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HAMILTONIAN CYCLES IN SQUARES OF 
VERTEX-UNICYCLIC GRAPHS 

BY 

HERBERT FLEISCHNER AND ARTHUR M. HOBBS(1) 

In this paper we determine necessary and sufficient conditions for the square 
of a vertex-unicyclic graph to be Hamiltonian. The conditions are simple and 
easily checked. Further, we show that the square of a vertex-unicyclic graph is 
Hamiltonian if and only if it is vertex-pancyclic. 

We use the terminology and notation of [1]. The square G2 of a graph G is 
the graph with V(G2) = V(G) in which two vertices are adjacent if and only if 
their distance in G is one or two. A graph G is Hamiltonian if there is a cycle 
in G, called a Hamiltonian cycle, which includes all of the vertices of G. A 
graph G is vertex-pancyclic if, for every vertex v of G, there are cycles of every 
length from 3 through |V(G)| in G which include v. A cactus is a graph in 
which each edge is in at most one cycle, and a graph is vertex-unicyclic if each 
vertex is in at most one cycle. Every vertex-unicyclic graph is a cactus. For any 
i, Vt(G) is the set of vertices of G of degree i. 

Given a vertex v of a graph G, a v-fragment of G is any maximal connected 
subgraph of G in which v is not a cut vertex. Clearly, if G is connected and if v 
is not a cut vertex of G, the only v -fragment is G itself, while if G is connected 
and v is a cut vertex of G, then there are as many v -fragments of G as there 
are components of G-v, and containment specifies a one-to-one relation 
between the components of G-v and the v-fragments of G. (Note: u-
fragments are a specialization of the /-components of Tutte [4]). If v is in a 
cycle C of G, the C, v -fragments of G are those v -fragments of G which do 
not include C. 

Let S be a v -fragment of a graph G. We say S is a short fragment of G if 
and only if there is a Hamiltonian path p in S2- v whose first and last vertices 
are both adjacent in S to v; we call p a short path for S. S is a long fragment of 
G if and only if S is not a short fragment and there is a Hamiltonian path q in 
S2-v whose first vertex is adjacent in S to v and whose last vertex is at 
distance 2 in S from v; we call q a long path for S. If a v -fragment is neither 
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short nor long, we say it is insufferable. In [3], the following three theorems 
were proved: 

THEOREM A. Let G be a connected cactus with cycle C = x0, xx, ..., xn, x0. 
Then G2 is Hamiltonian if and only if 

(1) no C, Xrfragment of G is insufferable, for each i e { 0 , 1 , . . . , n}; 
(2) no more than two C, xrfragments of G are long, for each i e { 0 , 1 , . . . , n}; 

and 
(3) if two distinct C, xrfragments and two distinct C, xrfragments of G are 

long, then each non-trivial trail in C beginning on xt and ending on Xj includes a 
vertex whose degree in G is 2(xt and x, may be the same vertex). 

THEOREM B. Suppose v-fragment S of a graph G is a tree. Then 
(1) S is short if and only if |V(S)| = 2; and 
(2) S is long if and only if | V(S) |>3 and S-(V1(G)n V(S)) is a path. 

THEOREM C. Let G be a graph with exactly one cycle C = x0, xu ..., xn, x0. 
Suppose G is connected, every vertex x of C meets at most two long C, x-
fragments and no insufferable fragments, and suppose any path in C which joins 
two vertices, both of which meet two long fragments, includes a vertex whose 
degree in G is two. Then G2 is Hamiltonian. 

Using these theorems and a few further definitions, we can now give a 
characterization of vertex-unicyclic graphs whose squares are Hamiltonan. 
Given sequences a = ru ..., rh b = su s2,.. •, s,, and c = tu t2,..., tk, (a), (b), 
(c) is the sequence ru r2,..., ri9 Si,..., Sj, ti,..., tk. We denote the sequence 
rh Tj - i , . . . , r2, rx by a - 1 . Further, we say that a, b, and c are sections of the 
sequence (a), (b), (c). A bridge of a graph is an endbridge if it meets a vertex of 
degree 1. 

