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DIVISOR CLASS GROUPS AND GRADED CANONICAL
MODULES OF MULTISECTION RINGS

KAZUHIKO KURANO

Abstract. We describe the divisor class group and the graded canonical mod-
ule of the multisection ring 7'(X; D1,...,Ds) for a normal projective variety
X and Weil divisors Di,...,Ds on X under a mild condition. In the proof, we
use the theory of Krull domain and the equivariant twisted inverse functor.

81. Introduction

We will describe the divisor class groups and the graded canonical mod-
ules of multisection rings associated with a normal projective variety.

Suppose that Z, Ny, and N are the set of integers, nonnegative integers,
and positive integers, respectively.

Let X be a normal projective variety over a field k£ with the function field
k(X). We always assume that dim X > 0. We denote by C1(X) the set of
closed subvarieties of X of codimension 1. For V € C1(X) and a € k(X)*,
we define

ordy (a) =Lloy , (Oxv/aOxv) — Loy (Oxv/BOxv),
divy(a) = Z ordy(a) -V € Div(X) = @ Z-V,
Vel (X) VeCl(X)

where a and 3 are elements in O,y such that a = /3, and Lo ,,( ) denotes
the length as an Ox y-module.

We call an element in Div(X) aWeil divisor on X. For a Weil divisor
D =>"nyV, we say that D is effective, and we write D >0 if ny > 0 for
any V € C1(X). For a Weil divisor D on X, we put

H°(X,0x(D)) ={a€k(X)*|divx(a)+ D >0} U{0}.
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140 K. KURANO

Here we note that H°(X,0x (D)) is a k-vector subspace of k(X).
Let Dq,...,Ds be Weil divisors on X. We define the multisection rings
T(X;D1,...,Ds) and R(X;D,...,Ds) associated with D,..., Dy as fol-

lows:
T(X;Di,...,D,)
= P w(xox(Xmpi))n e
(n1,...,ns)EN] i
(1.1) CR(X)[t1,.. -t R(X; Dy,..., Dy)
- P B (xox(DonDi))H et
(n1,...,ns)EZLS i

CR(X)[E,... £,

We want to describe the divisor class groups and the graded canonical mod-
ules of the above rings.
For a Weil divisor F' on X, we set

Mp = EB H0<X,(9X(ZniDi+F))t§“-~-t?sCk:(X)[tfl,...,tsﬂ];

(n17~--7n5)€ZS

that is, Mp is a Z*-graded reflexive R(X; D, ..., Dy)-module with

ME) s = B (X, Ox (Yo miDi 4+ F) )2

We denote by Mp the isomorphism class of the reflexive module Mp in
Cl(R(X;Dy,...,Dy)).

For a normal variety X, we denote by Cl(X) the class group of X, and
for a Weil divisor F' on X, we denote by F the residue class represented by
the Weil divisor F'in CI(X).

In the case where CI(X) is freely generated by Di,...,Ds, the ring
R(X;D,...,Ds) is usually called the Cox ring of X and is denoted by
Cox(X).

REMARK 1.1. Assume that D is an ample divisor on X. In this case,
T(X;D) coincides with R(X;D), and it is a Noetherian normal domain
by a famous result of Zariski (see [6, Lemma 2.8]). It is well known that
CI(T(X; D)) is isomorphic to CI(X)/ZD. Mori in [8] constructed a lot of
examples of non-Cohen—Macaulay factorial domains using this isomorphism.
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It is well known that the canonical module of T(X;D) is isomorphic

to Mk, and that the canonical sheaf wx coincides with ]\/4\1;; Watanabe
proved a more general result in [12, Theorem 2.8].

We want to establish the same type of the above results for multisection
rings.
For R(X;Ds,...,Ds), we had already proven the following.

THEOREM 1.2 (]2, Theorem 1.1], [5, Theorem 1.2]). Let X be a normal
projective variety over a field such that dim X > 0. Assume that D1, ..., Dy
are Weil divisors on X such that ZD1+---+7ZDg contains an ample Cartier
divisor. Then, we have the following.

(1) The ring R(X;D1,...,Ds) is a Krull domain.

