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Calibrate your confidence in research findings:
A tutorial on improving research methods
and practices

Aline da Silva Frost and Alison Ledgerwood

Department of Psychology, University of California, Davis, California, USA

Abstract

This article provides an accessible tutorial with concrete guidance for how to start improving
researchmethods and practices in your lab. Following recent calls to improve researchmethods
and practices within and beyond the borders of psychological science, resources have prolifer-
ated across book chapters, journal articles, and onlinemedia. Many researchers are interested in
learning more about cutting-edge methods and practices but are unsure where to begin. In this
tutorial, we describe specific tools that help researchers calibrate their confidence in a given set
of findings. In Part I, we describe strategies for assessing the likely statistical power of a study,
including when and how to conduct different types of power calculations, how to estimate effect
sizes, and how to think about power for detecting interactions. In Part II, we provide strategies
for assessing the likely type I error rate of a study, including distinguishing clearly between data-
independent (“confirmatory”) and data-dependent (“exploratory”) analyses and thinking care-
fully about different forms and functions of preregistration.

In recent years, psychology has been at the forefront of a broad movement across scientific dis-
ciplines to improve the quality and rigor of researchmethods and practices (Begley & Ellis, 2012;
Button et al., 2013; Ledgerwood, 2016;McNutt, 2014; Nosek, Spies, &Motyl, 2012; Nyhan, 2015;
see Spellman, 2015, for a helpful synopsis). The field as a whole is changing: Conversations about
improving research practices have become mainstream, journals and societies are adopting new
standards, and resources for improving methods and practices have proliferated across journal
articles, book chapters, and online resources such as blogs and social media (Simons, 2018). As
attention to methodological issues has surged, researchers have become increasingly interested
in understanding and implementing methodological tools that can maximize the knowledge
they get from the work that they do.

At the same time, for the average researcher, it can be daunting to approach this new wealth
of resources for the first time. You know that you want to understand the contours of recent
developments and to learn as much as possible from the research you do, but where do you even
begin? We think that one of the most important methodological skills to develop is how to cal-
ibrate your confidence in a finding to the actual strength of that finding.

In this tutorial, we seek to provide a toolbox of strategies that can help you do just that. If a
finding is strong, you want to have a relatively high level of confidence in it. In contrast, if a
finding is weak, you want to bemore skeptical or tentative in your conclusions. Having toomuch
confidence in a finding can lead you to waste resources chasing and trying to build on an effect
that turns out to have been a false positive, thereby missing opportunities to discover other true
effects. Likewise, having too little confidence in a finding can lead you to miss opportunities to
build on solid and potentially important effects. Thus, in order to maximize what we learn from
the work that we do as scientists, we want to have a good sense of how much we learn from a
given finding.

We divide this tutorial into two main parts. The first part will focus on how to estimate stat-
istical power, which refers to the likelihood that a statistical test will correctly detect a true effect
if it exists (i.e., the likelihood that if you are testing a real effect, your test statistic will be
significant). The second part will focus on type I error, which refers to the likelihood that a stat-
istical test will incorrectly detect a null effect (i.e., the likelihood that if you are testing a null
effect, your test statistic will be significant). Arguably, one of the central problems giving rise
to the field’s so-called “replicability crisis” is that researchers have not been especially skilled at
assessing either the statistical power or the Type I error rate of a given study – leading them to be
overly confident in the evidential value and replicability of significant results (see Anderson,
Kelley, & Maxwell, 2017; Lakens & Evers, 2014; Ledgerwood, 2018; Nosek, Ebersole,
DeHaven, & Mellor, 2018a; Open Science Collaboration, 2015; Spellman, Gilbert, & Corker,
2017; Pashler &Wagenmakers, 2012). For example, Bakker, van Dijk, andWicherts (2012) esti-
mated the average statistical power in psychological experiments to be only 35%, and even large
studies may have lower statistical power than researchers intuitively expect when measures are
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not highly reliable (see Kanyongo, Brook, Kyei-Blankson, &
Gocmen, 2007; Wang & Rhemtulla, in press). Meanwhile,
common research practices can inflate the type I error rate of a stat-
istical test far above the nominal alpha (typically p < .05) selected
by a researcher (John, Loewenstein, & Prelec, 2012; Simmons,
Nelson, & Simonsohn, 2011; Wang & Eastwick, in press).

Importantly, you need a good estimate of both quantities –
statistical power and type I error – in order to successfully calibrate
your confidence in a given finding. That is because both quantities
influence the positive predictive value of a finding, or how likely it
is that a significant result reflects a true effect in the population.1

For example, imagine that in the course of a typical year, a
researcher has ten ideas that happen to be correct and ten ideas
that happen to be incorrect (that is, she tests ten effects that are
in fact true effects in the population and ten that are not). Let
us focus on what happens to the correct ideas first. As illustrated
in Figure 1, the statistical power of the researcher’s studies deter-
mines howmany of these true effects will be detected as significant.
If the studies are powered at 40% (left side of Figure 1), four out of
ten studies will correctly detect a significant effect, and six out of
ten studies will fail to detect the effect that is in fact present in the
population. If the studies are powered at 90% (right side of
Figure 1), nine out of ten studies will correctly detect the significant
effect, and only one will miss it and be placed in the file drawer.

