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CONVEX HULLS OF UNIFORM SAMPLES
FROM A CONVEX POLYGON

PIET GROENEBOOM,∗ Delft University of Technology

Abstract

In Groeneboom (1988) a central limit theorem for the number of vertices Nn of the
convex hull of a uniform sample from the interior of a convex polygon was derived. To
be more precise, it was shown that {Nn − 2

3 r log n}/{ 10
27 r log n}1/2 converges in law to a

standard normal distribution, if r is the number of vertices of the convex polygon from
which the sample is taken. In the unpublished preprint Nagaev and Khamdamov (1991)
a central limit result for the joint distribution of Nn and An is given, where An is the
area of the convex hull, using a coupling of the sample process near the border of the
polygon with a Poisson point process as in Groeneboom (1988), and representing the
remaining area in the Poisson approximation as a union of a doubly infinite sequence of
independent standard exponential random variables. We derive this representation from
the representation in Groeneboom (1988) and also prove the central limit result of Nagaev
and Khamdamov (1991), using this representation. The relation between the variances
of the asymptotic normal distributions of the number of vertices and the area, established
in Nagaev and Khamdamov (1991), corresponds to a relation between the actual sample
variances of Nn and An in Buchta (2005). We show how these asymptotic results all
follow from one simple guiding principle. This corrects at the same time the scaling
constants in Cabo and Groeneboom (1994) and Nagaev (1995).
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1. Introduction

Let Nn be the number of vertices of the convex hull of a sample of size n, drawn uniformly
from the interior of a convex polygon with r vertices. It was shown in Groeneboom (1988) that

{
Nn − 2

3 r log n
}
/
{ 10

27 r log n
}1/2 d−→ N (0, 1),

where N (0, 1) denotes the standard normal distribution. This was proved by coupling the
sample point process near the boundary of the convex polygon with a Poisson point process,
and showing that the relevant part of the sample process could be approximated sufficiently
closely by the coupled Poisson point process. The central limit result for Nn was subsequently
derived from a corresponding result for the boundary of the convex hull of the approximating
Poisson point process. These methods were also applied to the area An of the convex hull in
Cabo and Groeneboom (1994), but unfortunately the central limit result An contained a scaling
error (see Remark 3.2).
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Nagaev and Khamdamov (1991), using the coupling of (part of) the sample point process
with a Poisson process introduced in Groeneboom (1988), derived the following interesting
central limit theorem for the joint distribution of the number of vertices and the area of the
convex hull of a uniform sample of n points on the interior of a convex polygon.

Theorem 1.1. (Theorem 1 of Nagaev and Khamdamov (1991).) Let Nn denote the number of
vertices of the convex hull of a uniform sample of size n from the interior of a convex polygon
C with r ≥ 3 vertices and area A(C). Moreover, let An denote the area of the convex hull of
the sample, and let the scaled ‘remaining area’ Ān be defined by

Ān = n{A(C) − An}
A(C)

.

Then ( 10
27 r log n

)−1/2(
Nn − 2

3 r log n, Ān − 2
3 r log n

) d−→ N (0, �),

where N (0, �) denotes the normal distribution with expectation the zero vector and covariance
matrix � given by

� =
(

1 1
1 14

5

)
.

This is an extension of the central limit theorem for the number of vertices Nn in Groeneboom
(1988), and one indeed recovers the central limit theorem given there by specializing the above
result to the first coordinate. Unfortunately, the preprint Nagaev and Khamdamov (1991),
containing this result, was never published. Moreover, it is written in Russian and its length is
50 pages, which might also not have helped its spread in the scientific world.

In a private correspondence Christian Buchta revealed to me that the constant for the central
limit theorem for the second component (the remaining area) in Nagaev and Khamdamov (1991)
was consistent with a relation he had derived himself between the finite sample variances of
Nn and Ān.

