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Vanishing of the µ-invariant of p-adic

Hecke L-functions

Haruzo Hida

Abstract

We prove vanishing of the µ-invariant of the p-adic Katz L-function in N. M. Katz
[p-adic L-functions for CM fields, Invent. Math. 49 (1978), 199–297].
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1. Introduction

Let F be a totally real number field with discriminantDF andM be a totally imaginary quadratic
extension (a CM field) over F . For a p-adic CM type (M, Σ), Katz [Kat78a] constructed a
p-adic Hecke L-function as a p-adic bounded measure ϕ supported on the ray class group Z of
M modulo Cp∞ (see also [HT93]). Splitting Z = Γ×∆ for the maximal finite subgroup ∆ and
fixing a branch character ψ0 of ∆, we project the measure ϕ to its ψ0-branch ϕψ0 defined on Γ.
A main result of this paper is the following.

Theorem I. Let p > 2 be a prime unramified in F/Q. Suppose the following condition.

(S) The prime-to-p part of the conductor of the reduction modulo mW of the branch character
ψ0 is a product of primes of M split over the maximal totally real subfield F of M .

Then the Iwasawa µ-invariant of ϕψ0 vanishes.

Actually, in this paper, we prove a stronger result than the above theorem. In order to
state precisely this result, we recall some details about Katz p-adic measure. We fix a rational
prime p > 2 and take, as the base ring, a finite extension W of the Witt ring W (F) of a fixed
algebraic closure F of Fp. Write mW for the maximal ideal of W . Fix an algebraic closure Qp

(respectively Q) of Qp (respectively Q) and write Cp for the p-adic completion of Qp. We regardW
as contained in Cp. We fix two embeddings: i∞ : Q→ C and ip : Q→ Cp and denote by c the
complex conjugation induced by i∞. We suppose the following condition.

(ord) Every prime factor of p in F splits in M .
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Then, we can choose a set of embeddings Σ of M into Q such that the following two conditions
hold.

(cm1) The disjoint union Σ t Σc is the set of all embeddings of M into Q.
(cm2) The p-adic place induced by any element of Σ composed with ip is distinct from any of

those induced by elements in Σc.

The set Σ satisfying (cm1)–(cm2) is called a p-adic CM-type. Under (ord), we can find a p-adic
CM-type, and we fix one such Σ. We write Σp for the set of p-adic places (hence of prime ideals
of M over p) induced by the embedding ip ◦ σ for σ ∈ Σ. Let λ :M×A /M

×→ C× be a type A0

Hecke character (of conductor Cp∞ for C prime to p). Then λ has values in Q on the finite part
M×A(∞) of M×A . For the ray-class group Z modulo Cp∞ of M , write λ̂ : Z→Q×p for the p-adic
avatar of λ. Write O (respectively O) for the integer ring of F (respectively M). Finally, we
choose an element δ ∈M such that the following conditions hold.

(d1) The identity δc =−δ and i∞(Im(δσ))> 0 for all σ ∈ Σ.
(d2) The alternating form 〈x, y〉= TrM/F (xyc/2δ) induces an isomorphism O ∧O∼= c−1d−1 for

a fractional F -ideal c prime to pCCc, where d is the different of F/Q.

The alternating form in (d2) induces a polarization on the abelian scheme A(O) defined over
W = i−1

p (W ) with complex multiplication by O (and c is the polarization ideal in (M2)). A choice
of Néron differential on A(O)/W produces its complex period and p-adic period (Ω∞, Ωp) ∈
(C×)Σ × (W×)Σ. Put Ωκ

? =
∏
σ Ωκσ

? for ? = p,∞ and πκ = π
∑
σ κσ for

∑
σ∈κ κσσ ∈ Z[Σ]. Katz

constructed in [Kat78a] (see also [HT93] where the case C 6= 1 is treated) a measure ϕ on the
ray-class group Z modulo Cp∞ characterized by the following formula:∫

Z λ̂ dϕ

ΩkΣ+2κ
p

=
c(λ)πκE(λ)L(0, λ)√
|DF | Im(δ)κΩkΣ+2κ

∞
×
∏
L|C

(1− λ(L)) (1.1)

for all Hecke characters λ modulo Cp∞ primitive at every prime factor of C split over F . Here the
infinity type of λ is kΣ + κ(1− c) for an integer k and κ=

∑
σ∈Σ κσσ with integers κσ satisfying

either k > 0 and κσ > 0 or k 6 1 and κσ > 1− k, c(λ) 6= 0 is a simple algebraic constant involving
the root number of λ and the value of its Γ-factor, and E(λ) is the standard modifying Euler
p-factor. We refer to the introduction of [Hid10] for the factors c(λ) and E(λ).

Let ∆ be the maximal torsion subgroup of Z. A character ψ0 : ∆→W× is called a branch
character. We fix a splitting Z = ∆× Γ for a Zp-free subgroup Γ so that ψ0 and any function φ
on Γ can be considered to be functions on Z via pull-back by the projections: Z�∆ and Z� Γ.
The ψ0-branch ϕψ0 of the measure ϕ is defined on Γ and is given by

∫
Γ φ dϕψ0 =

∫
Z ψ0φ dϕ. Let

ψ̃0 be the Teichmüller lift of ψ0 mod mW . By (S), the support of the conductor of ψ̃0 does not
contain any inert or ramified prime over F . Taking the branch of ψ̃0, by the result of [Hid10], the
anticyclotomic µ-invariant with branch character ψ̃0 vanishes (and hence the full µ also vanishes)
unless the following three conditions are met.

(M1) The quadratic extension M/F is unramified at every finite place.

(M2) The identity
(
M/F

c

)
=−1 for the quadratic residue symbol

(
M/F

)
.

(M3) The map a 7→ (ψ0(a)NF/Q(a) mod mW ) is the character
(
M/F

)
of M/F .

We therefore assume (M1) and (M3) to study the vanishing of the µ-invariant for ψ̃0 of the full
p-adic Hecke L-function. By (M1) and (M3), ψ̃0 has p-power conductor. By the interpolation
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formula (1.1), the µ-invariant of the branch ψ0 and that of ψ̃0 differ by the µ-invariant of the
Euler factor at primes appearing in the prime-to-p conductor C of ψ0. Since the Frobenius map
for any prime outside p has infinite order over the cyclotomic Zp-extension, the µ-invariant of
the Euler factor vanishes, and we get the vanishing of µ for the original ψ0 (assuming (S)). So we
assume that ψ0 = ψ̃0 and that the prime-to-p conductor of ψ0 is 1 (i.e., C = 1) and that M/F is in
the Hilbert class field of F . In particular, the p-adic L-function is the one originally constructed
in [Kat78a].

Since Γ is isomorphic to Z/∆, Gal(M/F ) acts on Γ naturally. We write π− for the projection
of Γ onto Γ− = Γ/ΓGal(M/F ), on which the generator c ∈Gal(M/F ) acts by −1 : x 7→ xc = x−1.
Pick a character ψ of Z with ψ̂|∆ = ψ0, and we write ϕ−ψ = π−∗ (ψ̂ϕψ0):∫

Γ−
φ dϕ−ψ =

∫
Γ
(φ ◦ π−)ψ̂(γ) dϕψ0(γ).

We have µ(ϕ−ψ )> µ(ϕψ0); so, 06 µ(ϕψ0)6 lim infψ:ψ|∆=ψ0
µ(ϕ−ψ ). Then Theorem I follows from

the following result.

Theorem II. Suppose that the branch character ψ0 modulo p has prime-to-p conductor 1. Then
lim infψ µ(ϕ−ψ ) = 0, where ψ runs over all arithmetic characters of Z with ψ̂|∆ = ψ0.

The full µ-invariant µ(ϕψ0) is expected to vanish without any condition (cf. [Gil91,
Conjecture]), and we proved this under the condition (S). The anticyclotomic µ-invariant µ(ϕ−ψ0

)
for ψ0 : ∆→W× of conductor C is positive in some exceptional cases for the following two
different reasons.

(i) We have a functional equation µ(ϕ−ψ0
) = ε · µ(ϕ−ψ∗0 ) for the involution sending ψ(z) to

ψ∗(z−c)N(z)−1 for the p-adic norm map N (see [Hid10] above (V)). We never have ψ0 = ψ∗0 but
we could have ψ∗0 ≡ ψ0 mod mW . If this happens, ε≡−1 mod mW forces µ(ϕ−ψ0

)> 0.

(ii) Let ψ0 := (ψ0 mod mW ), and write C(ψ0) for the conductor of ψ0. Suppose that there
exist some primes L|C/C(ψ0) such that L - C(ψ0) with N(L)≡ 1 mod p and that ψ0 has order
divisible by p. For the Teichmüller lift ψ̃0 of ψ0, ϕψ0 is then congruent modulo mW to the multiple
of ϕ

ψ̃0
by the product of Euler L-factors 1− ψ̃0(L)[L]Γ over such primes L|C. Here [L]Γ is the

projection of L to Γ. For the full µ-invariant, this does not matter as the Euler factor is prime
to p, however it matters for µ(ϕ−ψ0

) if Γ−-projection [L]− is trivial (i.e., L is ramified or inert
in /F ) and ψ̃0(L) = 1. Thus in this exceptional case, we have positive µ(ϕ−ψ0

).

These exceptional cases should be the only cases where we have µ(ϕ−ψ0
)> 0 (i.e., we need to

modify slightly Conjecture in [Gil91] to include the above first exceptional case which is not
mentioned in [Gil91]). We note that the first case is equivalent to (M1)–(M3) (assuming that C

is a product of primes split over F ; see [Hid10, Lemma 5.2]).

We specify in Corollary 5.3 an explicit construction of a subset Ψ of arithmetic characters
of Z with ψ̂|∆ = ψ0 such that lim infψ∈Ψ µ(ϕ−ψ ) = 0. Though our idea is the same as the one
exploited in [Hid10], the proof in this paper is somehow simpler as we assume that C = 1 and
that M/F is unramified; so, we recall some details of the argument (as we believe that this paper
is actually a good introduction to the technical and lengthy article [Hid10]).
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2. Serre–Tate deformation space

We recall, without proofs, deformation theory of ordinary abelian schemes.

2.1 Deformation space of an abelian variety

Let R be a pro-Artinian local ring with residue field F (so R is canonically a W (F)-algebra).
Write CL/R for the category of complete local R-algebras with residue field F. We write OS
for an object of CL/R with S = Spf(OS). We fix an ordinary abelian variety A0/F. Consider the
following deformation functor P̂ : CL/R→ SETS:

P̂A0(OS) = [(A/S , ιA) |A/S is an abelian scheme and ιA :A⊗OS F∼=A0].

Here ‘[ ]’ indicates the set ‘{ }/∼=’ of isomorphism classes of the objects inside the straight
brackets, and f : (A, ιA)/S ∼= (A′, ιA′)/S if f :A→A′ is an isomorphism of abelian schemes with
ιA′ ◦ f0 = ιA. We write TA[p∞]et for the Tate module of the maximal étale quotient of A[p∞]
and At/R for Pic0

A/R. The functor P̂A0 is representable by the formal torus (see [Kat78b] and
[Hid10, § 2.3])

HomZp(TA0[p∞]et × TAt0[p∞]et, Ĝm(S)), (2.1)

and each deformation (A/S , ιA) ∈ P̂A0(OS) gives rise to the Serre–Tate coordinate

tA/S : TA0[p∞]et × TAt0[p∞]et→ Ĝm(S).

2.2 Abelian variety with real multiplication

We consider the following fiber category AF of abelian schemes A/S over the category of
Z(p)-schemes. Here Z(p) = Q ∩ Zp inside Qp. An object of AF is the triple (A/S , θ :O ↪→
End(A/S), λ), where the following four conditions hold.

(rm1) The map θ = θA is an embedding of algebras taking identity to identity.

(rm2) The symbol λ is an O-linear symmetric polarization λ :A→At with p - deg(λ).

(rm3) The image of θA is stable under the Rosati involution induced by λ.

(rm4) As O ⊗Z OS-modules, we have Lie(A)∼=O ⊗Z OS locally under the Zariski topology of S.

We call such a triple (A, θ, λ) satisfying the above four conditions (rm1)–(rm4) an abelian variety
with real multiplication (abbreviated as AVRM).

A morphism φ : (A, θ, λ)/S → (A′, θ′, λ′)/S in the category AF is an O-linear morphism
φ :A/S →A′/S of abelian schemes over S with λ= φt ◦ λ′ ◦ φ. See [Hid04, § 4.1.1] for technical
details of AF .

Take an ordinary abelian scheme (A0, θ0, λ0) defined over F. We fix a polarization λ0 :A0→
At0 of degree prime to p. We consider the following subfunctor of P̂A0 defined from CL/W (F) into
SETS:

P̂A0,θ0,λ0(R) = [(A/R, ιA, θ, λ) ∈ AF | (A, ιA) ∈ P̂A0(R), λ and θ induce λ0 and θ0].