(2) The set {Py |V € CY(X)} coincides with the set of homogeneous prime
ideals of R(X;Dy,...,Ds) of height 1, where Py = M_y .

(3) We have an exact sequence

0— Y ZD; — CI(X) 5 CI(R(X; Dy, ..., D)) — 0

such that p(F) = Mp.

(4) Assume that R(X; D1,..., Ds) is Noetherian. Then wr(x;p.....p,) 5 150-
morphic to Mk, as a Z°-graded module. Therefore, wr(x,p,,...D,) 1S
R(X;Dz,...,Dg)-free if and only if Kx € Y., ZD; in C1(X).

Suppose that Cl(X) is a finitely generated free Z-module generated by
Dy, ...,D,. By the above theorem, the Cox ring Cox(X) is factorial, and

WCox(X) = MKX = COX(X)(K_X)a

where we regard Cox(X) as a Cl(X)-graded ring.
The main result of this paper is the following.

THEOREM 1.3. Let X be a normal projective variety over a field k such
that d =dim X > 0. Assume that D1,...,Ds are Weil divisors on X such
that NDq1 + --- + NDg contains an ample Cartier divisor. Put

U={j|trdeg,T(X;D1,...,Dj_1,Dj41,...,Ds) =d+s—1}.

Then, we have the following.
(1) The ring T(X;D1,...,Ds) is a Krull domain.
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(2)

The set
{Qv Vel (X)}u{;lieU}
coincides with the set of homogeneous prime ideals of T(X; Dy, ..., Ds)
of height 1, where
QV:PVHT(X;DD‘”’-DS)

and
Qj: @ T(X§D17---aDs)(nl,...,ns)-

ni,...,nsENg
n; >0

We have an exact sequence

0— Y ZD; — CI(X) % C(T(X; Dy, ..., Ds)) — 0
j¢U

such that q(F) :MFﬂk:(X)[tl,...,tS,{t;1 |7 ¢ U}.

(4) Assume that T'(X; Du, ..., Ds) is Noetherian. Then wr(x,p,....p,) 5 150-

morphic to
Micy Nty tek(X) [t ot {6515 € UY]

as a Z2.°-graded module. Further, we have
Q<KX + Z Di) =W7(X;Ds,..,Ds)
Therefore, wr(x;p,,...n,) 18 T(X;D1,..., Ds)-free if and only if

Kx+Y» Die>» ZD;
A j¢eU
in CI(X).

Here, tr.deg; T denotes the transcendence degree of the fractional field of

T over a field k.

REMARK 1.4. With notation as in Theorem 1.3, ht(Q;) =1 if and only if

j € U. This will be proved in Lemma 3.3. Since ND; + --- + ND; contains

an

ample Cartier divisor, Q; # (0) for any j. Therefore, ht(Q;) > 2 if and

only if j¢ U.
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§2. Examples

ExAMPLE 2.1. Let X be a normal projective variety with dim X > 0.
Assume that all D; are ample Cartier divisors on X. Then, T'(X; D1, ..., D;)
is Noetherian by a famous result of Zariski (see [6, Lemma 2.8]).

Assume that s = 1. By definition, U = ) since dim X > 0. By Theo-
rem 1.3(3), CI(T(X; Dy)) is isomorphic to C1(X)/ZD;. By Theorem 1.3(4),
wr(x;py) 18 a T(X; Dp)-free module if and only if

Kx €7ZD,

in CI(X) (see Remark 1.1).

Next, assume that s > 2. In this case, U = {1,2,...,s}. By Theorem
1.3(3), C1(X) is isomorphic to CI(T(X;Dy,...,Ds)). By Theorem 1.3(4),
WT(X:Dy,..,Ds) 18 @ T(X;Da, ..., Ds)-free module if and only if

Kx=-Di— =D,

in C1(X). When this is the case, —Kx is ample; that is, X is a Fano variety.

EXAMPLE 2.2. Set X =P™ x P". Let p; (resp., p2) be the first (resp.,
second) projection.

