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From No. 15 we get the theorem:—If from any point M on a
conic, a tangent be drawn meeting a confocal in N, the product of
the perpendicular from the cenire on the tangent at N by the inter-
cept on the normal at N between the tangents at M and N is constant.

Mr J. 8. MackAY gave a synopsis of Frans Schooten’s ¢ Geometry
of the Rule,” as it is contained in the second book of the Exercita-
tiones Mathematicae, Leyden, 1657,

Mr P, ALEXANDER contributed a note on the two definite integrals

J' sinnedx and J cosnxdx,
0 0

Sizth Mesting, April 10th, 1885.

A. J. G. Barcray, Esq., M.A,, President, in the Chair.

Y

Note on the evaluation of functions of the Form 0.
By T. B. Spracug, M.A,, F.R.S.E.

Let £(t), $(t), be two functions of ¢, such that they both vanish
with ¢, that is, /{0)=0, ¢(0)=0; and put
z={f0)}%

Then, in order to find the limiting value of z when ¢=0, we proceed
as follows :—

Logz = ¢(t) . log f(t) = M
0]

This fraction takes the form — g when ¢ =0, and we therefore have
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Ltlogz= L*log[-lf(t) ]_ =Lt -;((tt))
0 {0
L’ @ [¢0OF
¢ ¢ A
In the limit, M takes the form 9_ ; and the value of it is the
S 0

same as that of ;% If this value is finite, say = a, then

L0 40
Lo 40 s0=1e% . sy =0.

Hence, in the limit, logz=0, and 2=1,

If, however, }ﬁ% is either infinitely small or infinitely large, the

[+ 0]
above expression takes the forms % and — x 0, respectively; and we
o

are unable without further investigation to draw any conclusion as to
the limiting value of 2.

As a particular case, suppose that ¢(¢)=¢, f(f)=¢ so that
$0) _ =t¢, and $(0) _ =0; then
& f}O()) C0) g

0 [t
Ll.f - Lt_.— =0;
SO TG ET
50 that in this case also, Ltz =1,
§)=t, (&) =1; so that &) — a®0

Next suppose ¢(¢) =¢, f(t) =¢*; so tha ORIk , 80 o) H

then  Ltlogz= Lti—t . % =Lt2¢=0; and again Ltz=1.

In every case we have as yet considered, the limit of zis 1; and
we can prove that it has the same value whenever f(t) and ¢(?) are
ordinary algebraic functions ; that is to say, when neither of them is
a transcendental function. In this case, since f(0) =0 and ¢(0)=0,
J(t) and ¢$(t) must both be capable of expansion in series containing
only positive powers of ¢, so that

J@)y=atm+bin+......

o(t) =ate+ L+ ...
where the indices are all positive, and ¢m, &, are the lowest powers
of ¢ in the two series respectively, then
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J'(§) =matm—1 + nbtn—14 ,.....

¢'(8) = patn—1 4 yfBin—14 ...
L@ [eOF 110 $(0) _mM _n_qg.
and . . = =0;
“Fo 0w t0mw 00

so that, as before, Ltz =1.

We can furthermore prove that, whenever %% is zero, the limit of

zis 1. For
logz = ¢ptlog( ft) = iﬁ x filog( f¢),

and Lt logz = Ltf; x Lt felog( f¢).

St
But Lt fog(/£) = Ltl%(_lf‘) - Lt_% - _Ltfs
N YD:

=0.
Hence Lt logz=0x0=0, and Lt z=1, The same proof may be
i hcaswnfﬂ_o)i ite.
employed in the case whe: £0) 8 finite.

That we must not from these results conclude that the limit of z is
always 1, at once appears from the fact that, by giving a suitable form to
&(t), we may make the limit have any finite positive value, say e. In
fact, suppose that f(t), ¢(f), are such functions that for all values of ¢
{/(t)} () ig constant and =c.

Then ¢(t)= 1%8° ; and, if £(0)=0, $(0)=12¢°~0;

log £(¢)
or f(¢), ¢(¢), both vanish with £. In this case we have for all values
of ¢, z=(/t)#t=c; and the same is still true in the limit when ¢=0.