Here we call f : (A, λA, ιA)→ (B, λB, ιB) an isomorphism if f : (A, ιA)∼= (B, ιB) and f t ◦ λB ◦
f = λA. We identify TA0[p∞]et and TAt0[p∞]et by λ0. Then by (2.1) (cf. [Hid10, § 2.4]), for
Op =O ⊗Z Zp,

P̂A0,θ0,λ0(R)∼= HomZp(TA0[p∞]et ⊗Op TA0[p∞]et, Ĝm(R)).
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Since we have TA0[p∞]et ∼=Op as O-modules [Hid04, Proposition 4.1], we get the following
proposition.

Proposition 2.1. Suppose that O is unramified at p. Let S = Gm ⊗Z d−1 = Spec(Z[O]) for the

group algebra Z[O]. Then identifying TA0[p∞]et with Op, the functor P̂A0,θ,λ0 is represented by

the formal scheme Ŝ/W , where Ŝ is the formal completion of S along the identity section of

Gm ⊗Z d−1(F).

3. Hilbert modular Shimura varieties

Let G= ResF/Q(GL(2)). We recall reciprocity laws for the Hilbert modular Shimura variety
described in [Hid10, § 3] to the extent we need without much proof. We write h0 : S =
ResC/RGm→G/R for the homomorphism of real algebraic groups sending a+ b

√
−1 to

(
a −b
b a

)
.

We write X for the conjugacy class of h0 under G(R). The group G(R) acts on X from the left
by conjugation. The identity connected component X+ containing 0 = h0 is isomorphic to the
product Z = HI of copies of the upper half complex plane H indexed by embeddings I of F into R
by g(0) 7→ g(i) for i = (

√
−1, . . . ,

√
−1). Thus X is a finite union of the Hermitian symmetric

domain isomorphic to Z; indeed, X∼= (C− R)I (which we identify). The pair (G, X) satisfies
Deligne’s axiom for Shimura varieties in [Del79, 2.1.1]. The C-points of the Shimura variety with
right G(A(∞))-action is given by

Sh(G, X)(C) = lim←−
K

G(Q)\(X×G(A(∞)))/K =G(Q)\(X×G(A(∞)))/Z(Q), (3.1)

where (γ, u) ∈G(Q)×K acts on (z, g) ∈ X×G(A(∞)) by γ(z, g)u= (γ(z), γgu), Z(Q) is the
closure of the center Z(Q) in G(A(∞)). We write [z, g] for the point of Sh(C) given by
(z, g) ∈ X×G(A(∞)). This pro-algebraic variety has a canonical model Sh(G, X) defined over Q,
as we recall in this section.

3.1 Abelian varieties up to isogenies
Let F 2 be a column vector space, with its (finite) adelization F 2

A(∞) . The group G(A(∞)) acts on
F 2

A(∞) by matrix multiplication. We consider the fibered category AQ
F over Q-SCH defined by

(Object) abelian schemes with (rm1)–(rm4); (Morphism) HomQ
F (A, A′) = HomO(A, A′)⊗Z Q.

For an object A/S , we take a geometric point s ∈ S, consider the Tate module T (A) = Ts(A) =
lim←−N A[N ](k(s)), and define V (A) = Vs(A) = T (A)⊗Ẑ A(∞). The module V (A) is an FA(∞)-free

module of rank two and has an Ô-stable lattice T (A), where Ô =O ⊗Z Ẑ =
∏
`:prime O`.

Picking a geometric point s in each connected component of S, a full level structure on A
is an isomorphism η : F 2

A(∞)
∼= Vs(A) of FA(∞)-modules. For a closed subgroup K ⊂G(A(∞)), a

level K-structure is the (sheaf-theoretic) K-orbit η = ηK of η for the right action η 7→ η ◦ u
(u ∈K). Since A[N ]/S is an étale finite group scheme, the algebraic fundamental group π1(S, s)
with base point s acts on A[N ](k(s)) for any integer N and hence on the full Tate module
Vs(A) = lim←−N A[N ](k(s))⊗Q. The level K-structure is defined over S if σ ◦ η = η for each
σ ∈ π1(S, s). Polarizations λ, λ′ :A→At are equivalent (written as λ∼ λ′) if λ= aλ′ = λ′ ◦ a for
a totally positive a ∈ F . The equivalence class of a polarization λ defined over S is written as λ.

For an open compact subgroup K, we consider the following functor from SCH/Q into SETS,

PQ
K(S) = [(A, λ, η)/S with (rm1)–(rm4)],
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where η is a level K-structure as defined above, and [ ] = { }/∼= indicates the set of isomorphism
classes in AQ

F of the objects defined over S in the brackets. For a compact subgroup K, PQ
K(S) is

defined by the natural projective limit lim←−U P
Q
U (S) for U running over open compact subgroups

containing K. An F -linear morphism φ ∈HomQ
F (A, A′) is an isomorphism between triples

(A, λ, η)/S and (A′, λ′, η′)/S if it is compatible with all data; that is, φ ◦ η = η′ and φt ◦ λ= λ
′ ◦ φ.

Equip F 2 with an alternating form Λ : F 2 ∧F F 2 ∼= F given by (x, y) = txJ1y for J1 =(
0 −1
1 0

)
. We define a Q-alternating pairing 〈·, ·〉 : F 2 × F 2→Q by TrF/Q ◦ Λ. Suppose that

the point s ∈ S is a complex point s ∈ S(C); so, we have the Betti homology group
H1(A,Q) :=H1(A(k(s)),Q). Then the polarization λ :A→At induces a nondegenerate
alternating pairing Eλ :

∧2H1(A,Q)→Q (the Riemann form; see [Mum94, §§ 1 and 20])
with Eλ(αx, y) = Eλ(x, αy) for all α ∈ F . We write eλ :H1(A,Q) ∧F H1(A,Q)∼= F for a
unique alternating form satisfying TrF/Q ◦ eλ = Eλ. The Hodge decomposition: H1(A, C) =
H0(A(k(s)), Ωan

A/C)⊕H0(A(k(s)), Ωan
A/C) induces, by Poincaré duality, an embedding h= hA :

C× = S(R)→AutF (H1(A, R))∼=G(R) such that the following two conditions hold.

(i) The identity h(z)ω = zω for all ω ∈HomC(H0(A(k(s)), ΩA/C), C) (and h(z)ω = zω).

(ii) The pairing Eλ(x, h(
√
−1)y) is a positive definite Hermitian form on H1(A, R) (∼=F 2

R :=
F 2 ⊗Q R) under the complex structure given by h.

In this way, an abelian variety A/C gives rise to hA ∈ X. Starting from an hz ∈ X = (C− R)I , via
the multiplication by hz(z) on F 2

R = F 2 ⊗Q R, F 2
R can be considered as a complex vector space.

By the theory of abelian variety over C, for a lattice L⊂ F 2
R, the complex torus F 2

R/L gives rise
to an abelian variety Az/C with real multiplication by O such that hA = hz and Az(C) = F 2

R/L.
Since T (A)∼= L̂= L⊗Z Ẑ canonically, we have η0 : F 2

A(∞) = V (Az), and choosing a basis {v1, v2}
of F 2

A(∞) (over F (∞)
A ) is equivalent to a choice of g ∈G(A(∞)) bringing the standard basis to

{v1, v2}. This gives rise to a full level structure η = η0 ◦ g of Az. In this way, (Az, λ, η) with the
polarization λ induced by Λ gives rise to a point [z, g] ∈ Sh(G, X)(C), and we get an identification
Sh(G, X)(C)∼= PQ

1 (C) for the trivial subgroup 1 = {1} ⊂G(A(∞)). This identification is actually
valid not just for S = Spec(C) but actually for all Q-schemes S. In other words, from [Shi66] and
[Del71, 4.16–21] (see also [Hid04, § 4.2] and [Hid10, § 3]), we get the following theorem.

Theorem 3.1. The canonical model Sh(G, X)/Q represents the functor PQ
1 over Q for the trivial

subgroup 1 made of the identity element of G(A(∞)).

Through the action of G(A(∞)) on F 2
A(∞) , g ∈G(A(∞)) acts on the level structure by η 7→ η ◦ g

and hence on the variety Sh(G, X) from the right. If K is open and sufficiently small, the functor
PQ
K is represented by the quotient ShK(G, X) := (Sh(G, X)/K)/Q. In the complex uniformization,

each point [z, g] corresponds to the test triple (Az, λz, ηz ◦ g), where Az(C) = CI/(d−1 +Oz) and
ηz
(
a
b

)
= bz − a identifying T (Az) = d̂−1 + Ôz.

A key point of the proof of the representability (assuming that K is open-compact) is reducing
it to the representability of a functor classifying abelian schemes up to isomorphisms not up to
isogenies. Let L⊂ F 2 be an O-lattice. We define the polarization ideal c by c∗ = Λ(L ∧ L)⊂
F , where c∗ is the dual ideal {ξ ∈ F | Tr(ξc)⊂ Z}= c−1d−1. Let Cl+(K) = F×A(∞)/det(K)F×+ ,
which is a finite group. We fix a complete representative set {c ∈ F×A(∞)} for Cl+(K) so that
cÔ ∩ F = c. We may choose L to be one of O-lattices Lc = c∗ ⊕O ⊂ F 2 (indexed by c ∈ Cl+(K))
with Λ(Lc ∧ Lc) = c∗, and put L= LO. Note that L= Lc ·

(
c 0
0 1

)
in F 2. For each isogeny class
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of (A, λ, η)/S ∈ PQ
K(S), we can functorially find a unique triple (A′, λ′, η′)/S and a polarization

ideal c such that η′(L̂c) = T (A). See [Hid04, pp. 135–136] for the details of this process of finding
a unique triple (A′, λ′, η′)/S in the isogeny class of (A, λ, η)/S . If two such choices are isogenous,
the isogeny between them has to be an isomorphism keeping the polarization. Thus we get an
isomorphism of functors:

PQ
K(S)∼= P ′K(S) :=

⊔
c∈Cl+(K)

P ′K,c(S), (3.2)

where c runs over the ideal classes in Cl+(K) = F
(∞)
A

×
/F×+ det(K), and

P ′K,c(S) = {(A′, λ′, η′)/S with (rm1)–(rm4) | η′(L̂c) = T (A′) and c(λ′) = c}/∼= .

Here ∼= means an isomorphism (not an isogeny) for a chosen polarization integral over the fixed
lattice Lc in the class of λ (in other words, λ induces a fixed alternating form on the space F 2

integral over Lc up to units in F ∩ det(K)). If K =G(Zp)×K(p) for an open compact subgroup
K(p) of G(A(p∞)), the above functor is well defined over W-schemes S. This functor P ′K is
proven (for example, by geometric invariant theory of Mumford) to be represented by a quasi-
projective scheme, whose geometrically connected components M(c, K) representing P ′K,c are
shown by Shimura’s reciprocity law (Theorem 3.3) to be defined over a specific abelian extension
kK of Q dependent on K. If K =G(Zp)×K(p) (with K(p) = {x ∈K | xp = 1}), M(c, K) is a
geometrically connected scheme over kK ∩W. Hence π0(ShK)∼= Cl+(K) canonically. See [Hid04,
§ 4.2] for details.

Now we recall the canonical p-integral model of the Shimura variety. We use the following
variant (due to Kottwitz [Kot92]) of the functor PQ

K . We fix a rational prime p unramified in
F/Q. This concerns an open-compact subgroup K maximal at p (i.e., K =G(Zp)×K(p)). We
consider the following fibered category A(p)

F over Z(p)-schemes:

(Object) abelian schemes with (rm1)–(rm4); (Morphism) HomA(p)
F

(A, A′)=HomAF (A, A′)⊗Z Z(p)

for Z(p) = Q ∩ Zp. This means that to classify test objects, we now allow only isogenies with
degree prime to p (i.e., ‘prime-to-p isogenies’), and the degree of the polarization λ is supposed
to be also prime to p. Polarizations are equivalent if λ= aλ′ = λ′ ◦ a for a totally positive a ∈ F
prime to p.

Fix an O-lattice L⊂ F 2 with Λ(L ∧ L) = c∗, and assume self Op-duality of Lp = L⊗Z Zp
under the alternating pairing Λ : F 2 ∧ F 2 ∼= F . Consider test objects (A, λ, η(p))/S with λ degree
prime to p. Here η(p) : F 2

A(p∞)
∼= V (p)(A) = T (A)⊗Z A(p∞) and λ ∈ λ are supposed to satisfy the

following requirement: V (p)(A) ∧ V (p)(A) eλ−→ F
(p∞)
A is proportional to Λ : F 2 ∧ F 2 ∼= F up to

scalars in (F ⊗ A(p∞))×. We write the K(p)-orbit of η(p) as η(p). Consider the following functor
from Z(p)-schemes into SETS.

P(p)
K (S) = [(A, λ, η(p))/S with (rm1)–(rm4)]. (3.3)

We quote a result of Kottwitz [Kot92] from [Hid04, § 4.2.1] and [Hid10, § 3.1].

Theorem 3.2. The p-integral smooth canonical model Sh(p)(G, X)/Z(p)
over Z(p) represents

the functor P(p)
1 , and we have a canonical isomorphism: Sh(p)(G, X)/Z(p)

×Z(p)
Q∼=

Sh(G, X)/G(Zp)/Q.
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The continuous right action of g ∈G(A) on Sh(G, X)/Q given by

(A, λ, θ, η) 7→ (A, λ, θ, η ◦ g(∞)) (3.4)

is identical to the right multiplication by g on Sh(G, X)(C) over C. Since multiplication by ξ ∈ F×
gives a self isogeny on A, the center Z(Q)⊂G(Q) acts trivially. By definition, the action factors
through G(A(∞)) =G(A)/G(R); so, the action factors through G(A)/Z(Q)G(R). Define

G = G(G, X) = {g ∈G(A) | det(g) ∈ A×F×F×∞+/F
×F×∞+}

and

E(G, X) = G(G, X)/Z(Q)G(R)+.