It is the purpose of the present note to give a simple proof of Theorem 1.1, deriving the
result from the central limit theorem for Nn in Groeneboom (1988). We think that using the
central limit theorem of Groeneboom (1988) considerably simplifies the proof of Theorem 1.1
of Nagaev and Khamdamov (1991) and perhaps more clearly reveals the beauty of their idea.
The relation between the variances in Theorem 1.1 can be considered to be a precursor (in an
asymptotic sense) of the relation found between the finite sample variances in Buchta (2005).

For recent work on central limit theorems for random polytopes, see, e.g. Bárány and Reitzner
(2010a) and Bárány and Reitzner (2010b), where references to earlier work in this area can also
be found.

2. Representation of the remaining area by independent and identically distributed
exponentials

We consider the Poisson point process P of intensity 1 in R
2+, and its left-lower convex

hull, as in Groeneboom (1988). To make the connection with Groeneboom (1988), we first
restate the definition of the process of vertices {W(a) : a ∈ R+} consisting of the vertices of
the (left-lower) convex hull of a Poisson process P with intensity 1 in R

2+.

Definition 2.1. For each a > 0, W(a) = (U(a), V (a)) is the point of the realization of the
Poisson process P on R

2+ such that all points of the realization of P lie to the right of the
line x + ay = c which passes through W(a). If there are several such points (which happens
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Figure 1: The W(a) process.

with probability 0 for fixed a), we define U(a) (V (a)) as the supremum (infimum) of the
x-coordinates (y-coordinates) of points of this type.

Figure 1 gives a picture of the jump process W , where a1 is the first jump time after 1. We
now have the following result (see also Theorem 2.1 of Nagaev (1995) for a result of this type).

Theorem 2.1. Let a0 = 1, let a1, a2, . . . be the jump times of the process {W(a) : a ≥ 1}, and
let D0 be the area of the isosceles triangle T0 with a basis, running through W(1), and two
equal sides along the x- and y-axes, meeting at the top at the origin. Moreover, let Di, i ≥ 1,
be the area of the triangle Ti , with top at W(ai−1), basis along the x-axis, and sides along the
lines x + ai−1y = U(ai) + aiV (ai) and x + aiy = U(ai) + aiV (ai), where W(ai), U(ai),
and V (ai) are defined as in Definition 2.1. Then the following statements hold.

(i) The areas D0, D1, . . . form an independent and identically distributed (i.i.d.) sequence
of standard exponential random variables.

(ii) Let Si be the length of the line segment connecting W(ai−1) and W(ai), and let Li be
the length of the segment obtained by extending the line segment from W(ai−1) to W(ai)

until it crosses the x-axis. Then the random variables S2
i /L2

i , i = 1, 2, . . . , form an
i.i.d. sequence of Uniform(0, 1) random variables, independent of W(1). Moreover, the
S2

i /L2
i are independent of the sequence D0, D1, . . . .

Proof. (i) By Lemma 2.4(i) of Groeneboom (1988) we have, for z ≥ 0,

P{D0 > z} = P

{
1

2
{U(1) + V (1)}2 > z

}
=

∫
{(x,y) : (x+y)2/2>z}

e−(x+y)2/2 dx dy = e−z,

showing that D0 has a standard exponential distribution. Let Fa denote the σ -algebra generated
by the points {W(b), 1 ≤ b ≤ a}. Then, as shown in Groeneboom (1988), the process of points
{W(a), a ≥ 1} is a Markov process with respect to the filtration {Fa, a ≥ 1}. Now note that,
if i ≥ 1, Di > z exactly when there are no points in the triangle of area z, with top at
W(ai), basis along the x-axis, and sides along the lines x + ai−1y = U(ai) + aiV (ai) and
x + aiy = U(ai) + aiV (ai). Since this event is independent of the location of the points
W(a0), . . . , W(ai−1), by the Poisson property of the point process in R

2+, we obtain

P{Di > z} = e−z, z ≥ 0,

where the event Di > z is independent of D0, . . . , Di−1 (note that we can use the strong
Markov property here).

