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A ring R is called an //-ring if for every x e R there exists an integer
n = n{x) > 1 such that xn—x e C, where C is the center of R. I. N. Herstein
proved that //-rings must be commutative [See 3 pp. 220—221]. We now
introduce the following definition.

DEFINITION. R and R' are two rings, we say R is an H-extension of R'
if R' is a subring of R and for any x e R, there exists an integer n > 1
(depending on x) such that xn—x e R'.

In this paper we shall show how the Jacobson radical of R is related to
that of R' (Theorem 1) and then we shall give some information about
.//-extension of a commutative one-sided ideal (Theorem 2). An example
is also given at the end of section 2 to show in general we can not arrive
at the sharper conclusion that an //'-extension of commutative ideal is
commutative.

1

In this section, we denote R as an //-extension of a subring R' and
J(R), the Jacobson radical of the ring R. It is well known J(R) can be
characterized as the intersection of all primitive ideals of R or it is the set
{x e R\xR is a right quasi-regular right ideal of R}. We shall prove the
theorem 1 as follows, the proof was patterned after the argument of the
paper of Armendariz [1].

LEMMA 1.1. (1). For any x e R, there exists an arbitrarily high n such
that xn—x e R'.

(2). All nilpotent elements of R belong to R'.

PROOF. (1) If this is false we have an integer m which is the largest
m such that xm—x e R'. Let us choose another n > 1 which satisfies
(xm)n—xmeR't then xmn—x = {xmn—xm) + (xm—x)eR'. This is contra-
dictory to the maximality of m. (2) Let xm = 0. Choose N > m so that
Xs—x e R', since Xs = 0, and we have x e R'.

We now consider the w-square matrix ring Fn (n > 1) over a ring F
with unit element. If Fn is an //-extension of a subring B, then by
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Lemma 1.1 B contains all nilpotent elements, in particular, the matrices
E{jd(i j£j,de F) and therefore the matrices Eud = EiidEH. So we have:

LEMMA 1.2. / / the n-square matrix ring Fn (n > 1) is an H-extension
of a subring B. Then Fn = B.

LEMMA 1.3. / / R is a division ring, then R' is also a division ring.

PROOF. Let 0 ^ x e R', then there exists an integer n > 1 such that
b = (a:"1)"—ar1 e R'. Multiplying b by xn and xn~x respectively, we see that
1 and x"1 belong to R'. So R' is a division ring.

Now let R be a primitive ring and R' ^ 0. By the theorems appearing
in [3] chapter II, R can be considered as a dense subring of the ring of all
linear transformations of a vector space V. If the dimension of V is one,
R is a division ring. Then by Lemma 1.3 R' is also a division ring. This
proves R' is a primitive ring. If the dimension of V is larger than one, then
considering V as a right faithful module over R' we shall prove it is an
irreducible module as follows: Let i/x be a non-zero fixed element of V and
v2 any element of V. There exists a 2-dimensional vector subspace Fa which
contains vx and v2. Let U = {x e R\V2x Q F2}, K = {x e R\V2x = (0)},
U1 = U n R'. Because R is dense, U/K is isomorphic to the full ring of
linear transformations of F2. Moreover, it is clear that UjK is still an
i7-extension of its subring {Ux-{-K)jK. So by Lemma 1.2 we have
UjK = (C/j+i^)/^. This assures there exists a linear transformation x e R'
that sends vx to v2. From this we see any element of V is the form vxx for
some x e R', in other words V is a cyclic i?'-module with every non-zero
element as a generator. This proves V is irreducible. So we have the
following:

LEMMA 1.4. / / R is a primitive ring and R' ^ 0, then R' is a primitive
ring.

REMARK. Some one may wonder in Lemma 1.4 R' is always equal to
R. Here we give a primitive ring which is an //'-extension of some proper
subring. Let Zv be the prime field of characteristic p and R be a ring of
linear transformations of an infinite dimensional vector space M over Z p .
Here R is so chosen that the matrices of its elements have the form
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and R' is the ring of the form

A

[3]

0
0 0

0

where A is an arbitrary finite square matrix and d is any element of Zv.
Then for any a e R, we have av—a e R'. Moreover R is a primitive ring
[See 3 p. 36 example 3].

THEOREM I. If R is an H-extension of a subring R', then

PROOF. Let x e J(R) n R'. We want to prove that any y exR' has a
right quasi inverse in R'. Since y e xR' Q xR, there is z e R such that

(*) y+z—yz = 0.

Now for some n = n(z) > 1, zn—z e R'. Then y(zn—z) = yzn—z—y e JR'.
This implies yzn—z e R'. Multiply (*) from right by zn~x and we get
yzn~x — yz"—zn = yzn—z—(z"—z) e R'. Again multiply y on the left and
zn~2 on the right of y = yz—z and we get y2zn~2 e R'. Repeating the process
n—1 times, we get

Consequently xR' is a right quasi-regular right ideal of R', so xeJ(R').
The opposite inclusion can be proved as follows: If P is a primitive

ideal of R, RjP is a primitive ring and an i7-extension of (R'-\-P)IP. By
Lemma 1.4 ( i? '+P)/P ~ R'/(P n R') is a primitive ring, s o P n f f i s a
primitive ideal of R'. We have:

J(R)nR' = ' = n(PnR')2J(R')-
P: primitive ideal of R

COROLLARY. R is semi-simple if and only if R' is semi-simple.