Here F×∞+ is the subgroup of totally positive elements in F∞ = F ⊗Q R. By (3.1) and (3.2),
we have π0(Sh(G, X)(C))∼= F×A(∞)/F

×
+
∼= F×A /F

×F×∞+ = lim←−K Cl+(K). The action of g ∈G(A)
permutes transitively connected components of Sh(G, X)(C). See [Hid04, Theorem 4.14] for the
following fact.

Theorem 3.3 (Shimura). The stabilizer in G(A)/Z(Q)G(R)+ of each geometrically irreducible
component of Sh(G, X) is given by E(G, X).

When we regard g ∈ E(G, X) as an automorphism of OSh or Sh(G, X)/Q, we write it as τ(g).

3.2 CM points

A point x= [z, g] ∈ Sh(G, X)(C) is called a CM point if z = (zσ)σ∈I ∈ X = (C− R)I ⊂ F ⊗Q C
generates a totally imaginary quadratic extension Mx = F [z]⊂ F ⊗Q C of F (a CM field
over F ). Set L= d−1 +Oz ⊂M ⊂ F ⊗Q C. We write O = Ox for the integer ring of Mx and
Ox = {α ∈Ox | αL⊂ L} (the order of L). Assume p is unramified in M/Q, L⊗Z Zp = Ox ⊗Z Zp
and Ox ⊗Z Zp = Ox ⊗Z Zp. Let Tx = Tz be the torus ResO(p)/Z(p)

Gm. The regular representation
ρz : Tx(Q) =M×x →G(Q) given by

(
αz
α

)
= ρz(α)

(
z
1

)
gives rise to a representation Tx/Z(p)

→
G/Z(p)

= ResO(p)/Z(p)
GL(2) because (1, z) gives rise to a basis of L⊗Z Z(p). Since A(∞) is a

Z(p)-algebra by the diagonal embedding, we may regard ρz as a representation ρ̂z : Tz→G defined
over A(∞). Now conjugating by g, we get ρ̂x : Tx/A(∞) →G/A(∞) defined over A(∞) given by
ρ̂x(α) = g−1ρ̂z(α)g. The abelian variety Ax has complex multiplication by Ox; that is, under the
action of Tx(Q) via ρ̂x, L̂ · g ∩ F 2 is identified with a fractional ideal of Mx prime to p.
On the other hand, the level structure ηx = ηz ◦ g identifies T (Ax) with L̂ · g = L̂c for a
polarization ideal c prime to p. Plainly ρ̂x(Tx(Q)) falls in G and hence fixes each geometrically
connected component of Sh. Since α ∈M× = Tx(Q) is a self isogeny α :Ax→Ax with α ◦ ηx =
ηx ◦ ρ̂x(α), τ(ρ̂x(α)) fixes x.

We let G(Q) act on the column vector space F 2 through the matrix multiplication. The
action of Tx via ρz on F 2 makes F 2 a vector space over Mx of dimension one. Then the subspace
Vx of F 2 ⊗Q C on which hz acts by its restriction µx = hz|Gm×1 is preserved by multiplication
by Mx, yielding an isomorphism class Σx of representations of Mx. Since the isomorphism class
Σx is determined by its diagonal entries σi :Mx ↪→ C, we may identify Σx with a formal sum∑

i σi. Since µx × µx = hz, we find that {σi, cσi}i=1,...,d (d= [F : Q]) is the total set Ix of complex
embeddings of Mx into C. The fiber A=Ax at x ∈ Sh(C) of the universal abelian scheme over
Sh has complex multiplication by Mx with CM type (Mx, Σx).
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3.3 Reciprocity law for deformation spaces
We start with a fixed CM point x= [z, g] and the associated CM abelian variety (Ax, λ, θ, η). We
suppose that θ :O ↪→ End(Ax) extends to θ : O ↪→ End(Ax) for the integer ring O of M . Write
(M, Σ) for (Mx, Σx) and follow the convention in the introduction. Diagonalizing the action
of M on Lie(Ax)/W , we may assume that σ ∈ Σ embeds O into W . Consider the reduction A0 of
Ax/W modulo mW . Suppose that A0 is ordinary (i.e., we suppose the conditions (cm1)–(cm2)
in the introduction). We pick a base of MA(∞) over FA(∞) and identify MA(∞) with F 2

A(∞) so

that the fixed lattice in the definition of P(p)
K is a fractional ideal of M . If x= [z, g], the choice

of g is tantamount to the choice of the base of MA(∞) over FA(∞) . Then the polarization λ
induces an alternating pairing (α, β) = TrM/F (δαc(β)) : L× L→ F for the unique nontrivial
automorphism c of M/F . Here δ ∈M is as in (d1)–(d2) of the introduction. We have the
polarization ideal cx given by c∗x = (L, L). We then have Ax(C) = L\(M ⊗Q R) for a fractional
ideal L⊂M with Lp = Op (identifying M ⊗Q R with CΣ through a⊗ t 7→ (σ(a)t)σ∈Σ). This
induces η(p) = η

(p)
z ◦ g(p) :M ⊗Q A(p∞) ∼= V (p)(Ax). By reduction modulo mW , η(p) induces a

prime-to-p level structure η(p)
0 on A0. Let (A, ιA, λ)/R be any deformation of (A0, ι0, λ0)/F over

a local Artinian W -algebra R. Since A[N ] for N prime to p is étale over Spec(R), the level
structure η(p)

0 at the special fiber extends uniquely to a level structure η(p)
A on A/R. Therefore,

for the deformation functor

P̂(R) = [(A, ιA, θ, λ, η
(p)
A )/R | (A, ιA, θ, λ, η

(p)
A ) mod mR = (A0, ι0, θ0, λ0, η

(p)
0 )],

the forgetful morphism (A, ιA, θ, λ, η
(p)
A )/R 7→ (A, ιA, θ, λ)/R of P̂ into the original deformation

functor P̂A0,i0,λ0 induces an isomorphism of functors; so, P̂ is represented by Ŝ in Proposition 2.1.

We take the Kottwitz model Sh(p)(G, X)/W representing (3.3) over W and consider x= [z, g]
as a point of Sh(p)(G, X)(W ). We have the universal abelian scheme A→ Sh(p). Let

Shord = Shord(G, X) = Sh(p)(G, X)
[

1
E

]
,

that is, we invert over Sh(p) a lift E of a power of the Hasse invariant H. The formal
completion Shord

∞ of Shord along Shord
1 = Shord ⊗W F is uniquely determined independently of

the choice of E and gives the ordinary locus of A. By (cm1)–(cm2) for (Mx, Σx), x is a
point of Shord

∞ (W ). We have the connected component V/W ⊂ Sh(p)
/W containing x ∈ Shord

∞ (W ); so,
V = lim←−K M(cx, K)/W . Then V/F = V ⊗W F is the connected component containing the point

x carrying (A0, ι0, θ0, λ0, η
(p)
0 ). Let p =

∏
v∈Σp

pv for the prime pv associated to the valuation
v ∈ Σp (and p =

∏
v∈Σp

pcv). Then we have i :
⋃
j p−j/O∼=Ax[p∞], which induces ηord

p :Op ∼=
Op
∼= HomZp(Qp/Zp, Ax[p∞]) = TAx[p∞]et. We can therefore extend η(p) to

ηord :Op × (Mx ⊗Q A(p∞))∼= TAx[p∞]et × V (p)(Ax).

Let K̂ be the field of fractions of W . Over the field K̂[µp∞ ], we can further extend ηord
p to

ηp :Op ×Op = Op
∼= TAx[p∞] by identifying i :

⋃
j

(p−j/O)⊗Z µpj
∼=Ax[p∞].

The map i∗ := i
−1 and i are adjoint under the Weil pairing. This choice is tantamount to the

choice of gp which brings the base of Lp to the base given by the two idempotent 1p := (1, 0) of Op

and 1pc := (0, 1) of Opc in Op ×Opc =Op ×Op. We write η = ηp × η(p) and ηord = ηord
p × η(p).
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Consider the formal completion V ord
∞ of V [1/E]/W along V ord

/F = V [1/E]/F, and recall the
Igusa tower Ig/V ord

∞
given (in [Hid10, § 3.3]) by

Ig/V ord
∞
∼= IsomO(µp∞ ⊗Z d−1

/V ord
∞
,Aord[p∞]◦/V ord

∞
).

We can think of the deformation of (A0, θ, ι0, λ0, η
ord
0 )/Fp for ηord

0 = ηord mod p. The p-part of

the level p-structure ηord
0 provides the canonical identification of the deformation space Ŝ with

Ĝm ⊗Z d−1. For any complete local W -algebra C and any deformation A/C of A0, A[p∞]et is
étale over Spec(C); so, again the deformation is insensitive to the ordinary level structure. Thus
we get

a canonical immersion ι : Ĝm ⊗Z d−1 ↪→ Ig such that ι∗Aord =Aord. (3.5)

Here Aord and Aord denote the universal test object over Ig and over Ŝ, respectively.

Write Ẑp[O] for the formal completion of Zp[O] at the origin 1 ∈ S(F) for S = Gm ⊗ d−1

(here Ẑp[O]∼= Zp[[(tξ1 − 1), . . . , (tξd − 1)]] for a base ξ1, . . . , ξd of O over Z). Identify Ẑp[O]
with the ring made up of series:

∑
ξ∈O a(ξ)tξ for a(ξ) ∈ Zp. Let T = ResO/ZGm. Since we have

Ĝm ⊗Z d−1 = Spf(Ẑp[O]), s ∈O×p = T (Zp) acts on Ŝ by the variable change t 7→ ts, which induces
an automorphism of the formal group Ĝm ⊗Z d−1.

The inclusion O ↪→O induces an identification of p-adic rings Op with Op which we fix in this
paper and use always in the following. Note that Op = Op ×Opc . This same inclusion: O ↪→O

induces an inclusion of Z(p)-tori T ↪→ Tx. Let T := Tx/T . By the identification above, the map
O×(p)→O×p given by α 7→ α1−c induces an injective homomorphism

T (Z(p))→O×p = T (Zp). (3.6)

Thereby, the action of T (Zp) on Ŝ and that of T (Z(p)) are compatible. The torus T (Z(p)) is
isomorphic to the image (under ρ̂x) of Tx(Z(p)) in E(G, X), and its action on Ŝ factors through
the action of the image of Tx(Z(p)) in E(G, X) on Ig via (3.5).

We regard Sh(p) as a (pro-)scheme over W. By the definition of ρ̂x given above, we have
α ◦ ηp = ηp ◦ ρ̂x(α). If α ∈ Tx(Z(p)), it acts on Ig as an automorphism via ρ̂x(α). We quote the
following fact from [Hid10, Proposition 3.4, Corollary 3.5].

Proposition 3.4. Let OIg,x/F be the stalk at the point x ∈ Ig(F) (carrying (Ax, λx, θx, η
(p)
x )×W

F) of the structure sheaf of Ig/F. If α ∈O×(p) (∼=Tx(Z(p))), then τ(ρ̂x(α)) fixes x and preserves

OIg,x/F. The effect of ρ̂x(α) on the canonical coordinate t ∈ Ŝ is given by t 7→ tα
1−c

.

Thus among the automorphisms t 7→ ts of Ŝ for s ∈O×p , those s= α1−c with α ∈O×(p) preserve

the p-integral W-structure coming from the Shimura variety Sh(p) (and the Igusa tower Ig).

3.4 Linear independence
To include modular forms in our scope, we need the datum of a nowhere vanishing differential.
We look into the following functor QK :

U 7→ [(A, λ, θ, η(p), ω)/U |A ∈ P ′K(U)∼= P(p)
K (U), π∗ΩA/U = (OU ⊗Z O)ω], (3.7)

where K is maximal at p and A= (A, λ, θ, η(p)) is chosen in P ′K(U). Then QK is represented
over W by a T -torsor MK(G, X) over Sh(p)(G, X)/K. The torus T = ResO/ZGm acts on QK
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by ω 7→ tω for t ∈ T (OU ) = (OU ⊗Z O)×. Choose a nowhere vanishing differential ω0 on A0 =
Ax ⊗W F, and consider the formal completion M̂K ofMK along the closed point corresponding
to (A0, λ0, θ0, η

ord
0 , ω0), which is a formal T̂ -torsor over Ŝ = V̂x. Here T̂ is the formal completion

of T along the origin. Over W , once we choose a level p∞-structure ηord
p , it naturally induces

an isomorphism of formal groups η : Âx ∼= Ĝm ⊗Z d−1 = Spf(Ŵ [qξ]ξ∈O), which in turn gives a
canonical differential ωp on Ax/W with ωp|Âx = η∗dq/q. This ηord

p 7→ ωp splits the formal T̂ -torsor

M̂K into a product T̂ ×W Ŝ over Ŝ ∼= Ĝm ⊗ d−1. Thus the deformation functor

Q̂(R) = [(A, λ, θ, ηord, ω)/R | (A, λ, θ, ηord, ω)×R F = (A0, λ0, θ0, η
ord
0 , ω0)]

for Artinian local W -algebras R with residue field F is pro-represented by Ŝ × T̂ . In the above
discussion, we may actually allow K of p-power level in (3.7) as long as K contains the
monodromy group U∞ of the infinity cusp in G(Zp) ∩ G(G, X), replacing V ⊂ Sh(p)(G, X) by
the Igusa tower over V ord and the level structure η(p) = η(p)K(p) by ηordK(p). In this slightly more
general case, the functor is again represented by a formal scheme Ŝ × T̂ , where Ŝ is identified
with infinitesimal neighborhood of x in the Igusa tower. Therefore in the following, we allow
modular forms of finite p-power level of type Γ1(pr).