(ii) The jump measure M(a, w; ·) of the process {W(a) : a > 0} is given by

M(a, w; B) =
∫ y

0
u 1B(au, −u) du;

https://doi.org/10.1239/aap/1339878714 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1339878714


Convex hulls SGSA • 333

see Equation (2.22) of Groeneboom (1988). Hence, conditioning on W(a) = W(ai−1) = (x, y)

and the event that there is a jump at time a, the location of the next vertex has a density
proportional to u (representing the distance of W(a) to the next vertex). So we obtain, for
z ∈ (0, 1),

P

{
S2

i

L2
i

< z

∣∣∣∣ W(a) > W(a−) = (x, y)

}

= P{Si < Li

√
z | W(a) > W(a−) = (x, y)}

= P{Si < y
√

z(1 + a2) | W(a) > W(a−) = (x, y)}

= 2

y2{1 + a2}
∫ y

√
z(1+a2)

0
u du

= z,

where we have used the fact that 1
2y2{1 + a2} is the total measure of the jump measure on the

line segment of length y
√

1 + a2, connecting (x, y) and (x + ay, 0). This implies that S2
i /L2

i

has a uniform distribution, in accordance with Theorem 2.1 of Nagaev (1995). Moreover, since
the distribution neither involves the value of a = ai nor that of W(ai−1), the sequence of
variables S2

i /L2
i is i.i.d. For the same reason, the variable S2

i /L2
i is independent of Dj, j ≤ i.

It is also seen that S2
i /L2

i is independent of Dj, j > i, since the conditional distribution of
Di+1, given W(ai), is standard exponential, independently of the value of W(ai).

Corollary 2.1. Let the sequences a0, a1, . . . and V (a0), V (a1), . . . be defined as in Theo-
rem 2.1, and let τi = V (ai)/V (ai−1), i = 1, 2, . . . . Then the sequence of random variables
τ1, τ2, . . . is i.i.d. and

(1 − τi)
2 ∼ Uniform(0, 1).

Moreover, the random variables τi are independent of V (a0) = V (1) and the areas Di , where
Di is defined as in Theorem 2.1.

Proof. This follows from part (ii) of Theorem 2.1 since

1 − τi = 1 − V (ai)

V (ai−1)
= V (ai−1) − V (ai)

V (ai−1)
= Si

Li

, i = 1, . . . ,

where the last equality is the proportionality relation, well known from elementary geometry.

The following result is the key to Theorem 1.1.

Corollary 2.2. Form = 2, 3 . . . , letN(1, m)be the number of jumps of the process {W(a) : a ∈
[1, m]}, and let [E N(1, m)] be the largest integer smaller than or equal to E N(1, m). Then
the following statements hold.

(i) E N(1, m) = 1
3 log m.

(ii) As m → ∞, the bivariate random variable

(
N(1, m) − E N(1, m)√

5 log m/27
,

[E N(1,m)]∑
i=1

Di − 1√
E N(1, m)

)

converges in distribution to a bivariate normal distribution with expectation 0 and
covariance matrix equal to the identity matrix I .
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Proof. (i) This is Theorem 2.4(i) of Groeneboom (1988), which is a simple consequence of
the fact that the expected jump rate of the process {W(a) : a ≥ 1} is given by 1/(3a).

(ii) The area Di of the triangle Ti , as defined in Theorem 2.1, is given by

Di = 1
2V (ai−1)(V (ai−1) + aiV (ai−1) − V (ai−1) − ai−1V (ai−1)) = 1

2V (ai−1)
2(ai − ai−1).

(2.1)
Define

Ui = U(ai), Vi = V (ai), and Wi = (Ui, Vi), i = 0, 1, . . . .

It is clear that (2.1) gives a tridiagonal system for solving ai in terms of the Di and Vi . We
obtain, using a0 = 1,

an = 1 + 2
n∑

i=1

Di

V 2
i−1

, n ≥ 1.