THEOREM 1. Let G be a vertex-unicyclic graph with at least three vertices. 
Then G2 is Hamiltonian if and only if 

(1) G is connected; 
(2) no vertex of G meets more than two non-end bridges of G; and 
(3) if v is on a cycle C of G and if v meets two non-end bridges of G, and if P 

is a trail in C from v to any vertex of G meeting two non-end bridges of G (P 
may join v to v), then P includes a vertex whose degree in G is two. 

Proof. The necessity of (1) is obvious and the necessity of (2) was shown in 
[2]. Since any x-fragment which includes a non-end bridge of G incident with x 
is either long or insufferable, the necessity of (3) follows from the third part of 
Theorem A. 

We prove the sufficiency of these conditions by induction. If G has no cycles, 
then the theorem is a consequence of Theorem B. If G has just one cycle, then 
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the theorem follows immediately from Theorem C. Suppose the theorem is 
true for any vertex-unicyclic graph with k cycles and suppose G has k + 1 
cycles, k + l > 2 . Then G has a bridge X\X2 such that each component G\ of 
G-* iX 2 containing xt has a cycle. Form Gt from G\ by adding a path Pi = xh yh 

zt of length two to G\ with one end at xt, such that {yi? zt}n V(G) = 0 . Since 
XiX2 is a non-end bridge of G, both graphs Gt satisfy the conditions of this 
theorem if G does, and each has no more than k cycles. Thus G2 contains a 
Hamiltonian cycle ht. Since zt has degree one in Gt there is a vertex wt of G\ 
adjacent to xt in G such that the sequence wh yh zh xt is a section of ht or hT1 

(or of a rotation of one of these). We may suppose ht = wh yb zh xh (#), wt for 
some sequence pt. But wxx2 and w2*i are edges of G2. Thus 
Xi, (pi), Wi, x2, (p2), w2, JCi is a Hamiltonian cycle in G2. This proves the 
theorem. 

Because of the relatively simple structure of a vertex-unicyclic graph, 
Theorem 1 can be improved very easily, as follows: 

THEOREM 2. Let G be a vertex-unicyclic graph. Then G2 is Hamiltonian if 
and only if G2 is vertex-pancyclic. 

Proof. The result is immediate from the definitions if G2 is vertex-pancyclic. 
Suppose G2 is Hamiltonian and suppose v is a vertex of G Since the theorem 
is immediate from Theorem B if G is a tree, we may suppose the theorem 
holds for all vertex-unicyclic graphs smaller than G By Theorem 1, no vertex 
of G meets more than two non-end bridges of G, and given any two vertices on 
a cycle, both of which meet two non-end bridges of G, and a trail joining the 
vertices, the trail includes a vertex whose degree in G is 2. If G has a vertex x 
of degree 1 other than v, these properties are also satisfied by G - JC, which is 
also connected and vertex-unicyclic. Thus (G-x)2 is vertex-pancyclic, so G2 

has cycles of every length from 3 through | V(G)| which include v. 

Suppose G has no vertices of degree one other than (possibly) v. If G is a 
cycle, we can remove any edge from G to obtain a tree whose square is 
vertex-pancyclic. Otherwise, G includes a cycle which does not include v. 
Among all cut vertices x' of G and all x'-fragments F' not including v, choose a 
cut vertex x and JC-fragment F which includes a smallest number of cycles. 
Because G is vertex-unicyclic, if F includes more than one cycle, it includes a 
bridge which meets a cut vertex y' for which a y'-fragment contained in F 
includes fewer cycles than F. Thus F includes just one cycle C. Let y be the 
only vertex of C which meets an edge not in C. Then y has degree three in G. 
Let 2 be a vertex of C adjacent to y. Then G-z is clearly a graph which 
satisfies the conditions of Theorem 1, includes v, and has fewer vertices than G. 
Thus (G-z)2 includes cycles of all lengths from 3 through | V ( G - z ) | and 
containing v, so G2 is vertex-pancyclic. 
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