We identify the character group X∗(T ) of T with the module of formal linear combinations
κ=

∑
σ κσσ (κσ ∈ Z) for field embeddings σ : F ↪→Q so that xκ =

∏
σ σ(x)κσ (x ∈ T (Q)). For

each character κ of T and a p-adic W -algebra R, we write Gκ(R) for the κ−1-eigenspace of OM/R.
Thus Gκ(R) is the union of R-integral modular forms of weight κ and of finite level (of Γ1(N)-
type for all positive integers N). Since p is unramified in O, T is smooth over Zp and is
diagonalizable over Zp. Therefore we have OM/W =

⊕
κ Gκ(W ). By the above splitting, we may

regard Gκ(R)⊂O
Ŝ/R

. In particular, a ∈ Tx(Zp) acts on f ∈Gκ(F) through the identification

T (Zp) = AutO(Ŝ/F), and we have a(f) ∈ O
Ŝ/F. We write t− 1 = (tj − 1)j for the parameter at 1

of Ŝ. Each φ ∈Gκ(R) has t-expansion given by

φ(t) = φ(Aord) ∈R[[t− 1]].

We quote the following result proven in [Hid10, Corollary 3.21].

Theorem 3.5. Fix a weight κ > 0. Let a0, . . . , an ∈ Tx(Zp) and suppose that aia
−1
j 6∈ Tx(Q)

for all i 6= j. Let I ⊂ {0, 1, 2, . . . , n} be a subset of indices, and choose 0 6= hi ∈Gκ(F) with
hi(x) 6= 0 for each i ∈ I. Let J be another finite index set. Then if {hi, fij ∈Gκ(F)}j∈J are
linearly independent over F for each i ∈ I, then {ai(fij)}i∈I,j∈J in O

Ŝ/F are linearly independent
over F.

When κ is parallel, a canonical choice of hi is Hκ for a Hasse invariant Hκ. The Hasse invariant
H satisfies H(t) = 1. Since H is invertible on Shord, for any given parallel weight κ=

∑
σ kσ

(k ∈ Z), we have Hκ ∈Gκ(F) such that Hκ(t) = 1.

4. Eisenstein and Katz measure

We recall the Fourier expansion of Eisenstein series and Eisenstein measure from [Kat78a].

4.1 Geometric modular forms
Recall a∗ = a−1d−1 for each ideal a⊂ F . For a fixed fractional ideal c prime to p of F , we consider
the following triples (A, λ, i)/S formed by:
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– an abelian scheme π :A→ S with an algebra homomorphism: O ↪→ End(A/S) making
π∗(ΩA/S) a locally free O ⊗Z OS-module of rank one;

– an O-linear polarization λ :At ∼=A⊗ c (as explained in [Hid10, §§ 2.4 and 4.1], this condition
is equivalent to λ having polarization ideal c);

– we have an O-linear closed immersion i= ipn : µpn ⊗Z d−1 ↪→A[pn] of group schemes.

The Hilbert modular variety M(c, pn) := M(c, K)/W is the coarse moduli scheme of the functor
P(S) = [(A, λ, i)/S ] from the category of W-schemes S into the category SETS, where

K =
{
g =

(
a b
c d

)
∈G(A(∞)) | gL̂c = L̂c, c ∈ pnÔ, ap ≡ 1 mod pnOp

}
,

and we call (A, λ, i)∼= (A′, λ′, i′) if we have an O-linear isomorphism φ :A/S →A′/S such that
λ′ = (φ⊗ 1) ◦ λ ◦ φt and φ ◦ i= i′. The quasi projective scheme M(c, pn) is a fine moduli if n� 0.

We could insist that π∗(ΩA/S) is free over OS ⊗Z O, and taking a generator ω with
π∗(ΩA/S) = (OS ⊗Z O)ω, we consider the following functor (A, λ, i, ω):

Q(S) = [(A, λ, i, ω)/S ]. (4.1)

We let a ∈ T (S) =H0(S, (OS ⊗Z O)×) act on Q(S) by (A, λ, i, ω) 7→ (A, λ, i, aω); so, Q is a
T -torsor over P; so, Q is representable by a scheme M=M(c, pn)/W affine over M = M(c, pn).
By definition, M is a T -torsor over M. For each character κ ∈X∗(T ) = Homgp-sch(T,Gm)
and a given W-algebra R, if F 6= Q, the κ−1-eigenspace of H0(M/R,OM/R) is the space of
modular forms of weight κ integral over R, whereM/R =M×Z Spec(R). We write Gκ(c, pn;R)
for this space of R-integral modular forms, which is an R-module of finite type. An element
f ∈Gκ(c, pn;R) may be regarded as a morphism of functors: Q→Ga; so, it is a rule assigning
an element in an R-algebra C to each quadruple (A, λ, i, ω)/C satisfying the following three
conditions:

(G1) f(A, λ, i, ω) = f(A′, λ′, i′, ω′) ∈ C if (A, λ, i, ω)∼= (A′, λ′, i′, ω′) over C;

(G2) f((A, λ, i, ω)⊗C,ρ C ′) = ρ(f(A, λ, i, ω)) for each ρ ∈HomR-alg(C, C ′);

(G3) f(A, λ, i, aω) = κ(a)−1f(A, λ, i, ω) for a ∈ T (C).

When F = Q, we need to take the subsheaf of sections with logarithmic growth towards cusps.
We fix a fractional ideal c prime to p and take two ideals a and b prime to p such that ab−1 = c.

To this pair (a, b), as in [Kat78a, § 1.1], we can attach the Tate AVRM Tatea,b(q) defined over
the completed group ring Z((ab)) made of formal series f(q) =

∑
ξ�−∞ a(ξ)qξ (a(ξ) ∈ Z). Here

ξ runs over all elements in ab, and there exists a positive constant C0 (dependent on f) such
that a(ξ) = 0 if σ(ξ) + C0 < 0 for some σ ∈ I. We write R[[(ab)>0]] for the subring of R((ab))
made of formal series f (having coefficients in R) with a(ξ) = 0 for all ξ with σ(ξ)< 0 for at least
one embedding σ : F ↪→ R. The scheme Tate(q) can be extended to a semi-abelian scheme over
Z[[(ab)>0]] with special fiber Gm ⊗ a∗ at the augmentation ideal A. As described in [Kat78a, § 1.1]
(see also [Hid10, § 4.1]), Tatea,b(q) has a canonical c-polarization λcan, a canonical level structure
ican : µp∞ ↪→ Tatea,b(q)[p∞] and a canonical differential ωcan. Thus we can evaluate f ∈Gκ(c;R)
at (Tatea,b(q), λcan, ican, ωcan). The value f(q) = fa,b(q), if F 6= Q, actually falls in R[[(ab)>0]] by
Koecher’s principle and is called the q-expansion at the cusp (a, b). When F = Q, we impose f
to have values in R[[(ab)>0]] (the logarithmic growth condition).

We can think of a functor

Q̂(R) = [(A, λ, ip)/R]
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similar to Q in (3.7) defined over the category of p-adic W -algebras R= lim←−n R/p
nR. The only

difference here is that we consider an isomorphism of Barsotti–Tate groups ip : µp∞ ⊗Z d−1 ∼=
A[p∞]◦ (in place of a differential ω), which induces an isomorphism Ĝm ⊗ d−1 ∼= Â formal
schemes. It is a theorem (due to Deligne–Ribet and Katz) that this functor is representable
by the formal completion M̂(c, p∞)/W of M(c, p∞) = lim←−n M(c, pn) along its mod p fiber. Thus
we can think of p-adic modular forms f/R which are functions of (A, λ, ip)/C (for any p-adic
R-algebra C) satisfying the following conditions:

(Gp1) f(A, λ, ip) = f(A′, λ′, i′p) ∈ C if (A, λ, ip)/C ∼= (A′, λ′, i′p)/C ;
(Gp2) f((A, λ, ip)⊗C,ρ C ′) = ρ(f(A, λ, ip)) for each R-algebra homomorphism ρ : C→ C ′;
(Gp3) fa,b(q) ∈R[[(ab)>0]] for all (a, b) prime to p.

We write V (c;R) for the space of p-adic modular forms satisfying (Gp1)–(Gp3). This V (c;R) is
a p-adically complete R-algebra. We have the q-expansion principle valid both for classical and
p-adic modular forms f (see [DR80], [Hid04, Theorem 4.21] and [Hid09]):

(q-exp) the q-expansion: f 7→ fa,b(q) ∈R[[(ab)>0]] determines f uniquely.

Since Gm ⊗ d−1 = Spec(Z[tξ]ξ∈O) has a canonical invariant differential dt/t, we have ωp = ip,∗dt/t
on A. This allows us to regard each f ∈Gκ(c;R) as a p-adic modular form by putting

f(A, λ, ip) = f(A, λ, ωp).

We thus have a canonical embedding: Gκ(c;R) ↪→ V (c;R) preserving q-expansions.
Over C, the category of quadruples (A, λ, i, ω) with c-polarization λ is equivalent to the

category of triples (L, λ, i) made of the following data (see [Hid10, § 4.1]): L is an O-lattice in
O ⊗Z C = CI , an alternating form λ : L ∧O L ∼= c∗ and i : p−nd−1/d−1 ↪→ FL/L. The form λ is
supposed to be positive in the sense that λ(u, v)/Im(uvc) is totally positive in O ⊗Z R = RI .
The differential ω can be recovered by ι :A(C) = CI/L so that ω = ι∗du where u= (uσ)σ∈I is
the variable on CI . Conversely, if we start with a triple (A, λ, ω)/C,

LA =
{∫

γ
ω ∈O ⊗Z C | γ ∈H1(A(C), Z)

}
is a lattice in CI , and the polarization λ :At ∼=A⊗ c induces LA ∧ LA ∼= c∗. Using this
equivalence, we can relate our geometric definition of Hilbert modular forms with the classical
analytic definition. Recall Z which is the product Z = HI of I copies of the upper half complex
plane H. For a cusp (a, b) and each z ∈ Z, we define Lz = 2π

√
−1(bz + a∗)⊂ CI ,

λz(2π
√
−1(az + b), 2π

√
−1(cz + d)) =−(ad− bc) ∈ c∗

and iz : p−nd−1/d−1 = (pna)∗/a∗→ FLz/Lz by iz(a mod d−1) = 2π
√
−1a mod Lz.

Consider the following congruence subgroup Γ11(pn; a, b) given by{(
a b
c d

)
∈ SL2(F ) | a, d ∈O, b ∈ (ab)∗, c ∈ pnabd and d− 1 ∈ pn

}
.

Write Γ11(c; pn) = Γ11(pn;O, c−1). We let g = (gσ) ∈ SL2(F ⊗Q R) = SL2(R)I act on Z by linear
fractional transformation of gσ on each component zσ. Then

(Lz, λz, iz)∼= (Lw, λw, iw)⇐⇒ w = γ(z) for γ ∈ Γ11(pn; a, b).

This implies
M(c, pn)(C)∼= Γ11(c; pn)\Z canonically.
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The set of pairs (a, b) with ab−1 = c is in bijection with the set of cusps of Γ11(c; 1). Two cusps
are equivalent if they transform each other by an element in Γ11(c; pn). A standard choice is
(O, c−1), which we call the infinity cusp of M(c, pn). For each ideal t, (t, t−1c−1) gives another
cusp. The two cusps (t, t−1c−1) and (s, s−1c−1) are equivalent under Γ11(c; pn) if t = αs for an
element α ∈ F× with α≡ 1 mod pnOp in F×p .