We now define, for n ≥ 1,

Yn = V 2
n−1

{
1 + 2

n∑
i=1

Di

V 2
i−1

}
= V 2

n−1an.

Thus,
log an = −2 log Vn−1 + log Yn, (2.2)

and, hence, we get the ‘switching relation’:

N(1, m) ≥ n ⇐⇒ an ≤ m ⇐⇒ −2 log Vn−1 + log Yn ≤ log m. (2.3)

By Corollary 2.1,

E V 2
n = E V 2

0

n∏
i=1

τ 2
i = 6−n E V 2

0 , E

(
V 2

n

V 2
k

)
=

n∏
i=k+1

E τ 2
i = 6−(n−k), n > k ≥ 0.

Since, by Theorem 2.1, the τi are also independent of the Di , we obtain, for all k ≥ 1,

E Yn = 6−(n−1) E V 2
0 + 2

n∑
j=1

E

(
V 2

n−1

V 2
j−1

)

= 6−(n−1) E V 2
0 + 2

n−1∑
j=1

6−j

≤ 6−(n−1) E V 2
0 + 2

∞∑
j=1

6−j .

This implies, by Markov’s inequality,

Yn = Op(1) as n → ∞.

Since we also have Yn ≥ 2Dn for all n ≥ 1, where Dn has a standard exponential distribution,
from this we obtain

| log Yn| = Op(1) as n → ∞.
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We now obtain, from (2.2),

log an − 3n√
5n

= −2 log Vn−1 + log Yn − 3n√
5n

= −2 log Vn−1 − 3n√
5n

+ Op(n−1/2)

as n → ∞. Moreover, since

−2 log Vn−1 = −2
n−1∑
i=1

log

(
Vi

Vi−1

)
− 2 log V0 = −2

n−1∑
i=1

log τi − 2 log V0,

we obtain, by the central limit theorem,

log an − 3n√
5n

= −2
∑n−1

i=1 log τi − 3n√
5n

+ op(1)
d−→ N (0, 1) as n → ∞, (2.4)

where N (0, 1) denotes the standard normal distribution.
Let

B1(m) =
[E N(1,m)]∑

i=1

Di − 1√
E N(1, m)

and

B2(m) = N(1, m) − E N(1, m)√
5 log m/27

,

and let, for fixed y ∈ R, n = nm,y ∈ N be defined by

n =
[

E N(1, m) + y

√
5

27 log m

]
as m → ∞. (2.5)

Then we find, using (2.3) and (2.4), that, as m → ∞,

P{B1(m) ≥ x, B2(m) ≥ y}
= P

{
B1(m) ≥ x, N(1, m) ≥ E N(1, m) + y

√
5

27 log m

}

∼ P{B1(m) ≥ x, N(1, m) ≥ n}
= P{B1(m) ≥ x, log an ≤ log m}
= P

{
B1(m) ≥ x,

log an − 3n√
5n

≤ log m − 3n√
5n

}

∼ P

{
B1(m) ≥ x,

−2
∑n−1

i=1 log τi − 3n√
5n

≤ log m − 3 E N(1, m) − y
√

5 log m/3√
5n

}

∼ P{B1(m) ≥ x} P

{−2
∑n−1

i=1 log τi − 3n√
5n

≤ −y
√

5 log m/3√
5 log m/3

}

= P{B1(m) ≥ x} P

{−2
∑n−1

i=1 log τi − 3n√
5n

≤ −y

}
,

where we have used part (i), (2.5), and Corollary 2.1 (independence of the τi and the Di) in the
second to last line. Since, by (2.4),

P

{−2
∑n−1

i=1 log τi − 3n√
5n

≤ −y

}
→ �(−y) = 1 − �(y),

where � is the standard normal distribution function, the result now follows.
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3. The central limit theorem

In this section we prove a two-dimensional central limit theorem, by combining the results
of the preceding section with the results in Groeneboom (1988).