However, statistical power is only part of the story. Not all ideas
are correct, and so let us focus now on the ten ideas that happen to
be incorrect (that is, she tests ten effects that are in fact null effects
in the population). As illustrated in Figure 1, the type I error rate of

the researcher’s studies determines how many of these null effects
will be erroneously detected. If the studies have a type I error rate of
30%, three of the ten null effects will be erroneously detected as
significant, and the other seven will be correctly identified as
nonsignificant.2

The researcher, of course, does not know whether the effects are
real or null in the population; she only sees the results of her stat-
istical tests. Thus, what she really cares about is how likely she is to
be right when she reaches into her pile of significant results and
declares: “This is a real effect!” In other words, if she publishes
or devotes resources to following up on one of her significant
effects, how likely is it to be a correctly detected true effect, rather
than a false positive? Notice that the answer to this question about
the positive predictive value of a study depends on both statistical
power and type I error rate. In Figure 1, the positive predictive
value of a study is relatively low when power is low (on the left
side): The likelihood that a significant result in this pool of signifi-
cant results reflects a true effect is 4 out of 7 or 57%. In contrast, the
positive predictive value of a study is higher when power is higher
(on the right side of Figure 1): The likelihood that a significant
result in this pool of significant results reflects a true effect is 9
out of 12, or 75%. Thus, if we are to understand how much to trust
a significant result, we want to be able to gauge both the likely stat-
istical power and the likely type I error rate of the study in question.

At this point, readers may wonder about the trade-off between
statistical power and type I error, given that the two are related. For
example, one way to increase power is to set a higher alpha thresh-
old for significance testing (e.g., p < .10 instead < .05), but this

Figure 1. Consider the case of a researcher testing 10 true effects and 10
false effects. Perhaps they will follow up or publish significant results but
leave nonsignificant results in a file drawer. The statistical power and type I
error rate of the studies will determine how the effects are sorted into a set
of significant results (follow up!) and a set of nonsignificant results (file
drawer). Notice that because power is higher in the scenario on the right
(vs. left), the likelihood that any one of the significant findings reflects a true
effect in the population is also higher.
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practice will also increase type I error. However, there are other
possible ways to increase power that do not affect the type I error
rate (e.g., increasing sample size, improving the reliability of a
measure) – and it is these strategies that we discuss below. More
broadly, in this tutorial, we focus on providing tools to assess:
(1) the likely statistical power; and (2) the likely type I error rate
of a study result, and offer guidance for how to increase statistical
power or constrain type I error for researchers who want to be able
to have more confidence in a given result.

Part I: How to Assess Statistical Power

Develop Good Intuitions About Effect Sizes and Sample Sizes

One simple but useful tool for gauging the likely statistical power of
a study is a well- developed sense of the approximate sample size
required to detect various effects. Think of this as building your
own internal power calculator that provides rough, approximate
estimations.

You want to be able to glance at a study and think to yourself:
“Hmm, that’s a very small sample size for studying this type of
effect with this sort of design – I will be cautious about placing
too much confidence in this significant result” or “This study is
likely to be very highly powered – I will be relatively confident
in this significant result.” In other words, it is useful to develop
your intuitions for assessing whether you are more likely to be
in a world that looks more like the left side of Figure 1 or in a world
that looks more like the right side.

How do you build this internal calculator? You can start by
memorizing some simple benchmarks. For a simple two-
condition, between-subjects study, the sample size required to
detect a medium effect size of d = .50 with 80% power is about
N = 130 (65 participants per condition; see Figure 2. Notice that
d = .50 is equivalent to r = .24 and h2 = .06). To detect a large effect
of d = .80 with 80% power requires about N = 50 (25 per condition).
And to detect a small effect size of d = .20 with 80% requires about
N = 800 (400 per condition; Faul, Erdfelder, Lang, & Buchner, 2007).

Next, start developing your sense of how big such effects really
are. Cohen (1992) set a medium effect size at d = .50 to “represent
an effect likely to be visible to the naked eye of a careful observer”
(p. 156), so amedium-sized effect is one that wemight observe sim-
ply by watching people closely. A large effect size of d = .80 is typ-
ically an effect that even a casual observer would notice (e.g., the
correlation between relationships satisfaction and breakup is
approximately this magnitude; Le, Dove, Agnew, Korn, &
Mutso, 2010). And a small effect size of d= .20 is typically too small
to be seen with the naked eye (e.g., if you’re interested in testing a
counterintuitive prediction that would be surprising to most peo-
ple, it is likely to be a small effect if it is true). Pay attention to effect
size estimates from meta-analyses and very large studies in your

area of research to hone your intuitions within your particular
research area.

Finally, keep in mind that interactions can require much larger
sample sizes, depending on their shape. For example, imagine that
you are interested in powering a two-group study to detect a
medium-sized effect. You conduct Study 1 with a total sample size
of N = 130 and find that indeed, your manipulation (let’s call it
Factor A) significantly influences your dependent measure.
Next, you want to know whether Factor B moderates this effect.
How many participants do you need to have 80% power to detect
an interaction in Study 2, where you manipulate both Factor A and
Factor B in a 2 × 2 design?