Recall the identification X∗(T ) with Z[I] so that κ(x) =
∏
σ σ(x)κσ . Regarding f ∈

Gκ(c, pn; C) as a holomorphic function of z ∈ Z by f(z) = f(Lz, λz, iz), it satisfies

f(γ(z)) = f(z)
∏
σ

(cσzσ + dσ)κσ for all γ =
(
a b
c d

)
∈ Γ11(c; pn). (4.2)

The holomorphy of f follows from (G2), and f ∈ Gκ(c, pn; C) has the Fourier expansion

f(z) =
∑

ξ∈(ab)>0

a(ξ)eF (ξz)

at the cusp corresponding to (a, b). Here eF (ξz) = exp(2π
√
−1
∑

σ ξ
σzσ). This Fourier expansion

equals the q-expansion fa,b(q) replacing eF (ξz) by qξ.
Shimura studied in his theory of arithmetic of Hecke L-values the effect on modular forms of

the following differential operators on Z indexed by κ ∈ Z[I]:

δσκ =
1

2π
√
−1

(
∂

∂zσ
+

κσ
zσ − zσ

)
and δkκ =

∏
σ

(δσκσ+2kσ−2 · · · δσκσ), (4.3)

where k ∈ Z[I] with kσ > 0. To describe rationality property of δkκ in [Shi00, III] and [Shi75],
we recall the two embeddings i∞ : Q ↪→ C and ip : Q ↪→ Cp fixed in the introduction. Recall
W = i−1

p (W ), which is a discrete valuation ring. Let A := (A, λ, ω, i)/W be an ordinary quadruple
of CM type (M, Σ) (having complex multiplication by the integer ring O⊂M). The complex
uniformization: ι :A(C)∼= CΣ/Σ(A) induces a canonical base ω∞ = ι∗du of ΩA/C over O⊗Z R,
where u= (uσ)σ∈Σ is the standard variable on CΣ and Σ(A) = {(σ(a))σ∈Σ ∈ CΣ | a ∈ A}. We
define the periods Ω∞ ∈ CΣ =O ⊗Z C by ω = Ω∞ω∞. Here is the rationality result of Shimura:

(δkκf)(A, λ, ω∞, i)
Ωκ+2k
∞

= (δkκf)(A, λ, ω, i) ∈Q for f ∈Gκ(c, pn;W). (S)

Katz gave a purely algebro-geometric definition of the operator (see [Kat78a, ch. II]).
Using this algebraization of δkκ, he extended the operator to geometric modular forms and
p-adic modular forms. We write his operator corresponding to Shimura’s operator δk∗ as dk :
V (c, pn;R)→ V (c, pn;R). The level p-structure ip : µp∞ ⊗ d−1 ↪→A[p∞] induces an isomorphism

ιp : Spf(Ŵ [qξ]ξ∈O) = Ĝm ⊗Z d−1 ∼= Â for the p-adic formal group Â/W at the origin. Then ω =
Ωpωp (Ωp ∈O ⊗Z W =WΣ) for ωp = ιp,∗dq/q. An important formula given in [Kat78a, (2.6.7)]
is

(dkf)(A, λ, ωp, i)
Ωκ+2k
p

= (dkf)(A, λ, ω, i) = (δkκf)(A, λ, ω, i) ∈W = Q ∩W for f ∈Gκ(c, pn;W).

(K)
Let t be the canonical variable of the deformation space Ŝ of A0 =A×W F. Identifying Ŝ with
Ĝm ⊗Z d−1 via ip, t is the character 1 ∈O =X∗(Gm ⊗Z d−1) = Hom(Gm ⊗Z d−1,Gm). Write
S = Gm ⊗Z d−1. We have Ŝ = Spf( ̂W [X(S)]) for the completion ̂W [X(S)] at the augmentation
ideal of the monoid algebra W [X(S)] =W [O] (X(S) = Homalg−gp(S,Gm)), where W [O] is the
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ring of formal finite sums
∑

ξ∈O a(ξ)tξ (a(ξ) ∈W ). We have the following interpretation of dκ:

dκ
∑
ξ

a(ξ)tξ =
∑
ξ

a(ξ)ξκtξ. (4.4)

See [Hid10, (4.5)] for a proof of (4.4). Similarly, by [Kat78a, (2.6.25)], the effect of dκ on
q-expansion is

dκ
∑
ξ

a(ξ)qξ =
∑
ξ

a(ξ)ξκqξ. (4.5)

For each f ∈ V (c, pn;R) (for a p-adic algebra R), we call the expansion

f(t) := f(A, λ̂, î) =
∑
ξ∈O

a(ξ, f)tξ

as an element of R̂[O] a t-expansion of f . Hereafter, we write this ring symbolically as R[[tξ]]ξ∈O.
Choosing a Z-base {aj} of O, Tj = taj − 1 gives a complete set of local parameters at the
point x ∈ M̂(c, pn)/R given by A and R̂[O]∼=R[[T1, . . . , Td]]. We have the following t-expansion
principle.

(t-exp) The t-expansion: f 7→ f(t) ∈R[[tξ]]ξ∈O determines f uniquely.

The Taylor expansion of f with respect to the variables T = (Tj) can be computed by applying
differential operators ∂j = ∂/∂Tj and evaluating the result at x=A. Since ∂j is a linear
combination of the dσ with coefficients in the field of fractions of R as long as R is of characteristic
0, we have, for f, g ∈ V (c, pn;W ),

dκf(A) = dκg(A) for all κ> 0⇐⇒ f(t) = g(t). (4.6)

4.2 The q-expansion of Eisenstein series
Let φ :Op ×Op→ C be a locally constant function such that φ(ε−1x, εy) =N(ε)kφ(x, y) for all
ε ∈O×, where k is a positive integer. We suppose that all a, b and c are prime to p. We regard φ
as a function on X × Y with X = Y =Op. We put Xα =O/pαO and define the partial Fourier
transform

Pφ : (Fp/d−1
p )× Y =

{⋃
α

p−αd−1/d−1

}
× Y → C

of φ, taking α so that φ factors through Xα × Y , by

Pφ(x, y) =

{
p−α[F :Q]

∑
a∈Xα φ(a, y)eF (ax) if x ∈ p−αd−1/d−1,

0 if x 6∈ p−αd−1/d−1,
(4.7)

where eF is the standard additive character of FA restricted to the local component Fp at p.
We construct an Eisenstein series Ek(z; φ) for a positive integer k and φ as above as a

function of triples (L, λ, i) we have studied in the previous subsection. Actually k indicates the
parallel weight κ=

∑
σ kσ; so, we sometimes write Eκ for Ek. Here i : Fp/d−1

p ↪→ p−∞L/L is
the level p∞-structure. We define an Op-submodule PV(L)⊂ L⊗O Fp specified by the following
conditions:

(pv) PV(L)⊃ L⊗O Op and PV(L)/(L ⊗O Op) = Im(i).

Consider i−1 : PV(L)� PV(L)/(L ⊗O Op)∼= Fp/d
−1
p . By Pontryagin duality under Tr ◦ λ, the

dual map i′ of i gives rise to i′ : PV(L)�Op. Then we may regard Pφ as a function
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on p−∞L ∩ PV(L) = (
⋃
α p
−αL) ∩ PV(L) by

Pφ(w) =

{
Pφ(i−1(w), i′(w)) if (w mod L) ∈ Im(i),
0 otherwise.

(4.8)

For each w = (wσ) ∈ F ⊗Q C = CI , the norm map N(w) =
∏
σ∈I wσ is well defined. Writing

L= (L, λ, i) for simplicity, we define the value Ek(L; φ, c) by

Ek(L; φ, c) =
{(−1)kΓ(k + s)}[F :Q]√

|DF |

∑′

w∈p−∞L/O×

Pφ(w)
N(w)k|N(w)|2s

∣∣∣∣
s=0

. (4.9)

Here ‘
∑′’ indicates that we are excluding w = 0 from the summation. This type of series for φ

with φ(a, 0) = 0 for all a is convergent when the real part of s is sufficiently large and is continued
to a meromorphic function well-defined at s= 0. If φ(a, 0) = 0 for all a, the function Ek(c, φ)
gives an element in Gκ(c, p∞; C) (κ= k

∑
σ:F ↪→Q σ) without constant term in its q-expansion,

and as computed in [Kat78a, Chapter III] the expansion is given by

N(a)−1Ek(φ, c)a,b(q) =
∑

0�ξ∈ab

∑
(a,b)∈(a×b)/O×

ab=ξ

φ(a, b)
N(a)k

|N(a)|
qξ. (4.10)

4.3 Eisenstein measure
We recall the Eisenstein measure in [Kat78a] with values in V (c;W ). Recall p =

∏
P∈Σp

P.
We split Op = Op ×Opc

∼=Op ×Op and write the variable on Op as (x; y) for x, y ∈Op. Here
Op =

∏
P∈Σp

OP. We take the closure O× in Op. We let ε ∈O× act on Op by multiplication:
ε(x; y) = (εx; εy). Then we define T = Op/O× and T× = O×p /O

×.
For each continuous function φ(x; y) on T×, we consider

φ◦(x; y) := φ(x−1; y). (4.11)

The map φ 7→ φ◦ is a bounded linear operator acting on the space C(T×;W ) of all continuous
functions on T× with values in W into the space of continuous functions on O×p ×O×p with values
in W invariant under the following modified action of O×. Indeed the function φ◦ satisfies the
following property:

φ◦(εx; ε−1y) = φ◦(x; y) for all ε ∈O×.
This is the property required to define Eisenstein series (for even weight k) in the previous
subsection. Then there exists a unique measure Ec : C(T×;W )→ V (c;W ) with the following two
properties.

(E1) If φ has values in Q equipped with the discrete topology, then for each positive integer
k > 0,

Ec(N−kφ) = Ek(φ◦; c),
where N : T → Z×p is given by N(x; y) =NF/Q(x) for the norm map NF/Q :Op→ Zp.

(E2) The q-expansion of Ec(φ) at the cusp (a, b) is given by

N(a)
∑

0�ξ∈ab

qξ
∑

(a,b)∈(a×b)/O×,ab=ξ

φ◦(a; b)|N(a)|−1,

where |N(a)| is the (complex) absolute value of the norm N(a) of a ∈ a, and ε ∈O× acts on
(a, b) ∈ (a× b)/O× ⊂ T by (a, b) 7→ (εa, ε−1b).

The existence and the uniqueness of the measure Ec is a consequence of the q-expansion principle.
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4.4 Katz measure
We evaluate p-adic modular forms f at any test object (A, λ, ip)/W defined over W . This gives
rise to a linear form Ev : V (c;W )→W given by Ev(f) = f(A, λ, ip). The evaluation Ev ◦Ec

is a bounded measure on C(T ;W ) with values in W . Now we choose a specific test object.
Let x= [z, g] be an ordinary CM point of the Shimura variety. We take the abelian scheme
(A, λ, ip) sitting over x ∈M(c, p∞). Thus A is of CM type (M =Mx, Σ). For a lattice A⊂M ,
let Σ(A) = {(aσ)σ∈Σ ∈ CΣ | a ∈ A} which is a lattice in CΣ. The complex manifold A(C) is given
by CΣ/Σ(A) and we can find a model A defined over W. The model with p∞ level structure ip
is unique (up to isomorphisms; see [Hid10, § 4.3]). We write this model A(A)/W .

We recall briefly the construction of the Katz measure interpolating the L-values of arithmetic
Hecke characters of conductor dividing p∞. We suppose the following four conditions.

(i) The ideal A is a fractional ideal of M prime to p.

(ii) Choose δ ∈M as in (d1)–(d2). Then the alternating form 〈u, v〉= (ucv − uvc)/2δ induces
c(AAc)−1-polarization λ= λ(A) on A(A).

(iii) Identify Mp = Fp via F ⊂M , and compose ip : µp∞ ⊗ d−1 ∼=A(O)[p∞] with the isogeny
A(O)→A(A) inducing the identity: Mp/Ap =Mp/Op (as A is prime to p). In this way, we get
i′p : µp∞ ⊗ d−1 ∼=A(A)[p∞]. We put i(A)(x) = i′p(2δx).

(iv) Fix a differential ω = ω(O) on A(O)/W so that H0(A(O), ΩA(O)/W) = (W ⊗Z O)ω. Since
Ap = Op, A(O ∩ A) is an étale covering of both A(A) and A(O); so, ω(O) induces a differential
ω(A) first by pull-back to A(O ∩ A) and then by pull-back inverse from A(O ∩ A) to A(A).

As long as the projection π :A(O ∩ A)�A(A) is étale, the pull-back inverse (π∗)−1 :
ΩA(O∩A)/W → ΩA(A)/W is a surjective isomorphism. We thus have

H0(A(A), ΩA(O)/W) = (W ⊗Z O)ω(A).

Let Z = ClM (p∞) = lim←−n ClM (pn) for the ray-class group ClM (pn) of M modulo pn, and write
ClM (1) as ClM . Identifying Op (respectively Opc) with the first (respectively last) component
Op of Op, we bring T× into Z. Then we have the exact sequence:

T×
ι−→ Z→ ClM → 1 with finite kernel Ker(ι).

We write [A] for the image of the class of an ideal A prime to p in Z. For α ∈O, we have
[(α)] = α−1, where the right-hand side is the image of the inclusion O×p → Z. Choosing a complete
representative set {A} for ClM , we have a decomposition Z =

⊔
A Im(ι)[A]−1. For each function

φ ∈ C(Z;W ), we define φA ∈ C(T ;W ) in the following way: φA(t) = φ(t[A]−1) for t ∈ T× and
extend it by 0 outside T×. Then define∫

Z
φ dϕ=

∑
A

∫
T
φA dEcA(A(A), λ(A), i(A)), (4.12)

where cA = c(AAc)−1. We write EA(φ) for EcA(φ) for functions φ ∈ C(T×;W ).