Theorem 3.1. Let N(a, b) be the number of jumps in the interval [a, b] of the process W ,
as defined in Definition 2.1, and let D(a, b) be the area of the union of the triangles Ti ,
corresponding to points of jump ai ∈ [a, b], as defined in Theorem 2.1. Then

(
5

27
log

(
b

a

))−1/2(
N(a, b) − 1

3
log

(
b

a

)
, D(a, b) − 1

3
log

(
b

a

))
d−→ N(0, �)

as b/a → ∞, where N(0, �) is a bivariate normal distribution with expectation 0 and
covariance matrix defined by

� =
(

1 1
1 14

5

)
.

Proof. As shown by the transformation to a stationary process (see Equation (2.27) of
Groeneboom (1988)), the distribution of N(a, b) depends only on the ratio b/a. The same
construction shows that the distribution of D(a, b) depends only on the ratio b/a. So we only
have to prove the result for a = 1 and b > 1.

We know, from Theorem 2.4 of Groeneboom (1988), that E N(1, a) = 1
3 log a and

var(N(1, a))∼ ( 5
27 ) log a as a → ∞. Moreover,

D(1, a) =
∑

ai∈[1,a]
Di =

∑
ai∈[1,a]

area(Ti),

where the Ti are the triangles of Theorem 2.1. So we can consider D(1, a) as a random sum
of standard exponential random variables, where the number of terms in the sum is equal to
the random variable N(a, b). Reasoning heuristically, as in the case of a compound Poisson
distribution, we would obtain

E(D(1, a)) = E N(1, a) = 1
3 log a

and
var(D(1, a)) = E N(1, a) + var(N(1, a)) ∼ 1

3 log a + 5
27 log a = 14

27 log a.

We now show that we can prove the result by using this heuristic idea.
We write D(1, a) − 1

3 log a as the sum of the terms A1(a) and A2(a), where

A1(a) =
[E N(1,a)]∑

i=1

Di − 1

3
log a,

defining [E N(1, a)] as the largest integer not exceeding E N(1, a) = 1
3 log a, and

A2(a) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N(1,a)∑
i=[E N(1,a)]+1

Di if N(1, a) > [E N(1, a)],

−
[E N(1,a)]∑

i=N(1,a)+1

Di if N(1, a) ≤ [E N(1, a)].
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We now have, if N(1, a) > [E N(1, a)],
N(1,a)∑

i=[E N(1,a)]+1

Di =
N(1,a)∑

i=[E N(1,a)]+1

(Di − 1) + N(1, a) − [E N(1, a)],

and, similarly, if N(1, a) ≤ [E N(1, a)],

−
[E N(1,a)]∑

i=N(1,a)+1

Di = −
[E N(1,a)]∑

i=N(1,a)+1

(Di − 1) + N(1, a) − [E N(1, a)],

where both sides are 0 if N(1, a) = [E N(1, a)]. Hence, we can write

D(1, a) − 1
3 log a = A1(a) + N(1, a) − [E N(1, a)] + R(a),

where

R(a) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N(1,a)∑
i=[E N(1,a)]+1

(Di − 1) if N(1, a) > [E N(1, a)],

−
[E N(1,a)]∑

i=N(1,a)+1

(Di − 1) if N(1, a) ≤ [E N(1, a)].

Fix ε > 0. By Theorem 2.4 of Groeneboom (1988), there exist an M = M(ε) > 0 and an
a0 = a0(M) so that

P

{∣∣∣∣N(1, a) − [E N(1, a)]√
log a

∣∣∣∣ > M

}
< ε, a ≥ a0.

Define

n−(a) = [E N(1, a)] − M
√

log a, n+(a) = [E N(1, a)] + M
√

log a.

Then, by Doob’s inequality,

P

{
max

m∈[[E N(1,a)]+1,n+(a)]

∣∣∣∣
m∑

i=[E N(1,a)]
(Di − 1)

∣∣∣∣ > ε
√

log a

}

+ P

{
max

m∈[n−(a),[E N(1,a)]]

∣∣∣∣
[E N(1,a)]∑

i=m

(Di − 1)

∣∣∣∣ > ε
√

log a

}

≤ n+(a) − n−(a) + 1

ε2(log a)

∼ 2M

ε2
√

log a

→ 0 as a → ∞.