As Table 1 illustrates, the answer depends on the shape of the
interaction you expect (see Giner-Sorolla, 2018; Ledgerwood,
2019). If you expect a knockout interaction (i.e., you think the
effect you saw in Study 1 will appear in one condition of Factor B
and disappear in the other), it turns out you need to quadruple the
sample size you had in Study 1 to have 80% power to detect the
interaction in Study 2. If you expect a perfect cross-over interaction
(i.e., you think the effect you saw in Study 1 will appear in one con-
dition of Factor B and reverse completely in the other), you need
the same sample size you had in Study 1 to have 80% power to
detect the interaction in Study 2 (although you will probably want
to double the sample size to provide 80% power to detect each of
the simple main effects). And if you expect a 50% attenuation (i.e.,
you think the effect you saw in Study 1 will appear in one condition
of Factor B and be reduced to half its original size in the other), you
need about 14 times the sample size you used in Study 1.

Strategies for a Planned Study

Conduct an a priori power analysis
The rules of thumb described above can be useful, but when you are
planning your own study, you can conduct a formal, a priori power
analysis to decide how many participants you need in order to
achieve your desired level of power. In an a priori power analysis,
you input your desired level of power (e.g., 80%), your planned
statistical test (e.g., a t test comparing two between-subjects
conditions), and your estimated effect size (e.g., d = .40), and
the program tells you the necessary sample size (e.g., N = 200).
The central challenge in this kind of power analysis is to identify
a good estimate of the expected effect size.

Getting a good estimate of the expected effect size can be tricky
for multiple reasons. First, effect size estimates (like any estimate)
will fluctuate from one study to the next, especially when sample
sizes are smaller (see Ledgerwood, Soderberg, & Sparks, 2017,
Figure 1, for an illustration). In other words, an effect size estimate
from any given study can underestimate or overestimate the true
size of an effect. Second, publication bias tends to inflate the effect
sizes reported in a given literature. Historically, significant results

Figure 2. Sample sizes needed to achieve 80%
power in a two-condition, between-subjects
study. This figure helps you organize visually
the effect size intuitions.
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were (and continue to be) more likely to be published, and null
effects are more likely to be shuttled to a file drawer rather than
shared with the scientific community (Anderson et al., 2017;
Ledgerwood, 2019; Rosenthal, 1979). Because any given study
can underestimate or overestimate an effect size, and because over-
estimates are more likely to hit significance, publication bias effec-
tively erases a sizable portion of underestimates from the literature.
Therefore, a published effect size estimate is more likely to be an
overestimate than an underestimate. And, when one averages the
effect size estimates that do make it into the published literature,
that average is usually too high (Anderson et al., 2017).

To get around these issues, we have two options: a large study or
a meta-analysis. In both cases, it is important to consider publica-
tion bias. The first option is to find an estimate of a similar effect
from a large study (e.g., a total sample size of approximately N =
250 or larger for estimating a correlation between two variables or a
mean difference between two groups; Schönbrodt & Perugini,
2013). If you find such a study, ask yourself whether the paper
would have been published if it had different results (e.g., a paper
that describes its goal as estimating the size of an effect may be less
affected by publication bias than a paper that describes its goal as
demonstrating the existence of an effect). The second option is to
find an estimate of a similar effect from a meta-analysis. Meta-
analyses aggregate results of multiple studies, so their estimates
ought to be more accurate than an estimate from a single study.
However, because they also sample studies from the literature, they
can overestimate the size of an effect. For this reason, look for
meta-analysis that carefullymodel publication bias (e.g., by using sen-
sitivity analyses that employ variousmodels of publication bias to pro-
duce a range of possible effect size estimates; McShane, Bockenholt, &
Hansen, 2016; see Ledgerwood, 2019, for a fuller discussion).

By identifying a good estimate of the expected effect size, such
as those from large studies andmeta-analyses that account for pub-
lication bias, we can conduct a priori power analyses that will be
reasonably accurate. You can conduct an a priori power calculation
using many simple-to-use programs, such as G*Power (Faul et al.,
2007); PANGEA (Westfall, 2016) for general analysis of
variance (ANOVA) designs and pwrSEM (Wang & Rhemtulla,
in press) for structural equation models.

Of course, sometimes it is not possible to identify a good effect
size estimate from a large study or meta-analysis that accounts for
publication bias. If your only effect size estimate is likely to be inac-
curate and/or biased (e.g., an effect size estimate from a smaller
study), you can use a program that accounts for uncertainty and
bias in effect size estimates (available online at https://
designingexperiments.com/shiny-r-web-apps under the penulti-
mate heading, “Bias and Uncertainty Corrected Sample Size for
Power” or as an R package; see Anderson et al., 2017).

Identify the biggest sample size worth collecting
In other situations, you are simply not sure what effect size to
expect – perhaps you are starting a brand-new line of research,
or perhaps the previous studies in the literature are simply too
small to provide useful information about effect sizes. A useful
option in such cases is to identify the smallest effect size of interest
(often abbreviated to SESOI) and use that effect size in your power
calculations (Lakens, 2014). In other words, if you only care about
the effect if it is at least medium in size, you can power your study
to detect an effect of d = .50.