The value of ;Eg; is now infinite ; for
1
b(t) loge 7_'@
L7 = M rnog o ~ 8 Mg 15
. [J;<(t)]
—log D _ _1oa 1
=logeLil 7,(0 logeLit $20)
S®
= 4+ ;
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the upper or lower sign being used according as loge is negative or
positive,

It is easy to assign other forms to ¢(¢) that will make the limit
of » different from 1. Taking the expression

_ logc
O =1 fog /(1)

if we add to both numerator and denominator quantities which
ultimately vanish in comparison with them, the limit of 2z will still be c.
Thus, let us put (n being positive and not <1),

_ loge .
¢(t)_t"+log 08
1 n = loge ;
then E(E = {t +logf(t)} -loge ;
- ¢/(¢) n—l f (t) 100-0
()] { (t)} ’
and S (t) [p(0O] _ f_) loge _ loge
N0} S t”‘1+f ® nt n—lf(t)

() S
Now, if f(0)=0, then ; ((00)) =0 ; for,tbeingtheabscissa ON,(Fig.16,17)

and f{(?) the ordinate PN, of a curve which passes through the origin,
SO is the subtangent TN, which evidently vanishes when P moves

S

up to the origin, that is, when ¢=0.
Hence Lbf © . L20) g loge; or, in the limit, logz =loge, and z=c,
FORES0)
It will be found that, as in the last case. 9})() =-w, if ¢>1;

" A0)
and = 4+, if ¢ <1,
If we next desire to give ¢(¢) such a form that the limit of z will
be zero, we must examine what takes place when we suppose ¢ to be-
come indefinitely small. In this case loge becomes indefinitely large,

and negative ; but since ¢(¢), which = k c—-, is to vanish with ¢,

log (¢)

loge must vanish in comparison with logf(¢). We must therefore
substitute for loge a function which, when ¢ =0, becomes — w0, but
vanishes in comparison with log f{0). Such a function is
—log{ ~logf(¢)}. We will put, then, n being positive,
-log{ - log f/(6)}
)= 228 =T8S
() me + log f(¢)
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o _ —log{ -logf()} , _
Hence  logz=¢(t)log f(¢) = m ;l +T0g?T . log f(t)
~ log{ —log /(1)}
min 5
— 41
log f(t)
whence Lt logz= — o0, and Lt z=0. In this case
Ltﬁ - -1t log{ —log f(¢)} _ - _ oo
/() F(O)[me*+log f(9)] - 0 ’
since m#" vanishes in comparison with log £(¢), and Lt £(¢).log f(t) = - 0.
Similarly, if we put
()= +log{ - logf(t)}’
mt™ +log f(¢)
we shall get Ltz=oc0, and Lt ?(t\). = -0,
)
‘We have thus proved that when %g; is either zero or finite,

whether positive or negative, the limit of z (or (f0)¢0) is =1; and

when ?T((OO—)) = + o0, the limit may have any value from 0 to 1; and when
$(0)_ _ o, any value from 1 to e,
s0) '

It will help us to understand these results better if we study the
form of the surface, z=a¥. Giving to x any finite positive value,
+a, and to y any finite value, b, which may be either positive or
negative, we get-one real and positive value of z, namely a?; and the
question we have been considering is the determination of the value
of z when both & and & simultaneously diminish according
to a given law, and ultimately vanish together; or in geometrical
language, the determination of the point or points, where the z-axis
cuts the surface. We consider only positive values of x, because
functions of the form (-a)? will not give us a continuous series of
real values as b varies continuously ; and we neglect all the negative
values of 2, that arise from giving to b such values as }, §, &e. ; or,
2m+1

in general, ; for these values also do not form a continuous

series. Reverting to our old supposition thatz = f(t), y = $(2), /(0) =0,
and ¢(0) =0, then any value of ¢ determines a point in the xy plane; and
the two equations together determine a curve in that plane passing
through the origin,  This curve may be considered as the projection
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of a curve on the surface; and if we suppose ¢ to be diminished
until it vanishes, and then determine the limiting value of z, this is
equivalent to determining what point on the z-axis we shall arrive
at, if we travel to it along an assigned line on the surface. When we

proved above that, if ;Egg is finite or zero, then 2,=1, we virtually

prove that, if we travel along any line on the surface, the projection
of which on the my plane passes through the origin and does not
touch the y-axis, we shall always arrive at the point on the z-axisata
distance =1 from the origin. 'When we next proved that, if f(¢), $(¢),

are algebraic functions, the value of z, is still =1, although ;Eg—;
is infinite, we virtually proved that, if we travel along any curve
on the surface, the projection of which is any algebraic curve passing
through the origin and touching the y-axis, we still arrive at the
same point. We have also proved that, by proceeding along a suit-
able curve on the surface, we may arrive at any point we please on
the z-axis ; but in this case, the projection of the curve on the zy
plane, must bave contact of an infinitely high order with the y-axis.