These relations imply that R(a)/
√

log a = op(1) and a → ∞, and, hence,

D(1, a) − E N(1, a)√
log a

=
∑[E N(1,a)]

i=1 (Di − 1)√
log a

+ N(1, a) − [E N(1, a)]√
log a

+ op(1). (3.1)

The result now follows from Corollary 2.2 and Theorem 2.4 of Groeneboom (1988).
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Using the methods from Groeneboom (1988) in going from the Poisson approximation
to the sample process, we can now easily deduce the central limit result Theorem 1.1 from
Theorem 3.1. The latter method is also used in Nagaev and Khamdamov (1991).

Remark 3.1. Instead of working directly with relation (2.1), expressing the differences
between successive slopes of the convex hull in terms of the area of the corresponding rectangle
and the y-coordinate of the vertex at the intersection of the line segments with these slopes,
Nagaev and Khamdamov (1991) first wrote this relation in the form

Di = 1

2
V (ai−1)

2
(

U(ai) − U(ai−1)

V (ai−1) − V (ai)
− U(ai−1) − U(ai−2)

V (ai−2) − V (ai−1)

)
,

and then deduced a recursive relation for the U(ai) in terms of the V (ai) and Di from this.
They then defined the random time

θT = inf{i : U(ai) ≥ T },
and considered sums of the form

∑θT

i=1 Di . This seems to lead to more complicated proofs.

Remark 3.2. The scaling constants for the central limit theorem for the area in Cabo and
Groeneboom (1994) are not correct, although a correct application of the methods used in that
paper would lead to the central limit theorem for the area, which is part of Theorem 1.1. We
here tried to present the results of the unpublished preprint Nagaev and Khamdamov (1991)
in an easily understandable way, where the presentation is considerably simplified by the use
of martingales, Doob’s inequality, and the results from Groeneboom (1988). In view of this
simpler approach, and also the fact that Theorem 1.1 is in fact a stronger (two-dimensional)
result, this approach seems preferable to the approach in Cabo and Groeneboom (1994). On
the other hand, the computations along the lines of Cabo and Groeneboom (1994) give precise
information on the first and second moments, as shown below in Section 4.

Although Nagaev (1995) hinted at the proof of Theorem 1.1, there are many important
missing steps, which can only be filled in by referring to the unpublished preprint Nagaev and
Khamdamov (1991). It seems fair to say that, without knowledge of this preprint, deducing
the result from Nagaev (1995) is pretty hard. Moreover, the crucial relation (3.7) of Nagaev
(1995) contains an incorrect scaling constant (the constant 5

4 there should be 20
27 ), which further

complicates the derivation of Theorem 1.1. For this reason, we gave a simplified and self-
contained treatment above.

Remark 3.3. Buchta (2005) gave the following relation between the sample variances of Nn

and Ān (using the notation of Theorem 1.1):

(n + 1)(n + 2) var(Ān)

n2 = var(Nn) + dn+2.

Here

dn = (E Nn)
2 − n(E Nn−1)

2

n − 1
− (2n − 1) E Nn + 2n E Nn−1 ∼ E Nn ∼ 9

5
var(Nn)

as n → ∞. Hence,
var(Ān) ∼ 14

5 var(Nn) as n → ∞,
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in accordance with the covariance matrix � in Theorem 1 of Nagaev and Khamdamov (1991)
(Theorem 1.1 above). Note that the decomposition of the variance of Ān corresponds to the
decomposition (3.1), where dn+2 corresponds to the variance of the exponentials ξi in (3.1) and
var(Nn) corresponds to the variance of the second term on the right-hand side of (3.1).