5. Proof of Theorem II

Recall the quadratic CM extension M/F and the CM types (Σ, Σp) introduced in § 1. As
explained in the introduction, we may (and will) assume that M/F is everywhere unramified
at finite places and that the branch character ψ0 has prime-to-p conductor 1 and order prime
to p; so, ψ0 has values in W (F). Take, as a base ring, a sufficiently large discrete valuation
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ring W ⊂ Cp over W (F). We write ψ for an arithmetic Hecke character with ψ̂|∆ = ψ0 having
prime-to-p conductor 1. We now prove Theorem II, and the proof concludes in § 5.5.

5.1 Splitting the Katz measure
We recall the splitting of the Katz measure introduced in [Hid10, § 5.1] to compute
the q-expansion of corresponding Eisenstein series. We assume that p > 2. Let the triple
(A(A), λ(A), i(A)) be the abelian variety of CM type (M, Σ) with the polarization ideal
cA = c(AAc)−1 as in § 4.4. We consider the measure EA : φ 7→

∫
T φ dEcA(A(A), λ(A), i(A)) (on

the image of T× in ClM (p∞)). For α ∈M prime to p, as seen in [Hid10, (5.1)], we have∫
T×

φ(αt) dEA(t) =
∫
T×

φ(t) dEαA(t), (5.1)

where α(x; y) = (αx, αa; αcy, αcb) for t= (x; y).
For each function φ on Im(ι)[A]−1, we define

φA(x) = φ(x[A]−1). (5.2)

Now we decompose, for an open subgroup H of T× containing Ker(ι),

ι(T×)[A]−1 =
⊔
B

ι(H)[B]−1⇐⇒ T× =
⊔
B

H[B−1A].

Thus, we have∫
T×

φA(t) dEA(t) =
∑
B

∫
T×

χH[B−1A]φA(t) dEA(t)

=
∑
B

∫
T×

χH(t[BA−1])φB(t[BA−1]) dEA(t) =
∑
B

∫
T
χH(t)φB(t) dEB(t),

where χH is the characteristic function of H. Note here that we have B = αA for α ∈M×.
Recall the decomposition Z = Γ×∆ in [Hid10, § 5.1] such that the following two conditions

hold.

(i) The group Z = Γ×∆ with torsion-free Γ and a finite group ∆.
(ii) The groups Γ and ∆ are stable under c.

For each z ∈ Z, we define π−(z) = [z]− := z1−c. Recall the torus Tx = ResM/QGm ⊂G fixing the
closed point x ∈ Shord over (A(O), λ(O), i(O)) ∈ V and its quotient T as in (3.6) (with
the injection: T (Z(p)) ↪→ T (Zp) =O×p sending α ∈ Tx(Z(p)) to α1−c ∈O×p ). We have an exact
sequence:

1→O×p /O
×→ Z→ ClM → 1,

where ClM is the class group of M . Since O× is a subgroup of O× of finite index and p is
unramified in M/Q, π−(O×) is a finite group of order prime to p. By this fact, we see that

Γ− ∩ π−(O×p /O
×) ↪→O×p [−1]∼=O×p ,

where O×p [−1] = {a ∈O×p | c(a) = a−1}. In particular, identifying Op with Op, for a principal
ideal (α) prime to p, [(α)]− = αc−1

p ∈ T (Zp) = O×p =O×p , where p =
∏

p∈Σp
p. Therefore we have,

regarding T (Z(p))⊂ T (Zp) =O×p by (3.6),

[A]− ∈ T (Z(p))⇐⇒ [A] ∈ {[(α)] | α ∈O×(p)} · (Γ
+ ×∆+)⊂ Z, (5.3)

where ∆+ =H0(Gal(M/F ),∆), and O(p) ⊂M is the localization (not the completion) of O at p.
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The translation φ(z) 7→ φ(zζ) by ζ ∈ Z gives an action of Z on the space of continuous
functions C(Z;W ) on Z with values in W . For each character ψ of Z, we write C(Z;O)[ψ]
for the ψ-eigenspace. Then the restriction of continuous functions on Z to Γ gives rise to an
isomorphism Res : C(Z;W )[ψ]∼= C(Γ;W ). We write Infψ for Res−1. For a given measure ϕ on Z,
the ψ-projection ϕψ ∈W [[Γ]] is defined by∫

Γ
φ dϕψ =

∫
Z

Infψφ dϕ.

By definition, we have
∫

Γ φ dϕψε =
∫

Γ φε dϕψ if ε factors through Γ.
More generally, for any finite order character ε of H ∼= Zrp with values in W× and a measure ϕ

on H, we define ϕε = ε ∗ ϕ by
∫

Γ φ dϕε =
∫

Γ φε dϕ. It is plain that µ(ϕ) = µ(ϕε). However, if we
have a nontrivial projection π :H →H ′ for H ′ ∼= Zsp (0< s < r) and if ε does not factor through π,
we often have µ(π∗ϕ) 6= µ(π∗(ε ∗ ϕ)) as the convolution product ϕ 7→ ε ∗ ϕ does not commute with
the push-forward along π. Since 06 µ(ϕ)6 µ(π∗(ε ∗ ϕ)) for any ε, we get the following lemma.

Lemma 5.1. We have µ(ϕ) = 0 if and only if lim infε µ(π∗(ε ∗ ϕ)) = 0, where ε runs over all finite
order characters of H.

5.2 Good representatives
We want to choose good representatives D so that D ∼= Z/Γ′ for the intersection Γ′ of Γ and
the image of O×p . Let I(p) be the group of fractional ideals of M prime to p, and define
I(p)+ = {A ∈ I(p) | A1−c = α1−cO for α ∈M×}. Since A is prime to p, α1−c is prime to p. Thus
if a prime factor P of p divides the principal ideal (α), its conjugate Pc divides (α) with the
equal multiplicity. Thus α= βγ for γ ∈ F× with β prime to p, as M/F is everywhere unramified.
In other words, (β1−c) = (α1−c) = A1−c, and hence we can write

I(p)+ = {A ∈ I(p) | A1−c = α1−c
A O for αA ∈M× prime to p}. (5.4)

The quotient of I(p)+ by principal ideals prime to p is a subgroup of the class group ClM
of M . If A ∈ I(p)+, we have (Aα−1

A )c = Aα−1
A . Since M/F is everywhere unramified, this group

is the image ClF of ClF in ClM . We see easily that

ClF =
I(p)+

principal ideals
⊂H0(Gal(M/F ), ClM ).

We take a complete representative set D− (respectively D+) for ClM/ClF (respectively ClF in
F -ideals). Hereafter, as convention, we use lower case Gothic letters for fractional F -ideals and
upper case for a fractional M -ideal (which may come from an F -ideal). Thus we write a ∈D+

since we have chosen a representative in D+ from F -ideals. We write Γ′ for the intersection of Γ
with the image of O×p in the group Z = ClM (p∞). Write D for a complete representative set in
the localization (not the completion) O×(p) for π(O×p )/Γ′ with the projection π : O×p → Z. Then
we have ∫

Z
φ dϕ=

∑
a∈D+

∑
α∈D

∑
B∈D−

∫
Γ′
φaαB(z) dEaαB.

5.3 Operation by ideals on p-adic modular forms
The Katz measure is a finite sum of evaluation of the Eisenstein measure at different CM points.
We introduce two algebraic operations by ideals on modular forms in order to make the evaluating
CM point unique.
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Central action. Since we have, for an O-ideal a prime to the level pn of (A(B), λ(B), i(B))

A(Ba)(C) = CΣ/Σ(aB) = CΣ/Σ(B)⊗O a =A(B)(C)⊗O a,

we conclude A(aB) =A(B)⊗O a. There is another construction of A(A)⊗ a: tensoring A(B)
with the exact sequence, a ↪→O�O/a, we get another one,

0→ Tor1(O/a, A(B)) i−→A(B)⊗O a→A(B)→ 0.

Since O is a Dedekind domain, we have Tor1(O/a, A(B))∼=A(B)[a] canonically. Thus i brings
A(B)[a] onto (A(B)⊗O a)[a]. Since λ(B) is a cB-polarization for cB = c(BBc)−1, we have

A(B)t
λ(B)−−−→A(B)⊗ cB. This induces

λ(B)⊗ a : (A(B)⊗ a)t ∼=A(B)t/A(B)t[a]∼= (A(B)⊗O cB)⊗O a−1 = (A(B)⊗O a)⊗ caB.

We check λ(B)⊗ a = λ(aB). Since a is prime to p, the quotient process does not alter the level
structure; so, i(B) induces i(aB) = i(B)⊗ a.

The above process of making (A(aB), λ(aB), i(aB)) can be performed for general triples
(A, λ, i) (even without complex multiplication) and yields a functorial map from test object
(A, λ, i) with polarization ideal c to test objects (A⊗O a, λ⊗ a, i⊗ a) with polarization ideal
ca−2. For a p-adic modular form f ∈ V (ca−2,N;R), we define f |〈a〉 ∈ V (c,N;R) by

f |〈a〉(A, λ, i) = f(A⊗O a, λ⊗ a, i⊗ a) (5.5)

for a fractional ideal a of F prime to N (see [Hid04, 4.1.9]). This shows∫
Γ′
φaB dEaB = (E(χΓ′φaB)|〈a〉)(A(B), λ(B), i(B)) for E = EcaB

, if a⊂ F . (5.6)

Level raising action. We can construct another operator [q] : V (cq,N;R)→ V (c,Nq;R) in the
following way. Here we assume that q is an integral ideal prime to cp. For each test object
(A, λ, ω, i)/C (over a p-adic R-algebra C) of level Nqp∞ with polarization ideal c, we define
a new test object (A′, λ′, ω′, i′). First define A′ =A/i(q∗/d−1). The quotient exists over C,
since i(q∗/d−1) is an étale subgroup of A (because C is a p-adic ring). The level structure
i : (Fp/d−1

p )× ((Nq)∗/d−1)→A composed with the quotient map π :A→A′ induces, modulo
q∗/d−1, the level structure i′ : Fp/d−1

p ×N∗/d−1→A′ defined over C. The cq-polarization λ′ :
A′t ∼=A′ ⊗ cq is defined as follows: tensoring the sequence 0→ q→O→O/q→ 0 withAt =A⊗ c,
we have another exact sequence

0→A⊗ cq[q]→A⊗ cq→A⊗ c→ 0.

Taking dual of the quotient map π :A→A′, we have one more exact sequence

0→Hom(i(q∗/d−1),Gm)→A′
t πt−→At→ 0,

which gives rise to the following exact sequence:

0→Hom(i(q∗/d−1),Gm)→A′
t[q] λ◦πt−−−→ i(q∗/d−1)⊗ c→ 0.

Since q is prime to c, the kernel of the composite: (π ⊗ id) ◦ λ ◦ πt :A′t→A′ ⊗ c is the entire
q-torsion subgroup A′t[q]. Since A′t/A′t[q] =A′t ⊗ q−1, we have constructed an isomorphism:

(π ⊗ id) ◦ λ ◦ πt :A′t ⊗ q−1 ∼=A′ ⊗ c.

Tensoring q with this isomorphism, we get the desired λ′ :A′t ∼=A′ ⊗ cq. Since q is prime to p,
on a p-adic algebra C, Lie(A)∼= Lie(A′), which implies that ω′ = π∗ω is a well-defined generator
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of ΩA′/C . The association (A, λ, ω, i)/C 7→ (A′, λ′, ω′, i′)/C is functorial (i.e., a morphism between
the functors Q in (4.1) with respect to (c,Nqp∞) and (cq,Np∞)). We have

[q] : V (cq,N;R)→ V (c,Nq;R) and [q] :Gκ(cq,N;R)→Gκ(c,Nq;R)

by f |[q](A, λ, ω, i) = f(A′, λ′, ω′, i′).

We compute [q](A(A), λ(A), i(A))/W for a fractional ideal A⊂M , supposing that all prime
factors of q are split in M/F . Choose an integral ideal Q in M such that the inclusion
O ↪→O induces O/q∼= O/Q. Then Q + Qc = O. Consider (A(A), λ(A), i(A)) with the level
qp∞-structure i(A) sending x ∈ q∗/d−1 to 2δx ∈Q−1A/A. Then A(A)[Q] = i(A)(q∗/d−1) and
hence A(A)/i(A)(q∗/d−1) =A(AQ−1) and i(A)′ = i(AQ−1), which are the level p∞-structure.
Since q is prime to pc, using the fact that QQc = q, we can verify that

[q](A(A), λ(A), ω(A), i(A))/W ∼= (A(AQ−1), λ(AQ−1), ω(AQ−1), i(AQ−1))/W , (5.7)

where i(A) is the level qp∞-structure as above and i(AQ−1) is the induced level p∞-structure.
We can always choose Q ∈D+ so that Qc + Q = O and O/Q∼=O/q for q = Q ∩ F . This shows∫

Γ′
φQ−1B dEQ−1B = (E(χΓ′φQ−1B)|[q])(A(B), λ(B), i(B)) for Q and q as above, (5.8)

where E = EcAB
. As for the effect of α ∈M×, we may assume either α ∈O or α ∈O−O. When

α ∈O−O, we assume that (α) + (αc) = O. Then we have, for the characteristic function χΓ′

of Γ′, ∫
Γ′
φαB dEαB = (E(χΓ′φαB)|〈α〉)(A(B), λ(B), i(B)) if α ∈O ∩ F×, (5.9)∫

Γ′
φα−1B dEα−1B = (E(χΓ′φα−1B)|[ααc])(A(B), λ(B), i(B)) if α 6∈O, (5.10)

where E = Ec for c = cαB for (5.9) and c = cα−1B for (5.10).