Let Hi be a hyperplane of P™, and let Hy be a hyperplane of P". Put
A; :pi_l(Hi) for i =1,2. In this case, CI(X) = ZA; + ZA; ~ 72, and Kx =
—(m + 1)A1 — (7’L =+ 1)A2

We have

COX(X) :R(XaAlaAQ) = k[m();xla'")xmay(]vylv"'vyn]-

Cox(X) is a Z2-graded ring such that z; (resp., y;) are of degree (1,0) (resp.,

(0,1)).

Let a, b, ¢, d be positive integers such that ad — bc# 0. Put D1 =aA; +
bAs, and put Do = cAy + dAs. Then, both Dy and Dy are ample divisors.
Consider the multisection rings

R(X; D1, D) = @ Cox(X)p(a,b)+q(e.a)s
P,qEZ

T(X;D1,D2) = € Cox(X)p(a,n)+q(c.d)-
,q>0

Here, both R(X; D1, D) and T(X; D1, D) are Cohen—-Macaulay rings.
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By Theorem 1.2(4), we know that
R(X; Dy, D) is a Gorenstein ring <= Ky € ZD; + ZD in C1(X)
< (m+1,n+1)€Z(a,b) + Z(c,d).

In this case, we have U = {1,2} since all of a, b, ¢, and d are positive. By
Theorem 1.3(4), we have

T(X; D1, Dy) is a Gorenstein ring <= Kx + Dy + Dy =0 in Cl(X)
<~ m-+l=a+candn+1=>b+d.

ExaMPLE 2.3. Let a, b, ¢ be pairwise coprime positive integers. Let p
be the kernel of the k-algebra map S = k[z,y, z] — k[T] given by x +— T,
Yy TP, 2 TC.

Let 7 : X — P = Proj(k[z,vy, z]) be the blowup at V (p), where a = deg(x),
b=deg(y), c=deg(z). Put E=7"1(V,(p)). Let A be a Weil divisor on X
satisfying 7*Op(1) = Ox (A). In this case, we have CI(X) = ZE + ZA ~ 72,
and Kx =F — (a+b+c)A.

Then, we have

Cox(X)=R(X;—E,A) = R.(p):= S[t™L,pt,pPe2 p®e3 ] c S[t*],
T(X;—E,A) = Ry(p) := S[pt,p P2, p®¢3, .. ] c S[t].
By Theorem 1.2(4), we have
wry(p) = My = Ry(p)(Kx) = Ry(p)(—1,—a—b—c).
In this case, U = {1}. By Theorem 1.3(4), we have
WRy(p) = My Ntrtak(X)[t1, 5]
= Wi (p) Ntrtek(X)[t1, 157]
= RL(p)(—1,—a —b—c)Ntytak(X)[t1, 15}
=Ry(p)(-1,—a—-b—c).

Therefore, both of R/,(p) and Rs(p) are quasi-Gorenstein rings that were first
proved by Simis and Trung [11, Corollary 3.4]. The Cohen—-Macaulayness of
such rings are deeply studied by Goto, Nishida, and Shimoda [3].

Divisor class groups of ordinary and symbolic Rees rings were studied by,
for example, Shimoda [10] and Simis and Trung [11].
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83. Proof of Theorem 1.3

Throughout this section, we assume that X is a normal projective variety
over a field k such that d =dim X > 0, and we assume that D1,..., D are
WEeil divisors on X such that NDj + --- + NDg contains an ample Cartier
divisor.

We need the following lemmas. They are well known, but the author could
not find a reference.

LEMMA 3.1. Let G be an integral domain containing a field k. Let P be
a prime ideal of G. Assume that both tr.deg;, G and tr.deg, G/P are finite.
Then, the height of P is less than or equal to

tr.deg;, G — tr.deg;, G/ P.

Proof. Assume the contrary. Then there exists a ring G’ which satisfies
the following five conditions:
kcG caG;
G’ is finitely generated (as a ring) over k;
tr.deg;, G = tr.deg;, G';
tr.deg, G/P = tr.deg;, G’ /(G' N P); and
tr.deg;, G — tr.deg;, G/P < ht(G' N P).