From Theorem 2 of Buchta (2003), for the number of vertices Nn of the convex hull of the
points (0, 1), (1, 0), and P1, . . . , Pn, where P1, . . . , Pn is a uniform sample from the interior
of the triangle with vertices (0, 0), (0, 1), and (1, 0),

E Nn = 1

3

{
2

n∑
i=1

1

i
+ 1

}

and

var(Nn) = 1

27

{
10

n∑
i=1

1

i
+ 12

n∑
i=1

1

i2 − 28 + 12

n + 1

}
.

This gives

E Nn ∼ 2
3 log n, var(Nn) ∼ 10

27 log n, as n → ∞, (3.2)

which corresponds to the distribution results derived in Groeneboom (1988), as is also noted
in Buchta (2003).

The results in Groeneboom (1988) and Nagaev and Khamdamov (1991) imply only that a
normal limit distribution for the number of vertices of the convex hull of a uniform sample is
obtained from the interior of a convex polygon with r vertices by centering with 2

3 r log n and
dividing by ( 10

27 r log n)1/2. It is not proved there that the variance of the number of vertices
itself is also of the order 10

27 r log n. In principle, it is possible to have a central limit theorem
where the scaling needed to obtain the central limit result is different from that obtained from
the actual variance. However, the only remaining consideration to go from (3.2) to the result
that the variance itself is also of the order 10

27 r log n seems to be the appropriate use of the
independence of what happens in the corners of the polygons, so that we can conclude that the
variance is the sum of the variances of the number of vertices in these corners. Moreover, we
have to go from what happens in the triangle to what happens in the corners of the polygon.
This is the subject of the current research by Buchta. Results for higher moments of the convex
hull of a uniform sample from a triangle with vertices (0, 0), (0, 1), and (1, 0) are given in
Buchta (2012).

4. Simulations

Let N(a, b) and D(a, b) be defined as in Theorem 3.1. The distribution of these random
variables depends only on the ratio b/a, and in this section we present some simulation results
for these random variables, taking a = 1 and replacing b by a.

The algorithm, given in Section 4 of Nagaev (1995), was used to simulate part of the boundary
of the convex hull of a Poisson process with intensity 1 in the first quadrant. The starting triangle
is bounded by the x-axis, y-axis, and a line of the form x + y = c, where c > 0. Its area D0
has a standard exponential distribution and the point W(1) is uniformly distributed on the line
segment which is the hypotenuse of this triangle.

With the algorithm of Nagaev (1995) we can now generate the points W(a), a ≥ 1, and
simulate in this way the distributions of N(1, a) and D(1, a). We start with N(1, a) and recall
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Table 1: Comparison of E N(1, a) and var(N(1, a)) with simulated and asymptotic values.

E N(1, a) var(N(1, a))
log a

Simulated Exact Simulated Exact Asymptotic

10 3.3519 3.3333 2.1193 2.0596 1.8519
50 16.6668 16.6667 9.5908 9.4670 9.2593

100 33.4259 33.3333 18.7039 18.7263 18.5185

Table 2: Comparison of E D(1, a) and var(D(1, a)) with simulated and asymptotic values.

E D(1, a) var(D(1, a))
log a

Simulated Exact Simulated Exact Asymptotic

10 3.3664 3.3333 5.4089 5.3040 5.1852
50 16.6576 16.6667 26.1452 26.0448 25.9259

100 33.4933 33.3333 52.3304 51.9707 51.8519

the exact expressions for the expectation E N(1, a) and var(N(1, a)) from Groeneboom (1988,
Theorem 2.4):

E N(1, a) = 1
3 log a,

var(N(1, a)) = 5

27
log a + 4

9
(tan−1(

√
a − 1))2 + 8

9

(
tan−1(

√
a − 1)√

a − 1
− 1

)
. (4.1)

As noted at the top of page 34 in Cabo and Groeneboom (1994), the formula for the variance
of N(1, a), given in Theorem 2.1 of Groeneboom (1988), contained a typo (the argument of
the first tan−1 above was a instead of

√
a − 1), and the correct formula is in fact given on

page 365 of Groeneboom (1988) (which we use here). Note that these are exact expressions
for E N(1, a) and var(N(1, a)) and not asymptotic ones.