Basic researchers often feel reluctant to identify a SESOI,
because they often care about the direction of an effect regardless
of its size (e.g., competing theories might predict that a given
manipulation will increase or decrease levels on a given dependent
measure, and a basic researcher might be interested in either result
regardless of the effect size). However, with a minor tweak, the
basic concept becomes useful to everyone. If identifying a SESOI
feels difficult, identify instead the largest sample you would be will-
ing to collect to study this effect.

Let’s call this the “Biggest Sample Size Worth Collecting”, or
BSSWC. For example, if you decide that a given research question
is worth the resources it would take to conduct a two-group experi-
ment with a total ofN = 100 participants, you are effectively decid-
ing that you are only interested in the effect if it is at least d = .56
(the effect size that N = 100 would provide about 80% power to
detect). Notice, then, that a BSSWC of 100 participants is equiva-
lent to a SESOI of d = .56 – they are simply two different ways of
thinking about the same basic idea. Notice, too, that it is worth
making the connection between these two concepts explicit. For
example, a social psychologist might consider whether the effect
they are interested in studying is larger or smaller than the average
effect studied in social-personality psychology (r = .21 or d = .43;
see Richard, Bond, & Stokes-Zoota, 2003). Unless they have a rea-
son to suspect their effect is much larger than average, theymay not
want to study it with a sample size of only N = 100 (because they
will be under-powered; see Figure 1).

Conserve resources when possible: Sequential analyses
Once you have determined the maximum sample size you are will-
ing to collect (either through an a priori power analysis or by deter-
mining the maximum resources you are willing to spend on a given
study), you can conserve resources by using a technique called
sequential analysis. Sequential analyses allow you to select a priori
the largest sample size you are willing to collect if necessary as well
as middle points where you would stop data collection earlier if you
could (Lakens & Evers, 2014; Proschan, Lan, & Wittes, 2006). For
example, if you have a wide range of plausible effect size estimates
and are unsure about how many participants to run, but you know
you are willing to collect a total sample size ofN= 600 to detect this
particular effect, a sequential analysis may be the best option.
Sequential analyses are planned ahead of time, before looking at
your results, and preserve a maximum type I error rate of 5%.
In contrast, if you check your data multiple times without using
a formal sequential analysis, type I error rates inflate (see Sagarin,
Ambler, & Lee, 2014; Simmons et al., 2011).

To conduct a sequential analysis, you would first decide how
many times you will want to check your data before reaching your
final sample size – in our example, N = 600. Each additional check
will reduce power by a small amount in exchange for the possibility
of stopping early and conserving resources. Imagine that you
decide to divide your planned sample into three equal parts, so that
you conduct your analysis at n = 200, n = 400 and N = 600

Table 1. Rules of thumb for powering a 2 × 2 between-subjects Study 2 that
seeks to moderate a main effect observed in Study 1

Expected shape of interaction

Required total
sample size
for Study 2

Example: N needed
if Study 1 tested an
effect of d = .50

Cross-over 2 × N in Study 1a N ≈ 260

Knockout 4 × N in Study 1 N ≈ 520

50% attenuation 14 × N in Study 1 N ≈ 1820

Note: In this illustration, Study 1 is powered to provide 80% power to detect a main effect. In
Study 2, a researcher wants to test whether the effect observed in Study 1 is moderated by a
second variable in a 2 × 2 between-subjects factorial design.
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participants (you can follow this example in Table 2). You would
then pause data collection at each of these points and check the
results. If the p value of the analysis is less than a predetermined
alpha threshold (see Table 2), you would determine that the test
is statistically significant. If it is greater than the threshold, you
would continue collecting data up until the final sample size of
N = 600.

For instance, imagine that you collect the first planned set of
200 participants, or 33% of the total N. You pause data collection
and analyze the data; if the p value of the focal analysis is below the
first alpha threshold of .017, the result is significant and you can
stop data collection early (saving 400 participants). If the p value
of the focal analysis is not below .017, you continue to collect data
from 200 more participants. When you check the results again, if
the p value is below the second alphas threshold of .022, the result is
significant and you can stop data collection early (saving 200
participants). If the p value is not below .022, you continue to
collect data from 200 more participants and then conduct the focal
analysis one final time on the total sample of 600 participants. If the
p value is below .028, the result is significant. If it is not below .028,
the result is not significant. In either case, you stop collecting data
because you have reached your final planned sample size.

Importantly, by computing specific, adjusted alpha thresholds
depending on the planned number of stopping points, sequential
analysis enables researchers to check the data multiple times dur-
ing data collection while holding the final type I error rate at a
maximum of .05. This allows you to balance the goals of maximiz-
ing power and conserving resources. Table 2 provides the alpha
thresholds for common sequential analyses where a researcher
wants to divide their total planned sample (of any size) into 2–4

equal parts and hold their type I error rate at .05 or below
(for an example of how to write up a sequential analysis, see
Sparks & Ledgerwood, 2017). If you want to stop more frequently
or at unevenly spaced points, you can use the GroupSeq R package
and step-by-step guide provided by Lakens (2014; resources
available at https://osf.io/qtufw/) to compute other alpha thresholds.