However, using the dimension formula (e.g., [7, p. 119]), we have

ht(G' N P) = tr.degy, G’ — tr.deg;, G’ /(G' N P) = tr.deg;, G — tr.deg;, G/ P.
This is a contradiction. []

LEMMA 3.2. Let r be a positive integer. Let Fi,..., F, be Weil divisors
on X. Let S be the set of all nonzero homogeneous elements of T'(X; F1, ...,
E.). Then the following conditions are equivalent.

(1) There exist nonnegative integers qu,...,q, such that y ;_, ¢;F; is lin-
early equivalent to a sum of an ample Cartier divisor and an effective
Weil divisor.

(2) There exist positive integers qi,...,qr such that Y ;| ¢;F; is linearly
equivalent to a sum of an ample Cartier divisor and an effective Weil

divisor.
(3) We have S~ NT(X; Fy,...,F)) =k(X)[tf, ..., t5].
(4) We have Q(T(X; F1,...,F.)) =k(X)(t1,...,t,), where Q( ) denotes the

field of fractions.
(5) We have tr.deg, T(X; Fi,...,F,) =dim X +r.
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Using [1, Theorem 1.5.5], it is easy to see that T'(X; F1,. .., F}) is Noether-
ian if and only if T'(X; F1,..., F,) is finitely generated (as a ring) over the
field H°(X,Ox). Therefore, if T(X; Fy,...,F,) is Noetherian, then condi-
tion (5) is equivalent to stating that the Krull dimension of T'(X; Fy, ..., F})
is dim X +r.

Proof. Here (2) = (1), and (3) = (4) = (5) are trivial.
First we will prove that (1) = (3). Suppose that

Z qili~D+F,

i=1

where ¢; are nonnegative integers, D is a very ample Cartier divisor, and F’
is an effective divisor. We put

C:@ @ H0<X7@X(ZniFi+mD))t’f1...t;}rtﬁl

meZ (ny,...,ny)ENG
(3.1)
Ck(X)[t,... t 4]

We regard C as a Z"!-graded ring with

C(n1,...,nr,m) =H" (X, Ox (Z n; F; + mD))t?l .. -t?rtﬁl.
7

Then, we have

T(X;F,....F)= @D Cunnro)

(n1,...,nr)ENG

so T(X;F,...,F,) is a subring of C. Thus, S7!C is a Z""!-graded ring
such that

STT(X; R, . F)= @B ('), 0):

(n1,...,n)ENG

Since )., ¢;F; — D is linearly equivalent to an effective divisor F', there
exists a nonzero element a in

H° (X, Oy (Z 4 F — D)).
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For any 0# b€ HY(X,0x(D)),
rp—1
(atf' -1t (bt i)

is contained in S. Therefore, S~1C contains (bt,;1)~*. Hence, k(X) is con-
tained in S~'C. Since k(X) = (S71C) (... o), k(X) is contained in S™'T(X;
R,...,F).

By assumption (1), there exists a positive integer ¢ such that

(S7'C)eqr,...tgn0) # 0

and
(S_lC)(qu—i-l,éqz,...,éqT,O) #0.

Then, it is easy to see that t; € S~'C. Therefore, S~'C contains k(X)[t:!,
., tF1]. Hence, S™'T(X; Fi,. .., F,) coincides with k(X)[tT,...,tF].
Next, we will prove (5) = (2). Let D be a very ample divisor. Consider
the ring
R(X;F,...,F,, D).

First, assume that

HO(X,OX (ZuF —vD)) £0

for some integers uj,...,u,, v such that v > 0. By assumption (5), there
exist positive integers uf,...,u.. such that
H <X, Ox (Z u’F)) £0.
i
Therefore, we may assume that there exist positive integers uq,...,u, and
v such that

HO (X, Ox (Z wiF; — UD)) £0.