5.4 Operation by ideles on p-adic modular forms

We interpret the ideal action as pull-back of the action of G(A(∞)) on the Shimura variety. Pick
an element g ∈G(A(∞)) with totally positive det(g) ∈ F . Then g induces an automorphism of
the Shimura variety (see (3.4)), and hence the functorial action of g on test objects. We write

g(A, λ, i) = (A, λg, ig)

for the image of a test object (A, λ, i) under the action of g. Here, writing T (A) = lim←−N A[N ] for
the Tate module, the level structure is an isomorphism i : F 2

A(∞)
∼= T (A)⊗Q A(∞), where F 2

A(∞)

is made up of row vectors on which G(A(∞)) acts from the right. Then we have ig = i ◦ g and
λg = det(g)λ. When g = γ ∈G(Q)+, we have an isogeny γ̃ : (A′, λ′, γ̃ ◦ i′)→ (A, λγ , iγ = i ◦ γ) for
a suitable A′ (see below (L2)). Thus we can interpret the action as an action of an isogeny in
this case. This follows from the following three facts for γ ∈G(Q)+ and test objects over C.

(L1) Writing Lb,a∗
z = (b, a∗)t(z, 1) = bz + a∗ and iz((b) mod b⊕ a∗) = bz + a mod Lb,a∗

z , we
have L(b,a∗)γ−1

γ(z)
∼= Lb,a∗

z by w 7→ w(cz + d)−1, where γ =
(∗ ∗
c d

)
.

(L2) The identity iγ(z) = (cz + d)iz ◦ γ; so, A′ = CI/L(b,a∗)γ−1

γ(z) and γ̃(w + L(b,a∗)γ−1

γ(z) ) = (cz +

d)−1w + Lb,a∗
z .
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(L3) We have the identity of the Tate module via iz:

T (CI/Lb,a∗
z )∼= b̂⊕ â∗ and T (Tatea,b(q)) = b̂⊕ â∗ (̂x = x⊗Z Ẑ).

If we have an isogeny α :A→A, we have α(A, λ, i) = (A, λ′, i′) given by λ′ = αα∗λ and i′(x) =
αi(x). Here α∗ = λ ◦ αt ◦ λ−1, which is αα∗c-polarization. In other words, defining ρ(α) ∈G(Q)
by αi= i ◦ ρ(α), we find that ρ(α)−1(α(A, λ, i)) = (A, λ, i). Since the Shimura variety classifies
the triples up to isogeny, α(A, λ, i) and (A, λ, i) are equal as a point of Sh(G, X), and Im(ρ)
gives rise to the stabilizer of the point of Sh(G, X) represented by (A, λ, i) (see Proposition 3.4
and [Hid10, Corollary 3.5]). When we consider the level structure i modulo a subgroup
K ⊂G(A(∞)), we write (A, λ, iK). Then g(A, λ, iK) = (A, λg, (i ◦ g)g−1Kg) is well defined for
g ∈G(A(∞)) with det(g) ∈ F×+ .

We now consider the Tate AVRM: Tatea,b(q). For each positive integer N , we have a canonical
exact sequence [Kat78a, (1.1.15)], 1→ µN ⊗ a∗→ Tatea,b(q)[N ]→ b/Nb→ 0. We therefore have
a canonical level structure ican modulo an (integral) upper unipotent subgroup U = U(Ẑ)⊂
G(A(∞)), which is represented by the following exact sequence tensored by A(∞) (over Ẑ):

0→ â∗(1)→ T (Tatea,b(q))→ b̂→ 0,

where b̂ = Ẑ⊗Z b and â∗(1) = Ẑ(1)⊗Z a∗. For the row vector space b̂⊕ â∗, let

K =Ka,b = {g ∈G(A(∞)) | (b̂⊕ â∗)g = b̂⊕ â∗}.

Thus Γ11(O; a, b) = SL2(F ) ∩Ka,b. Define

K(N) =Ka,b(N) =
{(

a b
c d

)
∈Ka,b | c ∈Nâbd, a≡ d≡ 1 mod NÔ

}
.

Then we have Γ11(N; a, b) = SL2(F ) ∩K(N). For each given g ∈G(A(∞)) with totally positive
det(g) ∈ F (so, g ∈ E(G, X)), we can find finite ideles a(g), b(g) ∈ A(∞) such that g = u(g)(
b(g) ∗

0 a(g)

)
with u(g) ∈K ∩ SL2(FA) and

(
1 ∗
0 1

)
∈K. Let (A, λ, i) be as in (L1)–(L3), and put

iK(N) = (i mod K(N)). Having (A, λ, iK(N)) is equivalent to having T (A) = i(b̂⊕ â∗) and iK(N) :
(Na)∗/a∗ ↪→A[N]. The ideles a(g) and b(g) are determined uniquely modulo multiple of units in
Ô. We assume here that a(g)N = b(g)N = 1.

Write simply a′ = a(g)−1a and b′ = b(g)b and Kg = g−1Kg. We have a canonical identification
b̂′ ⊕ â′

∗
(1) = T (Tatea′,b′(q)) and

ia
′,b′

can,Kg : µN ⊗ (Na′)∗/a′∗ ↪→Gm ⊗ (a′)∗� Tatea′,b′(q).

Since b′ ⊕ a′∗ and b⊕ a∗ are commensurable, the two Tate AVRMs Tatea,b(q) and Tatea′,b′(q)

are isogenous. Since ̂(a(g)a∗) = a(g)−1â∗ and b(g)b̂ = b̂(g)b, up to isogenies, we have from (L3)

g(Tatea,b(q), λa,b
can, i

a,b
can,K(N))

= (Tatea(g)−1a,b(g)b(q), det(g)λa,b
can = λa(g)−1a,b(g)b

can , i
a(g)−1a,b(g)b
can,K(N)g ◦ u(g)). (5.11)

If g ∈ F×, then a(g) = b(g) = g, and we have an isogeny

g : (Tatea,b(q), λa,b
can, i

a,b
can)→ (Tateg−1a,gb(q), λg

−1a,gb
can , g ◦ ig−1a,gb

can )
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induced by q 7→ qg (or equivalently, by Gm ⊗ a∗→Gm ⊗ (g−1a∗) given by x⊗ a 7→ x⊗ ga).
Therefore the central rational element acts on the Tate AVRM trivially.

For the p-adic Eisenstein series E(φ) = E0(φ; c) (weight 0) of a function φ(x; y) ((x; y) ∈
ap × bp), we find from the above computation (assuming a(g)p = b(g)p = 1):

E(φ)(g(Tatea,b(q), λa,b
can, i

a,b
can)) = E(φ|u(g))(Tatea(g)−1a,b(g)b(q), λa(g)−1a,b(g)b

can , ia(g)−1a,b(g)b
can ),

where φ|u(g)(x; y) = P−1(Pφ((x; y)u(g))) (letting the 2× 2-matrix u(g) act from the right on
the row vector (x; y)) for the partial Fourier transform φ 7→ Pφ as in § 4.2.

We compute the q-expansion of E(φ)|〈u〉 for an integral ideal u of F . This is the special
case of (5.11) when g is a scalar matrix

(
a 0
0 a

)
with aN = 1 (and aÔ = û). By construction,

we have a homomorphism q : b ↪→Gm ⊗Z a∗. Since the u-torsion points of Tatea,b(q) is given
by q(bu−1/b)⊕ (µN ⊗ a∗)[u]. Thus Tatea,b(q)⊗ u−1 = Tatea,b(q)/Tatea,b(q)[u] = Tateau,bu−1(q).
From this, it is easy to see (cf. [Hid04, (4.53)])

(Tatea,b(q)⊗ u, λa,b
can ⊗ u, ia,bcan ⊗ u) = (Tateau−1,bu(q), λau−1,bu

can , iaA−1,bA
can ). (5.12)

We compute [q](Tatea,b(q), λcan, ωcan, ican) for an ideal q⊂O. Recall Tatea,b(q) = Gm ⊗
a∗/q(b). Tensoring Gm ⊗ a∗ with 0→O→ q−1→ q−1/O→ 0, we have another exact sequence:

0→ (Gm ⊗ a∗)[q]→Gm ⊗ a∗→Gm ⊗ (aq)∗→ 0.

Taking the quotient by q(b), we get the following exact sequence:

0→ (Gm ⊗ a∗)[q] ican−−→ Tatea,b(q)→ Tateaq,b(q)→ 0.

Then going back to the construction of the Tate quadruples in [Kat78a, 1.1] (and [HT93, 1.7]),
we verify

[q](Tatea,b(q), λa,b
can, ω

a,b
can, ican,Ka,b(Nq)) = (Tateaq,b(q), λaq,b

can , ω
aq,b
can , ican,Kaq,b(N)). (5.13)

The above action [q] corresponds to the action of g =
(1 0

0 q−1

)
for a finite idele q with qÔ = q̂

and qN = 1. This follows from (5.11) combined with the fact that Ka,b(Nq)g =Kaq,b(N).
Now we further suppose that Ka,bg =Ka,bγ for γ ∈G+(Q) and gN = 1. Then u= gγ−1 ∈Ka,b,

and hence uN = γ−1
N . This shows

g(Tatea,b, λ
a,b
can, ω

a,b
can, ican,Ka,b(N)) = (Tatea,b, λ

a,b
can, ω

a,b
can, ican,Ka,b(N) ◦ γ−1

N ). (5.14)

5.5 Linear independence of Eisenstein series
We look at Ec(N−kφ) for a positive k. Take an arithmetic Hecke character (of conductor p) η = ηk
with η((α)) = α−k if α≡ 1 mod p. Recall T = (O×p )× (O×p )/O×. Then the variable on T is written
as (x; y) with x, y ∈Op. Write πx : T →O×p /O

× for the projection given by πx(x, y) = x mod O×.
Let ε0 :O×p /O×→ µpr(Cp) be a character and ε : Z� Γ→ µp∞(Cp) be a character extending
ε0 ◦ πx. Enlarge W if necessary so that ε has values in W×. Define a character ψ̂k,ε : Z→W×

by ψ̂k,ε(ζγ) = η̂k(γ)ε(γ)ψ0(ζ). Then ψ̂k,ε is the p-adic avatar of an arithmetic Hecke character
ψk,ε of conductor p. We would like to show that the t-expansion of this Eisenstein series at
x= (A(A), λ(A), i(A)) gives the Iwasawa power series of ϕ−ψ for ψ = ψk,ε restricted to [A]Γ.

If confusion is not likely, we just write ψ for ψk,ε. Recall that D ∼= Z/Γ′ for the intersection
Γ′ (in Z) of Γ with the image of O×p . Let χΓ′ be the characteristic function of Γ′ ⊂ Z. We put
φ= Infψ0 ψ̂χΓ′ for a character ψ0 : ∆→W×. We can apply Theorem 3.5 to Ec(φ) to compute
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the µ-invariant. Recall that we have written E(φ◦) for E0(φ◦; c) = Ec(φ) for a suitable choice
of c in the context. Let χ◦Γ′(x; y) = χΓ′(x−1; y) = χ(x; y), where χ is the characteristic function of
{(x; y) | π(x; y) ∈ Γ′} for π : O×p → Z.

Recall D which is a complete representative set in the localization (not the completion) O×(p)
for π(O×p )/Γ′ with the projection π : O×p → Z. We split further D =

⊔
α∈D− αD+ where D+ is

the subset of D represented by elements of F×:

D+ = {α ∈ D | αΓ′ = βΓ′ with β ∈ F× ∩O×p }.

We choose α ∈ D− so that (α) = Q is a prime ideal split in M over F . Then Ka,bρ(α) =Ka,bgQ for
gQ =

(
1 0
0 q

)
for a finite idele q ∈ Ô with qÔ = Q̂Q̂

c
and qp = 1. Define S (respectivelyR) by a subset

{βp | β ∈ D+} (respectively {αp | α ∈ D−}) in the completion O×p . Note that ψ̂(s) = ψ((β))−1

because s= βp. Similarly ψ̂(r) = ψ(α)−1 (r = αp ∈Op).
By (5.6), (5.9) and (5.14), we see that∑

β∈D+

ψ(β)−1E(N−kε−1χ◦Γ′)|〈(β)〉|β = E(Φ◦+),

where ‘|β’ is the action of the scalar element β ∈ Z(Q), and by (5.14)

Φ◦+(x; y) =
∑
s∈S

ψ̂(sx)χ◦(s−1x−1; sy), (5.15)

since s= βp ∈ S ⊂O×p (for β ∈ D+). We further sum up over D−:∑
α∈D−

ψ(α)E(Φ◦+)|[ααc]|ρ(α)−1 = E(Φ◦), (5.16)

where we have chosen (α) to be an integral ideal with O/(α)∼=O/((α) ∩ F ) and (α) ∩ F = (ααc),
and Φ◦ is given by

Φ◦(x; y) =
∑
r∈R

ψ̂(r)−1Φ◦+(r(x; y)). (5.17)

Since we have E(Φ◦+(r(x; y))) = E(Φ◦+)|ρ(r) for ρ(r) ∈Ka,b, we have by (5.14) that∑
α∈D−

ψ(α)
( ∑
β∈D+

ψ(β)−1E(N−kε−1χ◦Γ′)|〈β〉|β
)
|[ααc]|ρ(α)−1 =

∑
r∈R

ψ̂(r)−1E(Φ◦+)|ρ(r)−1.