Consider multiple approaches to boosting power
After conducting an a priori power analysis, you may find that to
have your desired level of power, you need a larger sample size than
you initially imagined. However, it is not always possible or
practical to collect large sample sizes. You may be limited by the
number of participants available to you (especially when studying
hard-to-reach populations) or by the finite money and personnel
hours that you have to spend on collecting data. Whatever the situa-
tion, all researchers face trade-offs and constraints based on resources.

Given such constraints, it is often useful to consider multiple
approaches to boosting the power of a planned study. When pos-
sible and appropriate, making a manipulation within-subjects
instead of between-subjects can dramatically boost the power of
an experiment (see Greenwald, 1976; Rivers & Sherman, 2018).
Likewise, you can increase power by strengthening a manipulation
and by improving the reliability of your measures (see e.g.,
Ledgerwood & Shrout, 2011). In addition, it is sometimes possible
to select ahead of time a planned covariate that correlates strongly
with the dependent measure of interest (e.g., measuring extraver-
sion as a covariate for a study that examines self-esteem as the focal
dependent variable; see Wang, Sparks, Gonzales, Hess, &
Ledgerwood, 2017). Finally, one of the most exciting developments

Table 2. Alpha thresholds for sequential analyses

Divide your
sample size into
equal parts

Stop at percent
of total N

Example
(total N= 600) Alpha threshold Decision guide

2 50% 300 .025 p < .025? if yes, significant.

if no, continue collection

100% 600 .034 p < .034? if yes, significant

if no, it is not significant

3 33% 200 .017 p < .017? if yes, significant.

if no, continue collection

66% 400 .022 p < .022? if yes, significant

if no, continue collection

100% 600 .028 p < .028? if yes, significant

if no, it is not significant

4 25% 150 .013 p < .013? if yes, significant

if no, continue collection

50% 300 .016 p < .016? if yes, significant

if no, continue collection

75% 450 .020 p < .020? if yes, significant

if no, continue collection

100% 600 .025 p < .025? if yes, significant

if no, it is not significant

Note: Once you have planned your total sample size and how many times you will want to stop and check the results, use this table to determine the alpha cut-off
thresholds you will use to determine significance at each planned analysis time point.
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in the “cooperative revolution” created by the open science move-
ment is the proliferation of opportunities for large-scale collabora-
tions (e.g., the Psychological Science Accelerator, ManyLabs,
ManyBabies, and StudySwap; see Chartier, Kline, McCarthy,
Nuijten, Dunleavy, & Ledgerwood, 2018). When it simply is not
feasible to study the research question you want to study with high
statistical power, consider collaborating across multiple labs and
aggregating the results.

Strategies for an Existing Study

Conduct a sensitivity analysis
When you want to assess the statistical power of an existing study
(e.g., a study published in the literature or a dataset you have
already collected), you can conduct a type of power analysis called
a sensitivity analysis (Cohen, 1988; Erdfelder, Faul & Buchner,
2005). In a sensitivity analysis, you input the actual sample size
used in the study of interest (e.g., N= 60), the statistical test
(e.g., a t test comparing two between-subjects conditions), and a
given level of power (e.g., 80%), and the program tells you the effect
size the study could detect with this level of power (e.g., d= .74).
The central goal for this kind of power analysis is to provide a good
sense of the range of effect sizes that an existing study was
adequately powered to detect.

For example, perhaps you have already conducted a study in
which you simply collected as many participants as resources per-
mitted, and you ended up with a total sample of N= 164 partici-
pants in a two-group experimental design. You could conduct
sensitivity analyses to determine that your study had 60% power
to detect an effect size of d= .35 and 90% power to detect an effect
of d= .51. Armed with the effect size intuitions we discussed in an
earlier section, you could then ask yourself whether the effect size
you are studying is likely to be on the smaller side or on the larger
side (e.g., is it an effect that a careful observer could detect with the
naked eye?). By thinking carefully about this information, you can
gauge the likely statistical power of your study (e.g., is it more like
the left side or the right side of Figure 1?) and calibrate your con-
fidence in the statistical result accordingly.

Don’t calculate “post-hoc” or “observed” power
Many types of power analysis software also provide an option for
computing power called post hoc power or observed power. This
type of power analysis is highly misleading and should be avoided
(Gelman & Carlin, 2014; Hoenig & Heisey, 2001). In a post hoc
power analysis, you input the effect size estimate from a study
as if it is the true effect size in the population. However, as dis-
cussed earlier, a single study provides only one estimate of the true
population effect size, and this estimate tends to be highly noisy: It
can easily be far too high or far too low (see Figure 1 in Ledgerwood
et al., 2017; Schönbrodt & Perugini, 2013). Furthermore, because
researchers tend to be more interested in following up on and pub-
lishing significant results, and because a study is more likely to hit
significance when it overestimates (vs. underestimates) an effect
size, researchers are especially likely to conduct post hoc power
analyses with overestimated effect size estimates.