In order further to clucidate the subject, I will now consider the
nature of the sections of the surface made by the plane, 2=c¢, for
different positive values of ¢. The equation to the projection of this

section on the xy plans, is a¥ =c¢; whence y = ;og . Whenc<1,the
og «

curve represented by this equation is of the form shown in Fig. 18,
where the positive part of the y-axis is drawn downwards because
this is more convenient than the usual position, when we desire to
picture to ourselves the various sections as arranged on the surface,
and thus obtain a conception of the configuration of the latter. The
curve passes through the origin and touches the positive part of the
y-axig; and the line x=1 is an asymptote. If we put y=1, we get

x=c; and if y= ~1, we get = :_ Hence, if we make in the figure,

OB=0b6=0A =1, and draw BP, bp, parallel to the x-axis and meet-
ing the curve in P, p, and then draw the perpendiculars D, pd; we

have OD =¢, and Od=1.
[

When ¢ > 1, the curve has the same form but it lies on the other
side of the a-axis; and if the new value, of ¢ (say c,) is the reciprocal
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of the old one, the new curve will be the reflection of the old one on
the w-axis.

We have seen that, whatever positive value we give to ¢, other
than unity, the curve in Fig. 18 passes through the origin; and we
conclude that every point on the positive part of the z-axis, other
than the point for which z=1, lies on the surface. The excepted
point for which z=1 requires special consideration ; in this case, we
have x¥ =1, and we see that when =1 this is satisfied by any value
of ¥ ; hence every point on the line determined by 2 =1, z=1 lies on
the surface. The equation is also satisfied by putting for « any finite
positive quantity and making y=0; in other words, every point on
the positive part of the line, y =0, z=1, lies on the surface; but we
have still to consider the point (001).

The best way of examining the form of the surface in the neigh-
bourhood of this point, is to study the changes in the section of the
surface by the plane z=¢, as ¢ gradually approaches unity. For this
purpose, we may neglect the part of the curve to the right of the
asymptote. It is easily found that the coordinates of the point of
inflection are x=¢*=-1353, and y= — { log ¢; and that the equation
to the tangent at that point is

2+ 2 10

e’ loge
Hence, if we take OE = OF = 1353 (Fig. 19), OA as before being unity,
and draw EH parallel to Oy, the points of inflection of the various
seetions will all lie in EH, and the tangents at them will all pass
through the point F. We are now able to see that, as ¢ increases up
to 1, the curve of section gradually approximates to the straight lines
QA and AG; but, however close the curve is to OA, so long as it
does not actually coincide with OA, it touches Oy. It is also easy
to see that, when ¢> 1, the curves lie on the negative side of the
x-axis, and all touch the negative part of the y-axis.

These grometrical results show that when « and y both vanish, if
the ultimate value of the ratio y : « is either zero or finite, whether
positive or negative, then the ultimate value of «¥ is unity. Let
PO be the projection on the xy plane, of the path of the moving point
on the surfice, and suppose that the surface is cut by an indefinitely
large number of planes parallel to the xy plane, then, as ¢ reccives
different values, the path of the moving point on the surface will
generally cut these curves of section; and the same will be true of
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the projections of the path and of the sections on the ay plane; and
the last of these curves which the path meets, will determine the
ultimate value of 2. Now, since all the projections of the sections
touch the y-axis at the origin, if OP, the projection of the path of the
moving particle, does not touch the y-axis at the origin, it must, as
1t approaches the origin, cut the projections of all the sections in the
neighbourhood of the origin, until it meets at the origin, rhe line OA,
which is the projection of the section for which z=1. Hence, if OP
does not touch the y-axis at the origin, or if the ultimate value of
y:x {or of ¢(¢):f(¢)} isnot +ao, then the ultimate value of z is
unity. This quite agrees with what was proved in the earlier part of
this paper.

Dr Thomas Muir has furnisht me with the following references
to papers which I have not myself seen :—

Johnson, W. W. On the expression 0°. Analyst ITI, pp. 118-121
(1876).

Franklin, F. Note on indeterminate exponential forms. American
Journal of Mathematics 1, pp. 368-9 (1878),

The so-called Simson line.
By Jornx Ausor, M.A.

This paper is an attempt to collect and arrange some of the pro-
positions regarding the so-called Simson line, contained in various
Mathematical Treatises and Journals. Proofs have been altered, or
new ones substituted to suit the arrangement.

§ 1. Figure 20. 1f from any point on the circumference of a
circle perpendiculars be drawn to the sides of an inscribed triangle,
the feet of these perpendiculars are collinear. [The line on which
they lie is known as the Simson line‘ ; but it is doubtful if Simson
knew it. See Nature, Vol. XXX, p. 635.]

§ 2. There are two theorems of which the preceding may be
regarded as a particular case.

(a). If lines be drawn from any point on the circumforence of a
circle, making equal angles in the same direction with the three sides
of an inscribed triangle, the points of intersection of thesc lines with
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