(5.18)
We have computed E(Φ◦) as a linear combination of transforms of the weight k Eisenstein
series E(N−kε−1χ◦Γ′). By definition of ϕψ, Φ as above is the restriction of Infψ ψ̂χΓ′ to
Z0 = O×p /O

× ⊂ Z.
Recall that a ∈D+ is a fractional F -ideal; so, the operator 〈a〉 makes sense. Similarly, we

have chosen B ∈D− among prime ideals of M split over F ; so, the operator [BBc] regarding
BBc as a prime ideal of F also makes sense.

Theorem 5.2. Suppose p > 2, C = 1 and that M/F is everywhere unramified. Let t be the
canonical variable of the Serre–Tate deformation space Ŝ = Ĝm ⊗Z d−1 of (A(O), λ(O), i(O))/W
so that the parameters (tξ1 − 1, . . . , tξd − 1) (for a base {ξi}i of O over Z) give the coordinate
around the origin 1 ∈ Ŝ. Write Φ for the restriction of Infψ ψ̂χΓ′ to Z0 ⊂ Z. Put for each B ∈D−

EB(t) =
∑

a∈D+

ψ(a)−1E(Φ◦)|〈a〉(t) ∈ O
Ŝ
,
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where we have chosen a⊂ F prime to p. Then the t-expansion of

E =
∑

B∈D−
ψ(B)EB|[BBc](t[B]−)

at (A(O), λ(O), i(O)) gives (up to an automorphism of W [[Z]]) the t-expansion of the
anticyclotomic measure ϕ−ψ . Moreover, the µ-invariant µ(ϕ−ψ ) is given by

µ(ψ) = Infnv

(∏
q|n

1− (ψ(q)N(q))e(q)+1

1− ψ(q)N(q)

)
, (5.19)

where n runs over all integral ideals of the form c(AAc) for ideals A of M prime to p.

For any anticyclotomic character ε and every fractional F -ideal q, we have ε(q) = 1 and
ψε(q) = ψ(q); thus, µ(ψ) = µ(ψε) as long as ε is anticyclotomic. This explains well µ(ϕ−ψ ) =
µ(ϕ−ψ ∗ ε) for ε factoring through Γ−; so, we need to twist ϕ by a nontrivial cyclotomic character
to lower µ(ϕ−ψ ).

The Eisenstein series EB defined in the theorem really depends on B ∈D− since the
polarization ideal of E(Φ◦) in the sum depends on B.

Proof. We first show that the t-expansion of E gives (up to an automorphism of W [[Z]]) the
t-expansion of the Katz measure. We said ‘up to an automorphism of W [[Z]]’, because of
the following reason: in the definition of the level structure i(A), x ∈ Fp/d−1 is sent to 2δx ∈
Mp/A. This has the following harmless effect: the t-expansion of E(Φ◦+((x; y)diag[2δ, (2δ)−1]))
actually coincides with the t-expansion of the measure. The variable change (x; y) 7→
(x; y)diag[2δ, 2δ−1] corresponds to the automorphism: z 7→ 2δz of the topological space Z (since
2δ is chosen to be prime to pC), which gives rise to an automorphism of W [[Z]]. Hence we forget
about the effect of this unit 2δ.

We are going to compute the κ-derivatives dκE of the Eisenstein series at A(a−1) for applying
the t-expansion principle. Let ψ(κ) = ψ

(κ)
k,ε be a unique Hecke character of Z such that ψ(κ)

k,ε (β) =

β(1−c)κψk,ε(β) for all β ≡ 1 mod p, ψ̂(κ)
k,ε |∆ = ψ and ψ

(κ)
k,ε (a) = α

(1−c)κ
a ψk,ε(a) = ψk,ε(a), as a is an

F -ideal and αa = 1 as in (5.4) for all a ∈D+. We write 〈z〉 for the projection of z ∈W (F)× to
the p-profinite part of W (F)×. Then we have

〈(x, y)κ(c−1)φ〉◦ = 〈(x−1y)κφ〉◦ = 〈(xy)κ〉φ◦.

Recall the following definition:

φA(x) = φ(x[A]−1).

Also recall (5.9):∫
Γ′
φαB dEαB = (E(χΓ′φαB)|〈α〉)(A(B), λ(B), i(B)) if α ∈O ∩ F×,∫

Γ′
φα−1B dEα−1B = (E(χΓ′φα−1B)|[ααc])(A(B), λ(B), i(B)) if α 6∈O.

Because of these formulas, we may replace each term

ψ(α)ψ(β−1)E(N−kχ◦Γ′)|〈β〉|β|[ααc]|ρ(α)−1
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of (5.18) by

ψ(α)ψ(β−1)dκ(E(N−kε−1χ◦Γ′)|〈β〉|β|[ααc]|ρ(α)−1)(A(a−1))
(∗)
= ψ(α)ψ(β−1)(αβ−1)κ(c−1)E((xy)κN−kε−1(χ◦Γ′ |[αβ−1]))(A((α−1β)a−1))
= ψ(αβ−1)(αβ−1)κ(c−1)E(((x−1y)κxkε(χΓ′ ◦ (αβ−1)))◦)(A((α−1β)a−1))
(∗∗)
= ψ(κ)(αβ−1)E((〈(x−1y)κxk〉εχΓ′)◦|[αβ−1])(A((α−1β)a−1))

= ψ(κ)(αβ−1)E((〈(x−1y)κxk〉εχΓ′)◦)(A(a−1)), (5.20)

where φ|[α](x; y) = φ(α−1x, α−1a; αy, αb) and φ ◦ α(t) = φ(αt) for t ∈ T . The above equality
indicated by (∗) (respectively (∗∗)) follows from (5.1) and the formulas: dκ(qxy) = (xy)κqxy

in (4.5) and dκ(ta) = aκta in (4.4) (respectively the fact that χΓ′ ◦ (αβ−1) is the characteristic
function of (α−1β)Γ′).

Let F = (Infψ((x−1y)κχΓ′)|Z0)◦ = 〈(xy)κ〉Φ◦. By the computation given in [HT93, (4.9)] and
by (5.6), the partial L-value for the character ψ(κ) and for the ideal class of a−1 is given by

ψ(κ)(a)−1E(F)(A(a−1)) = ψ(κ)(a)−1dκ(E(Φ◦)|〈a〉)(A(O)) for E(F) = Eca−1 (F)

and
dκE(A(O)) =

∑
a∈D+

ψ(κ)(a)−1E(F)(A(a−1)) (5.21)

for all κ> 0. Hence we have E(φ)|〈a〉(A(O)) = E(φ)(A(a−1)).
Now we apply the operator [BBc] and make variable change: t 7→ t[B]− in (5.21). We may

assume that [B]− ∈ Γ′. By the computation given in [HT93, (4.9)], the partial L-value for the
character ψκ and for the ideal class of B−1 is given by, for E(F) = EcB−1 (F),

ψ(κ)(B)E(F)(A(B−1)) = ψ(κ)(B)dκ(E(Φ◦)|[BBc](t[B]−))(A(O))

and
dκE(A(O)) =

∑
B∈D−

ψ(κ)(B)E(F)(A(B−1)) (5.22)

for all κ> 0. Hence we have

E(φ)|[BBc](A(O)) = E(φ)(A(B−1)).

We obtain, by the effect of the differential operator dκ,

dκ(EB|[BBc](t[B]−))(A(O)) =
∑

a∈D+

ψ(κ)(aB)E(F)(A((aB)−1)). (5.23)

This combined with the evaluation formula (1.1) (and [HT93, (4.9)]) shows that the function in
the theorem, after applying dκ and evaluating at A(O), has the property satisfied by the measure
ϕ−ψ ; so, the first assertion follows from (4.6).

As explained below Theorem 3.5, we have a unique element Hκ ∈Gκ(F) whose t-expansion
is the constant 1 (identical to the t-expansion of the Hasse invariant). To apply Theorem 3.5, we
take hi =Hκ. Abusing terminology, we call Hκ the Hasse invariant. We will show pµ(ψ)|EB|[BBc]
in the q-expansion ring. Then we want to apply Theorem 3.5 taking {ai}i = {[B]−}B∈D− and
{fij}= {EB|[BBc]/pµ(ψ) mod mW } for each i= B ∈D−. In other words, for each index i with
ai = [B]−, {fij} is given by the single element EB := (EB|[BBc]/pµ(ψ) mod mW ).

To verify the assumption (of Theorem 3.5) of linear independence (over F) of {Hκ, fij}j for
each i, we need to show that for each B ∈D−, EB/p

µ(ψ) is linearly independent from the Hasse
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invariant Hκ(t) = 1, using the t-expansion principle and the q-expansion principle. Once this is
done, by Theorem 3.5, {EB(t[B]−)/pµ(ψ)}B∈D− is linearly independent over F, and hence we
conclude the nonvanishing of E/pµ(ψ) (i.e., µ(ϕ−ψ ) = µ(ψ)) by Theorem 3.5 (which requires the
unramifiedness of p in F/Q), since elements in {[B]−}B∈D− are distinct modulo Tx(Q). We show
the linear independence of EB/p

µ(ψ) from Hκ by showing that v(a(ξ, EB))> µ(ψ) for any ξ ∈ F
with equality for some ξ.

Write π : T×→∆ for the projection Z→∆ composed with ι : T×→ Z. Let Ψ be the function
on T× given by Ψ(x; y) = ψ ◦ π(x−1; y). By our assumption, Φ◦(x; y) = Ψ. The q-expansion
coefficient of ξ ∈ ab of E(Ψ) at the cusp (a, b) is given by∑

(a,b)∈(a×b)/O×,ab=ξ

Ψ(a, b)|N(a)|−1.

We fix B ∈D− and use the symbol a to indicate the F -ideals running over D+. The ideal
B determines cB−1 which is the polarization ideal of λ(B−1) on A(B−1). If we write c for the
polarization ideal of λ(O), we know cB−1 = c(BBc). We choose c−1

B−1 to be a prime l prime to p
(this is possible by changing it in its strict ideal class and choosing δ ∈M suitably).

We now take a totally positive 0� ξ ∈O so that (ξ) = ln (l = c−1
B−1 : a prime by our choice)

for an integral ideal n prime to p. We pick a pair (a, b) ∈ F 2 with ab= ξ for a ∈ a−1 and b ∈ la.
Then (a) = a−1x for an integral ideal x and (b) = aly. Since (ab) = ln, we find that xy = n. Thus
for each factor x of n, we could have a pair (ax, bx) with axbx = ξ such that

((ax) = a−1
x x, (bx) = (ξa−1

x ) = axlnx−1)

for ax ∈D+ representing the ideal class of the ideal x. We then write down the q-expansion
coefficient of qξ at the cusp (O, l) of EB as in the theorem:

ψpc(ξ)a(ξ, EB) =
∑
x|n

ψpc(ξ)
ψ(ax)

a(ξ, E(Φ◦)|〈ax〉)
(E2)
=
∑
x|n

(ψN(ax))−1 1
ψ(ax)|N(ax)|

=
∑
x|n

1
ψN(x)

=
∏
q|n

(e(q)∑
j=0

(ψN(q))−j
)

=
1

ψN(n)

∏
q|n

1− (ψN(q))e(q)+1

1− ψN(q)
,

where n =
∏

q|n qe(q) is the prime factorization of n.
Recall, for the valuation v of W (normalized so that v(p) = 1)

µ(ψ) = Infnv

(∏
q|n

1− (ψ(q)N(q))e(q)+1

1− ψ(q)N(q)

)
, (5.24)

where n runs over all integral ideals of the form c(AAc) for ideals A of M . Here c is the polarization
ideal of A(O). Then, by moving around B in D−, the µ-invariant µ(ϕ−ψ ) of the ψ-branch of the
anticyclotomic Katz measure ϕ− is equal to µ(ψ). This finished the proof of Theorem 5.2. 2

Corollary 5.3. For a fixed integer k, we have lim infε µ(ψk,ε) = 0, and hence µ(ϕψ0) = 0.

Proof. Choose a prime q. We take ε so that ε(q) is a primitive prth root of unity. Since O×p /O
×

covers O×p /O× which has p-profinite infinite cyclic quotient Z×p via norm map in which N(q) has
infinite order, we can make the order pr of the root of unity ε(q) whatever large. For any given

1177

https://doi.org/10.1112/S0010437X10005257 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10005257


H. Hida

number a ∈ Cp, lim infζ∈µp∞ (Cp) v(a− ζ) = 0, and hence

lim inf
ε

v

(
1 +

1
ψk,ε(q)N(q)

)
= lim inf

ε
v

(
ε(q) +

1
ψk(q)N(q)

)
= 0.

This implies µ(ϕψ0) = 0 by Lemma 5.1. 2

References

Cha90 C.-L. Chai, Arithmetic minimal compactification of the Hilbert–Blumenthal moduli spaces,
Ann. of Math. (2) 131 (1990), 541–554.
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