Table 1 shows the means and variances for 10 000 simulations for log a = 10, 50, and 100.
The exact values are given to four decimal places.

It is seen from Table 1 that E N(1, a) and var(N(1, a)) are quite close to the simulated values
and that, not unexpectedly, for a = 10, the exact expression for the variance of N(1, a), given
by (4.1), is closer to the simulated value than the asymptotic value.

Similarly, we performed 10 000 simulations for log a = 10, 50, and 100 to simulate the
behavior of D(1, a). Using the (corrected) methods of computation of Cabo and Groeneboom
(1994) (details are given in Groeneboom (2011b)), it can be shown that

E D(1, a) = 1
3 log a

and, defining α = a − 1, that

var(D(1, a)) = 14

27
log a + 2

3α2 + 4

9α
− 44

45
− 2{3 + α(3 − 4α)} tan−1(

√
α)

9α5/2

+ 4

9
(tan−1(

√
α))2.

These are again exact expressions for E D(1, a) and var(D(1, a)) and not asymptotic ones. The
results are given in Table 2.
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Table 3: Comparison of E νt and var(νt ) with simulated and asymptotic values.

E νt var(νt )
log t

Simulated Exact Simulated 20
27 log t 5

4 log t (Nagaev (1995))

10 13.0778 13.3333 7.2630 7.40741 12.5
50 66.4792 66.6667 37.6192 37.0370 62.5

100 133.1330 133.3333 74.542 74.0741 125

We finally turn our attention to Relation (3.7) of Nagaev (1995). This relation gives
asymptotic expressions for the expectation and variance of the number, νt , of vertices falling
in a disk St with radius t and center (0, 0). On the basis of the results in Groeneboom (1988),
it is to be expected that

E νt ∼ 4
3 log t, var(νt ) ∼ 20

27 log t, as t → ∞, (4.2)

whereas Relation (3.7) of Nagaev (1995) gives the above relation for E νt , but 5
4 log t as the

asymptotic expression for var(νt ). The argument for (4.2) is that, first of all, νt can be expected
to behave asymptotically as the number of vertices with coordinates x > y such that x < t

plus the number of vertices with coordinates y ≥ x such that y < t , since vertices with
large x-coordinates will, with high probability, be very close to the x-axis and vertices with
large y-coordinates will, with high probability, be very close to the y-axis. Secondly, again by
Groeneboom (1988), the number of vertices with coordinates x > y such that x < t will behave
asymptotically as N(1, t2), and, similarly, the number of vertices with coordinates y ≥ x such
that y < t will behave asymptotically as N(1/t2, 1).

By the construction of the algorithm in Nagaev (1995), we can simulate the number of
vertices W(a), a ≥ 1, satisfying U(a)2 + V (a)2 < t2, by running the algorithm till we obtain
a vertex W(a) such that

U(a)2 + V (a)2 ≥ t2.

The resulting asymptotic behaviors of E νt and var(νt ) are obtained from this by multiplying the
results by the factor 2. In Table 3 we present the results for 10 000 simulations for log t = 10,
50, and 100.

Table 3 clearly suggests that the factor 5
4 is much too large and that the correct approximation

is indeed given by (4.2).

5. Concluding remarks

There is a remarkable analogy between the behavior of the left-lower convex hull of the
Poisson point process, discussed above, and the least concave majorant of (one-sided) Brownian
motion without drift, as analyzed in Groeneboom (1983). In the same way there is an analogy
between the behavior of the lower convex hull of the Poisson point process inside a parabola,
as analyzed in Groeneboom (1988) and Nagaev (1995), and the least concave majorant of
Brownian motion with a parabolic drift, as studied in Groeneboom (1989) and Groeneboom
(2011a). Why this is the case is still somewhat of a mystery and deserves (in my view) further
investigation.
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