The result of using post-hoc power is an illusion of a precise
power estimate that in fact is (1) highly imprecise and (2) redun-
dant with the p value of the study in question. In other words,
post-hoc power or observed power appears to provide a new piece
of very precise information about a study, when in fact it provides
an already known piece of imprecise information. It is loosely akin
to attempting to gauge the likelihood that a coin flip will result in

“heads” rather than “tails” based on flipping the coin, observing
that the result is “heads,” and then deciding based on this obser-
vation that the coin flip must have been very likely to result in
the outcome you saw. Thus, post-hoc power or observed power
ultimately worsens your ability to calibrate your confidence to
the strength of a result.

Part II: How to Assess Type I Error Rates

As Figure 1 illustrates, if we want to correctly calibrate our confi-
dence in a significant result, we want to be able to gauge not only
the likely statistical power of the test in question, but also its likely
type I error rate. Researchers often assume that their type I error
rate is simply set by the alpha cut-off against which a p value is
compared (traditionally, p < .05). In reality, however, the likeli-
hood of mistakenly detecting a significant effect when none exists
in the population can be inflated beyond the nominal alpha rate
(.05) by a number of factors.

Understand How Data-Dependent Decisions Inflate the Type I
Error Rate

Perhaps most importantly, the type I error rate can inflate – often
by an unknown amount – when the various decisions that a
researcher makes about how to construct their dataset and analyze
their results are informed in some way by the data themselves. Such
decisions are called data-dependent (or often “exploratory,”
although this term can have multiple meanings and so we avoid
it here for the sake of clarity). For example, if a researcher decides
whether or not to continue collecting data based on whether their
primary analysis hits significance, the type I error rate of that test
will inflate a little (if they engage in multiple rounds of such
“optional stopping,” type I error can increase substantially; see
Sagarin et al., 2014). Likewise, running an analysis with or without
a variety of possible covariates until one hits significance can inflate
type I error (see Wang et al., 2017), as can testing an effect with
three slightly different dependent measures and reporting only
the ones that hit significance. In fact, even the common practice
of conducting a 2 × 2 factorial ANOVA and reporting all effects
(two main effects and an interaction) has an associated type I error
rate of about 14% rather than the 5% researchers typically assume
(see Cramer et al., 2016). In all of these cases, the problem arises
because there are multiple possible tests that a researcher could or
does run to test their research question (e.g., a test on a subsample
of 100 and a test on a subsample of 200; a test on one dependent
measure versus a test on a different dependent measure). When the
decision about which test to run and report is informed by knowl-
edge of the dataset in question, the type I error rate starts
to inflate (see Gelman & Loken, 2014; Simmons, Nelson, &
Simonsohn, 2011).

Clearly Distinguish Between Data-Dependent and
Data-Independent Analyses with a Preanalysis Plan

Of course, the fact that data-dependent analyses inflate type I error
does not mean that you should never let knowledge of your
data guide your decisions about how to analyze your data. Data-
dependent analyses are important to get to know your data and
to help generate new hypotheses and theories. Moreover, in some
research areas, it is difficult or impossible to analyze a dataset with-
out already knowing something about the data (e.g., political
science studies of election outcomes; Gelman & Loken, 2014).
Data-dependent analyses are often extremely useful, but we want
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to know that an analysis is data-dependent so that we can calibrate
our confidence in the result accordingly.

Thus, an important tool to have in your toolkit is the ability to
distinguish clearly between data-dependent and data-independent
analyses. A well-crafted preanalysis plan allows you to do just that.
A preanalysis plan involves selecting and writing down ahead of
time the various researcher decisions that will need to be made
about how to construct and analyze a dataset, before looking at
the data. Writing down the decisions ahead of time is important
to circumvent human biases in thinking and memory (Chaiken &
Ledgerwood, 2011; Nosek et al., 2012) – after looking at the data,
it is very easy to convince ourselves we actually intended to do these
particular tests and make these particular decisions all along. By
creating a record of which decisions were in fact data-independent,
preanalysis plans allow researchers to distinguish between data-
dependent and data-independent analyses. For example, if you
write down ahead of time that you will include a carefully chosen
covariate in your analysis and you follow that plan, you can rest
assured that you have not unintentionally inflated your type I error
rate (Wang et al., 2017). On the other hand, if you decide after
looking at the data to include a different covariate or none at
all, you can calibrate your confidence in that data-dependent
analysis accordingly (e.g., being more tentative about that result
until someone can test if it replicates).

Preanalysis plans thus enable you to plan your analyses with a
constrained type I error rate, allowing you to knowwhat this rate is.
However, the plan is not a guarantee for keeping an alpha level
below the desired rate (usually .05). If you plan multiple compar-
isons (e.g., you plan to test all effects in a two-way ANOVA;
Cramer et al., 2016) or inappropriate statistical tests (e.g., you
usemultiple regression rather than latent variables to test the incre-
mental validity of a psychological variable, which can produce spu-
rious results due to measurement error; see Westfall & Yarkoni,
2016; Wang & Eastwick, in press), your type I error rate may be
higher than you imagine. Also, it is important not to follow the plan
blindly, and always check whether the assumptions of a statistical
test are met given the data.