Here, we have

Zuin‘ =vD + (Z u; Fy — UD) .
% %

Therefore, ), u;F; is the sum of an ample divisor vD and the divisor
>, uiF; —vD, which is linearly equivalent to an effective divisor.
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Next, assume that for any integers uq,...,u, and v,
(3.2) HO(X,O)(<ZU¢FZ‘—’UD>>:O
i

if v>0. We put
pP= B RGP, P D)y, m)

(11 ety ) EZ7H1
m>0

By assumption (5), P is a prime ideal of R(X; Fi,...,F,, D) of height 1 by
Lemma 3.1. (Here, since D is an ample divisor, tr.deg, R(X; F1,...,F.,D) =
dim X +7+ 1. Note that P is an ideal of R(X; F1,...,F,,D) by (3.2) above.
By (5), tr.deg, R(X; F1,...,F,,D)/P=dim X + r.) However, R(X; F1,...,
F., D) has no homogeneous prime ideal of height 1 that contains

H°(X,0x(D))t,1
by Theorem 1.2(2). This is a contradiction. 0

Put A= k(X)[5",...,tF"], and put B = k(X)[t1,...,ts]. Recall that Dy,
..., Dg are Weil divisors on a normal projective variety X such that ND; +
.-+ NDj contains an ample Cartier divisor. We denote T'(X;D;,...,Dy)
and R(X;Dy,...,Ds) simply by T" and R, respectively.

Since

T=RNB,

T is a Krull domain. We have proved Theorem 1.3(1).
By Theorem 1.2(2), we have

R:( N Rm)mA
Vel (X)

A= () Re
PENHP!(R)

where NHP!(R) is the set of nonhomogeneous prime ideals of R of height 1.
It is easy to see that Rp = Tpnr for P € NHP!(R). Therefore, we have

A= ﬂ Toar.
PENHP!(R)

Since Tpnr is a discrete valuation ring, P NI" is a nonhomogeneous prime
ideal of T of height 1.
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For V € CY(X), put Qv = Py NT. Then, Rp, =Ty, , since Y, ND; con-
tains an ample divisor. Therefore, @)y is a homogeneous prime ideal of T" of
height 1.

On the other hand, we have Q; =T N{;B(;,) and Ty, C Byy,). Note that

B=An (ﬁB(tj)).
=

Then, we have

T=RNB

(3.3) :< N va>mAmB

Vect(X)

(N ) N ) (OB
VeCl(X) PeNHP!(R) Jj=1
Put
T = @ HO(X,Ox<ZniDi))t71H"'t?iElt?iﬁl"'t?s-
(101 3oy U 1,70 1 5o ) ENG Y i#]

We need the following lemma.

LEMMA 3.3. With notation as above, the following conditions are equiv-
alent:

(1) TQJ = B(tj);

(2) the height of Q; is 1;

(3) the height of Q; is less than 2; and
(4) j €U, that is, tr.deg, Tj =d+ s — 1.

Proof. By Lemma 3.2, we have Q(T) = Q(B). It is easy to see that B
is a discrete valuation ring. Since ); is a nonzero prime ideal of a Krull
domain 7', the equivalence of (1), (2), and (3) is easy to see.

Here, we will prove (1) = (4). Note that T'/Q; = Tj. Then, we have

Q(T;) =Tq,/QiTq; = B,/ (ti) B,y = k(X)(t1, .. tj—1,tj41,- -+ ts).
The implication that (4) = (3) immediately follows from
ht(Q;) < tr.deg;, T' — tr.deg; (1) = 1.

This inequality follows from Lemma 3.1 and from the fact that T; =T'/Q);.
I
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By (3.3), Lemma 3.3, and [7, Theorem 12.3], we know that
{Qvlvel (X)}u{Q;ljicU}
is the set of homogeneous prime ideals of T' of height 1, and that
{PNT|PeNHP'(R)}

is the set of nonhomogeneous prime ideals of T of height 1. Further, we
obtain

r=( ) 7)o ) me)n()m)

VeCcl(X PENHP!(R) Jjeu

The proof of Theorem 1.3(2) is completed.

