@"—a) = 0.

The quasi-regularity of a™! will yield a(xy—yx) = 0, (xy—yx)a = 0. Let
x = a, then a?y = aya = ya® for all y e R’. Considering the subring R"”
of R generated by R’ and a? we get R" is commutative containing R’. The
maximal property of R’ forces R” = R’. So we have a% e R'. If m is even,
then a™—a e R’ implies a € R'. If m is odd, a™! € R’. The quasi-regularity
of a1 and a™—a € R’ yield 2 € R’. As a consequence we can see that J(R)
is contained in the commutative subring R’. So J(R) is a commutative
ideal.

Finally, by Lemma 2.2 w is contained in J(R), we can conclude that:

w8 = w(ay—ya) = wiey—w(wy)s — wiay— (wy) (@e)
= wizy— (wx) (wy) = wizy—((wz)w)y = wiaoy—wizy = 0.
THEOREM 2. If R is an H-extension of a commutative one sided ideal I,
then every commutator w belongs to I.

Proor. By Lemma 2.3 and Lemma 1.1 we can see that w belongs to I.

REMARK. An example is given here to show that in general an H-
extension of a commutative ideal is not necessarily commutative:

Let Z, be the prime field of characteristic 2 and R be the algebra over
Z, generated by a, b satisfying

a®=a,ab = b% =0, ba = b.

Then R is a non-commutative H-extension of its commutative ideal (o, b).
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