When constructing a preanalysis plan for the first time, it is
often useful to start with a template designed for your type of
research. For example, psychological researchers conducting
experiments often find the AsPredicted.org template useful
because it clearly identifies the most common researcher decisions
that an experimental psychologist will need to make and provides
clear examples of how much detail to include about each one.
Other templates are available on OSF (see https://osf.io/zab38/),
or you can create your own tailored to your own particular research
context (see Table 3 for an example). Do not be surprised to find
that you forget to record some researcher decisions the first time
you create a preanalysis plan for a given line of research. It can be
hard to anticipate all the decisions ahead of time. But even when a
preanalysis plan is incomplete, it can help you clearly identify those
analyses that were planned ahead of time and those that were
informed in some way by the data.

Distinguish Between Different Varieties of Preregistration and
their Respective Functions

As described above, preanalysis plans can be very useful for clearly
distinguishing between data-independent and data-dependent
analyses. Preregistering a preanalysis plan simply means recording
it in a public repository (e.g., OSF, AsPredicted.org, or
socialscienceregistry.org). However, it is important to recognize

that the term preregistration is used in different ways by different
researchers both within and beyond psychology, and that these dif-
ferent definitions often map onto different goals or functions
(Ledgerwood & Sakaluk, 2018; see also Navarro, 2019). Table 4
outlines the most common varieties of preregistration and their
intended functions.

Researchers in psychology often use the term “preregistration”
to mean a preanalysis plan, and advocate using this type of prereg-
istration to reduce unintended type I error inflation and
help researchers correctly calibrate their level of confidence or
uncertainty about a given set of results (e.g., Nosek, Ebersole,
DeHaven, & Mellor, 2018a; Simmons, Nelson, & Simonsohn,

Table 3. Common decisions to specify in a preanalysis plan

Consider describing: Example:

Planned sample size and
stopping rule

Target total N= 200
We will collect data until Qualtrics
indicates that there are completed
surveys from 200 participants.

Inclusion criteria University students 18 and older who have
not participated in a previous study in this
line of work will be allowed to participate.

Exclusion criteria Participants will be excluded if they
respond incorrectly to the attention check
at the end of the study, as coded by a
researcher blind to the rest of the data.

UPDATED 10/20/2019 after opening the
data file but before running any analyses:
We noticed that two participants spent less
than 2 seconds reading the screen that
displayed the manipulation, whereas
everyone else spent at least 30 seconds, so
we decided to exclude these two
participants.

Manipulation(s) and
conditions

Consensus information (2 between-
subjects conditions): Participants read
that 70% of students at their university
support vs. oppose a new bike law.

Predictor(s) and how
they will be constructed

N/A

Dependent measure(s) and
how they will be
constructed

Primary/Focal DV: Participants’ own
attitudes toward the bike law (average of
the five-item scale)

Additional DV: Attitude strength
(average of the four-item scale)

Any planned covariates N/A

Planned statistical tests
involving specific
operational variables

Primary/Focal analysis: Independent t test
(two-tailed) examining the effect of
condition on participants’ attitudes
toward the bike law.

Additional analysis: Independent t test
(two-tailed) examining the effect of
condition on participants’ attitude
strength.

Any planned follow-up or
subgroup analyses

No

Any plan for type I error
control (e.g., for multiple
comparisons)

No

Note: Notice that although some templates ask you to identify a research question or
prediction as a simple way to help readers understand the focus of your study, you can create
a preanalysis plan evenwhen you have no prediction about how your results will turn out (see
Ledgerwood, 2018). Notice too that preanalysis plansmust be specific to be useful (e.g., if the
dependentmeasure does not specify howmany items will be averaged, it is not clear whether
the decision about which items to include was made before or after seeing the data).
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2017). But researchers in psychology and other disciplines also use
the term “preregistration” to mean other practices that do not
influence type I error (although they serve other important func-
tions). Distinguishing between different varieties or elements of
preregistration and thinking carefully about their intended pur-
pose (and whether a given preregistration successfully achieves
that purpose) is crucial if we want to correctly calibrate our con-
fidence in a given set of results.

For example, researchers across disciplines sometimes use the
term “preregistration” to mean a peer-reviewed registered report,
where a study’s methods and planned analyses are peer reviewed
before the study is conducted; in such cases, the decision about
whether to publish the study is made independently from the
study’s results (e.g., Chambers & Munafo, 2013). This type of pre-
registration can help constrain type I error inflation (insofar as the
analyses are specified ahead of time and account for multiple com-
parisons), while also achieving other goals like combatting publi-
cation bias (because the decision about whether to publish the
study does not depend on the direction of the results). However,
the reverse is not true: A preanalysis plan by itself does not typically
combat publication bias (primarily because in psychology such
plans are not posted in a public, centralized, easily searchable
repository).

Similarly, researchers often talk about preregistration as involv-
ing recording a directional prediction before conducting a study
(e.g., Nosek et al., 2018a), which can be useful for theory falsifica-
tion. However, writing down one’s predictions ahead of time does
not influence type I error: The probability of a given result occur-
ring by chance does not change depending on whether a researcher
correctly predicted it ahead of time (Ledgerwood, 2018). Thus, a
researcher who records their predictions ahead of time without
also specifying a careful preanalysis plan runs the risk of unin-
tended type I error inflation (Nosek, Ebersole, DeHaven, &
Mellor, 2018b).