Let
Div(X @ 7V
VeCl(X

be the set of Weil divisors on X. Let

HDiv (T ( B z Spec(T/Qv) ) ® (@Z'SPQC(T/QJ'))

Vell(X) jeUu

be the set of homogeneous Weil divisors of Spec(T').
Here, we define

¢ : Div(X) — HDiv(T)

by ¢(V) = Spec(T/Qy ) for each V € C1(X). Then, it satisfies the following.
e For each a € k(X)*, we have

¢(divx(a)) =divy(a @ Z - Spec(T/Qyv) C HDiv(T).
VeCl(X)

e If j €U, then
divy(tj) = Spec(T/Q;) + ¢(Dy).
o If j ¢ U, then
divy(t;) = ¢(D5).
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They are proven essentially in the same way as in [2, pp. 631-632]. Then,
we have an exact sequence

0— Y ZD; — CI(X) -5 CT) — 0
j¢U

such that ¢(F) = ¢(F) in CI(T). Here, remember that C1(T") coincides with
HDiv(T') divided by the group of homogeneous principal divisors (see, e.g.,
[9, Proposition 7.1]).

It is easy to see that the class of the Weil divisor ¢(F) corresponds to the
isomorphism class of the reflexive module

Mpn (ﬂ TQj) = MpnAN (ﬂ TQj)
jEU jeu
= MpOE(X)[t1,... b, {t; ' [ § £ U}
The proof of Theorem 1.3(3) is completed.
REMARK 3.4. It is easy to see that
i ---thMF+Zi a,p; = Mp
for any integers dy,...,ds. Therefore, we have
Mp Ottt k(X) [t b {t G 2 UY
=it % (Mpyy ap, VR [t e {85115 ¢ UY]).

Hence,
Mp Ottt k(X)) [t .t {1 ¢ U

is isomorphic to
(34) A4F.|.ZjldlDI ﬂk(X) [tlaat&{tj_l ’] §é U}]

as a T-module. Note that this is not an isomorphism as a Z*-graded mod-
ule. The isomorphism class to which module (3.4) belongs coincides with

q(F +32;diD;).

In the rest, we assume that T is Noetherian. We will prove that wp is
isomorphic to

My, Nty tsk(X) [tl,...,ts,{tj’l |j ¢ U}
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as a Z*-graded module. (Suppose that it is true. If we forget the grading, it
is isomorphic to

My s p, NE(X) [t ts, {t; 1§ ¢ U

by Remark 3.4, that is, corresponding to ¢(Kx + ), D;) in CI(T"). There-
fore, we know that wp is T-free if and only if

K}~%§:D €Y 7D;
J¢U
in CI(X).)
Put X’ = X \ Sing(X). We choose positive integers a1, ..., as and sections
fi,--, fr € HY(X,Y,a;D;) such that

e > .a;D; is an ample Cartier divisor,

o X'=U,Di(fx), and
e all of the D; are principal Cartier divisors on D (fx) for k=1,...,t

Put W={ne€Z|n;>0ificU}. Put D, =D;|x/ fori=1,...,s. Con-
sider the morphism

Y = Specxl(@ Ox: (anD,)t?l t?s) X
neWw
Further, we have the natural map
£:Y — Spec(T).
The group G2, naturally acts on Spec(T) and Y and trivially acts on X'.
Both 7 and & are equivariant morphisms.

CLAIM 3.5. There exists an equivariant open subscheme Z of both Y and
Spec(T') such that

the codimension of Y\ Z in'Y is greater than or equal to 2, and
e the codimension of Spec(T')\ Z in Spec(T) is greater than or equal to 2.

Proof. For u € U, there exist integers ciy, ..., Cs, such that
o HY(X, Ox (>, ciuDy)) #0,
® Cuu = —ay, and

o ciy>0if i #u.
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In fact, if u € U, there exist positive integers qi,...,qu—1, Qu+1,---,¢qs such
that
Z QiDz

is a sum of an ample divisor D and a Weil divisor F', which is linearly
equivalent to an effective divisor by Lemma 3.2. Then,

H(X,0x (g (Zq, i) = auDu) ) = H(X,0x (a(D + F) — auDy)) 0

for ¢ > 0.
For each u € U, we set

(b1uy -5 bsu) = (Cluy -+ -y Csu) + (a1, ..., as).
Here, note that b, =0 and b, > 0 if 7 £ u.