W. S. Martindale III defined an y-ring as a ring R in which wnlu>)—w
belongs to the center C of R for every commutator w of R and proved in
his paper [4] that every commutator of an y-ring is contained in the center.
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In this section we can obtain a parallel result about an //"-extension of an
one-sided ideal.

We first cite a theorem which is proved in Carl Faith's [2 p. 47] as
follows. Let <f>[X] be the polynomial ring over the field <j> and [a1( • • •, ar, X]
denote the subring of <f>[X] generated by X and r fixed non-zero elements
a.l, • • % ar in the field <f>, and set:

THEOREM (Faith). Let D be a division algebra over the field <f>, and let A be
a subalgebra such that to each d e D there corresponds non-zero elements
a.1, • • •, ccre<f> (depending on d) such that for each ae<f>(d) there exists
fa(X) eNd satisfying fa(a) eA, where Nd =N(x1, • • •, ocr) is a set of the
type (*). Then D is a field.

If R is a division ring and an //-extension of a commutative subring
R', by Lemma 1.2 R' is a division subring. So R' contains the prime field <f>
of R. We can consider R as a division algebra over <j> and R' its subalgebra.
Furthermore it is clear that every x e R satisfies the condition of the above
theorem if we take all at- are 1. So R is commutative.

LEMMA 2.1. / / R is a semi-simple H-extension of a commutative subring
R', then R is commutative.

PROOF. It is sufficient to prove this for a primitive ring, because R
is a subdirect sum of primitive rings and the //-extension property is
inherited by homomorphic images. In this case R ought to be a division ring,
otherwise, by [3 p. 33 proposition 3] it contains a subring U which has a
homomorphic image isomorphic to the complete matrix ring Fn (n > 1)
over a division ring F. As Fn is an //-extension of the homomorphic image
U' of U n R', by Lemma 1.2, we have Fn = U'. But U' is still commutative
since it is the homomorphic image of the commutative ring U n R'. This
is contradictory. So R is a division ring. Now by Faith's theorem we see R
is commutative.

LEMMA 2.2. / / R is an H-extension of a commutative subring R', then
every commutator w = xy—yx of R belongs to J(R).

PROOF. R\J(R) is an //-extension of its commutative subring
(R'+J(R))IJ{R), where (R'+J(R))IJ(R) is isomorphic to R'I(J{R) n R').
By Theorem 1 R'I{J(R) n R') = R'IJ(R') which is semi-simple. So RIJ(R)
is commutative by Lemma 2.1. The residue class of a commutator w modulo
J(R) is zero. This implies w = xy—yx e J(R).

LEMMA 2.3. / / R is an H-extension of a commutative right ideal I, then
every commutator w = xy—yx is nilpotent.
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PROOF. By Zorn's Lemma we can find a maximal commutative subring
R' of R, which contains / . Let w = xy—yx, y e R', there exists an integer
n = n(w) > 2 such that wn—w el, hence

(wn—w) (xy—yx) = (wn—w)xy—y(wn—w)x= (wn—w)xy—(wn—w)xy = 0.

The quasi-regularity of w"-1 (by Lemma 2.2) forces: w(xy—yx) = 0,
in other words w2 = 0. These kinds of w belong to / by Lemma 1.1.

Now J(R) shall be proved commutative as follows: If a eJ(R), there
exists an integer m > 2 such that am—a e / . Then for any y e R'

(am—a) (xy—yx) = (xy—yx)(am—a) = 0.

The quasi-regularity of am~x will yield a(xy—yx) = 0, (xy-yx)a = 0. Let
x = a, then a2y = aya = ya2 for all y e R'. Considering the subring R"
of R generated by R' and a2 we get R" is commutative containing R'. The
maximal property of R' forces R" = R'. So we have a2 e R'. If m is even,
then am—a e R' implies a e R'. If m is odd, am~x e R'. The quasi-regularity
of a"1'1 and am—a e R' yield a e R'. As a consequence we can see that J(R)
is contained in the commutative subring R'. So J(R) is a commutative
ideal.

Finally, by Lemma 2.2 w is contained in J(R), we can conclude that:

wz = w2(xy—yx) = w2xy—w(wy)x = w2xy—(wy) (wx)
= w2xy—(wx)(wy) = w2xy—((wx)w)y = w2xy—w2xy = 0.

THEOREM 2. / / R is an H-extension of a commutative one sided ideal I,
then every commutator w belongs to I.

PROOF. By Lemma 2.3 and Lemma 1.1 we can see that w belongs to / .

REMARK. An example is given here to show that in general an H-
extension of a commutative ideal is not necessarily commutative:

Let Z2 be the prime field of characteristic 2 and R be the algebra over
Z2 generated by a, b satisfying

a2 = a, ab = b2 = 0, ba = b.

Then R is a non-commutative ./^-extension of its commutative ideal (o, b).
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