Thus, in order to correctly calibrate our confidence in a given
study’s results, we need to know more than whether or not a study

was “preregistered” –we need to ask how a study was preregistered.
Did the preregistration contain a careful and complete preanalysis
plan that fully constrained flexibility in dataset construction and
analysis decisions? Did the plan successfully account for multiple
comparisons? And did the researcher exactly follow the plan for all
analyses described as data-independent? Thinking carefully and
critically about preregistration will help you identify which of
the goals (if any) listed in Table 4 have been achieved by a given
study, and whether you should be more or less confident in that
study’s conclusions.

Conclusion

In this tutorial, we have discussed a number of strategies that you
can use to calibrate the confidence you have in the results of your
own studies as well as studies from other researchers (see Table 5).
These strategies address typical issues researchers face when they
try to assess the likely statistical power and type I error rate of a
given study. By improving our ability to gauge statistical power
and type I error, we can distinguish between study results that pro-
vide relatively strong building blocks for our research programs
(those with high positive predictive value, as illustrated on the right
side of Figure 1) and study results that provide more tentative evi-
dence that needs to be replicated before we build on it (those with
low positive predictive value, as illustrated on the left side of
Figure 1). To help us get a better sense of the power of a study,
we can develop good effect size intuitions; conduct a priori power
analyses when we are in the planning phase of a project; and con-
duct sensitivity analyses when data has already been collected. To
help us get a better sense of the type I error rate of a study, we can
clearly distinguish between data-dependent (exploratory) and
data-independent (confirmatory) analyses using a preanalysis
plan; think critically about different varieties of preregistration;
and evaluate whether a given preregistration successfully achieves

Table 4. Different definitions of preregistration and their intended purpose

Definition Goal

Preanalysis plan Distinguish data-independent vs.
data-dependent analyses;
constraining unintended type I
error inflation

Write down as much information
as you can about your study
before you conduct it

Transparency: Someone else can
check what you said you planned
ahead of time against what you
actually wrote down

Record your theoretical
predictions

Theory falsification

Record your intuitive predictions Figure out how good you are
personally at guessing a study’s
outcome

Record the existence of your
study in a centralized, searchable
repository

Combat publication bias

Registered report All of the above plus reviewer
objectivity (reviewers can evaluate
the methods and planned analyses
without being biased by the
whether the results fit their
intuitions or theories)

Table 5. Summary of recommendations

When planning a study:

1. Assess and maximize statistical power
– Conduct an a priori power analysis.
– Identify the biggest sample size worth collecting.
– Use sequential analysis to conserve resources when possible.
– Consider multiple approaches to boosting power.

2. Avoid unintended or invisible type I error inflation
– Clearly distinguish between data-dependent and data-
independent analyses with a preanalysis plan.

– Distinguish between different varieties of preregistration and their
respective functions. If your goal is to avoid type I error inflation,
preregister a preanalysis plan that clearly constrains researcher
degrees of freedom for any planned, data-independent analyses.

When evaluating a study that has already been conducted:

1. Assess the likely power of a given statistical test
– Conduct a sensitivity analysis to assess power to detect a range
of effect sizes.

– Do not calculate “post-hoc” or “observed” power.

2. Assess the likely type I error rate
– Understand how data-dependent decisions inflate the type I error
rate.

– Look for a preanalysis plan. Is it clear which analyses were data-
independent? Are researcher decisions well constrained or
flexible? Does the preanalysis plan account for multiple
comparisons and are the analyses appropriate?
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its desired function(s). Together, these strategies can help improve
our research methods as scientists, allowing us to maximize what
we learn from the work that we do.

Financial support. None.

Notes

1. The positive predictive value of a finding also depends on the base rate of true
effects being tested in the population. For the examples we provide in this sec-
tion, we assume this base rate of true effects being tested is 50%. When it is
higher (e.g., when a researcher tests incremental questions in a very well-
established research literature where a hypothesis is quite likely to be true),
the positive predictive value of a study will be higher. When it is lower (e.g.,
when a researcher tests a bold new idea in a new research literature, or postulates
a counterintuitive effect), the positive predictive value of a study will be lower.
The formula for computing positive predictive value is PPV= (Power*R)/
(Power*R þ α), where R is the odds of a found effect indeed being non-null
among the effects being tested, depending on the base rate of true effects
(see Button et. al., 2013; Pashler & Harris, 2012; Ioannidis, 2005 for fuller dis-
cussions of positive predictive value).
2. Note that although a type I error rate of .30 is quite far frommost researchers’
desired type I error rate of .05, it is not unrealistic to suggest that the actual type I
error rate of a study can be considerably higher than the nominal alpha rate
(typically p < .05). We return to this issue in Part II of this tutorial (see also
Simmons, Nelson, & Simonsohn, 2011, for a vivid demonstration, and
Gelman & Loken, 2014, for an in-depth discussion).
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