We choose
0+ g, € H° (X, Ox (Z cwDZ))

for each u € U.
Consider the closed set of Spec(T’) defined by the ideal J generated by

{fet{* - t2 | k=1,...,t}
and
{gufktl{h‘-utgw |k=1,...,t;ucU}.
By Theorem 1.3(2), we know that the height of J is greater than or equal
to 2 since there is no prime ideal of T of height 1 which contains J.
We choose di; € k(X)* satisfying
H(D4(fx), Ox(D;)) = dii H® (D4 (f1), Ox)

for each k and ¢. Then
t

(3.5) = Jr ' (Ds(fe))  and 7 Y(Dy(fr)) = Spec(Ch),
k=1

where

Cr=H"(Ds(fi), Ox) [datr, .. .. dists, {(dijt;) " | i 2 U}

We put
Z =Spec(T)\V(J)
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Then we have

t
7 = U [Spec (futi*- 'tgs)*l})

=1

O{ U spee(T[(gufithe o)1)}

uelU

ol

(3.6)

Here, we have

T[(futd - %) = HY(Do(fr), Ox) [(deat)®, .. (dists) ]

e ()]

jeu

(3.7)

On the other hand,
T[(gufity™---t2) ']

= P T[(gufkt’{lu---t‘;S“)*l}(m ..... ns)

(n)ezs

- @ R[(Qufk:tlim"‘tgsu)_l](m ,,,,, ns)

(n)ezs
N, >0

- @ R[(fkt(lll e t(sls)_la (gufktlilu T tgsu)_l] (n1,...yns)

(n)ezs
N, >0

= Ce[{(dst) ™" [ 5 £ ubs (gufiti™ 1) 7]
Let Bk, be an element in H°(D. (fi), Ox) such that
gufktlilu to tgs“ = /Bku(dkltl)blu T (dksts)bsu

for k=1,...,t and u € U. Then,

Co[{(diity) ™ 5 7w}, (gu it - th) ™)

= C}, [(Bku H (dkjtj)) _1} .
jeu

i#u

(3.8)
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By (3.5), (3.6), (3.7), and (3.8), we know that Z is an open subscheme
of Y. The ideal of C}, generated by

H (dkjtj) and {Bku H(dkjtj) ‘ u e U}
jeu JjeUu
J#Fu

is the unit ideal or of height 2. (If U =), then Z =Y by the construction.
If U ={u} and if By, is a unit element, then this ideal is the unit. In other
cases, this ideal is of height 2.) Therefore, the codimension of Y\ Z in Y is
greater than or equal to two. [l

We can define the graded canonical module as in [5, Definition 3.1] using
the theory of the equivariant twisted inverse functor (see [4]).

By Claim 3.5 above and [5, Remark 3.2], we have wy = H°(Y,wy). On
the other hand, we have

Wy = /\QY/X/ ®7T*OX/(KX/)

— O (Z D})(1,...,~1) @0y 7 Ox/(Kx1)
=710y (ZD; +KX/)(—1, o1,

where (—1,...,—1) denotes the shift of degree (see [4, Theorem 28.11}).
Then, we have

HO(Y,wy) = H° (X’,W*W*OX/ (Z D+ KX/) (—1,..., —1)).
%
By the projection formula (see [4, Lemma 26.4]),
Tt Oy (Z D+ KX/>(—1, =)
- (OX/ (ZDQ +KX/) @ﬁ*oy)(—1,...,—1)

— (oX, (;DH-KX/) ® [@ Ox/ (ZniD§>D(—1,...,—1)

neWw 7
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= (@ Ox: (Z:(nZ +1)D; + KX’)) (=1,...,=1)

neWw i
Q€W+(1,...,1) i

Therefore, we have

Ho(y,wy):H()(X', @ OX/(an‘DHKX/))

neW+(1,...,1)

- P A (X’, Oy (Z ni D!+ KX))

neW+(1,...,1)

- D n (X, Ox (Z n;D; + KX))
U

neW+(1,...,1)

= My, Nty tk(X) [t1, ..ot {85 | § £ UL

We have completed the proof of Theorem 1.3.
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