
28

Technologies for evaluating the Wilson coefficients

There are nice expositions of these methods in the literature [431–434,3,362,45,399]. We
shall not try to replace these discussions, but for a pedagogical reason, we shall repeat within
our proper style some of these results. Let us remind ourselves that the evaluation of the
Green’s function of some local colourless currents is reduced to its evaluation in external
gluons or/and quark fields, assuming that the field is weak, namely its momentum is much
smaller than the characteristic scale of the problem. In this way, the expansion in power
series à la Wilson makes sense.

28.1 Fock–Schwinger fixed-point technology

28.1.1 Fock-Schwinger gauge

Let us now come to the methods for evaluating the Wilson coefficients appearing in the
SVZ-expansion. Among others, the Fock–Schwinger method is the most convenient one in
practice [431]. It corresponds to the choice of the Fock–Schwinger gauge [435,319]:

(x − x0)Aa
µ(x) = 0 , (28.1)

used often in QED. Aa
µ(x) is the four-potential and x0 is an arbitrary choice of coordinate

which plays the role of a gauge. As Eq. (28.1) breaks explicitly the translation invariance,
its restoration (cancellation of the x0 terms) for gauge-invariant quantities provides a double
check of the validity of the calculation. Unfortunately, due to algebraic complications, most
calculations have been done in the special choice x0 = 0 of the gauge.

28.1.2 Gluon fields and condensates

Using the identity:

Aµ(x) = ∂

∂xµ
[Aρ(x)xρ] − xρ

Aρ(x)

∂xµ
, (28.2)

and from Eq. (28.1) at x0 = 0:

xρ

Aρ

∂xµ
= xρGρµ + xρ

Aµ(x)

∂xρ

, (28.3)
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300 VII Power corrections in QCD

one can deduce:

Aµ(x) + xρ

Aµ(x)

∂xρ

= xρGρµ . (28.4)

By substituting x ≡ αz in the previous equation, it is easy to realize that this equation is
a full derivative:

d

dα
[αAµ(αz)] , (28.5)

which gives after integration:

Aµ(x) =
∫ 1

0
dα αGρµ(αx)xρ , (28.6)

which expresses the gauge field Aa
µ(x) in terms of the gluon-strength tensor Ga

µν . One can
use Eq. (28.6) by Taylor expanding Gρµ around xµ = 0:

Aa
µ =

∞∑
x=0

1

n!(n + 2)
xρxν1 · · · xνn ∂ν1 · · · ∂νn Ga

ρµ

∣∣
x=0 . (28.7)

By Taylor expanding Aµ(x), the gauge condition xµ Aµ(x) = 0 becomes:

xµ

[
Aµ(x) + xν1∂ν1 Aµ(x)(0) + 1

2
xν1 xν2∂ν1∂ν2 Aµ(x)(0) + · · ·

]
= 0 , (28.8)

for all x and leads to:

xµ Aµ(x)(0) = 0 ,

xµxν1∂ν1 Aµ(x)(0) = 0 ,

xµxν1 xν2∂ν1∂ν2 Aµ(x)(0) = 0 . (28.9)

Therefore:

xν1∂ν1 G(0) = xν1 [Dν1 , G(0)] ,

xν1 xν2∂ν1∂ν2 G(0) = xν1 xν2∂ν1 [Dν2 , G(0)] = xν1 xν2 [Dν1 , [Dν2 , G(0)]], . . . (28.10)

and then the useful formula:

Aµ(x) =
∞∑

x=0

1

n!(n + 2)
xρxν1 · · · xνn

[
Dν1 ,

[
Dν2 ,

[
. . .

[
Dνn , Ga

ρµ

∣∣
x=0

] · · · ]]] . (28.11)

One can immediately form the gluon normal ordered condensate:

Aµ(x)Aν(y) = 1

4
xλyρGλµGρν + · · ·

= 1

4d(d − 1)
xλyρ[gλρgµν − gλνgµρ]GαβGαβ + · · · , (28.12)

where d = 4 − ε is the space-time dimension.
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28 Technologies for evaluating Wilson coefficients 301

28.1.3 Light quark fields and condensates

Analogous arguments can be used for the quark fields. One obtains the Taylor expansion:

ψ(x) =
∑

n

1

n!
xν1 · · · xνn Dν1 Dν2 · · · Dνn ψ |x=0

ψ̄(x) =
∑

n

1

n!
xν1 · · · xνn ψ̄ D†

ν1
D†

ν2
· · · D†

νn
|x=0 , (28.13)

with:

ψ̄(0)∂†
ν1

= ∂ν1ψ̄ . (28.14)

From the previous expressions, one can also form the normal-ordered quark condensate:

〈 : ψ̄ i,α(x)ψi,α(0) : 〉 = 1

4N
δαβ

[ (
δi j + i

4
m xµ(γµ)i j

)
〈 : ψ̄ψ : 〉

− i

16
x2

(
δi j + i

6
m xµ(γµ)i j

) 〈
: ψ̄σµν λa

2
Ga

µνψ :

〉

+ i

288
x2 xµ(γµ)i j g

2

〈
: ψ̄γρ

λa

2
ψ

∑
f

ψ̄ f γ
ρ λa

2
ψ f :

〉]
. (28.15)

This expression tells us that one should be careful in evaluating the Wilson coefficients
of high-dimension condensates as the propagation of the 〈ψ̄ψ〉 condensate induces extra-
contributions due to the mixed and four-quark condensates. This effect has been one of the
main source of errors in the existing QSSR literature.

28.1.4 Mixed quark-gluon condensate

By combining the Taylor expressions of the quark and gluon fields, one can form the
normal-ordered mixed quark-gluon condensate:

〈 : ψ̄ i (x)Aρ(z)ψ j (0) : 〉 = 1

2
zµ〈 : ψ̄Gµρψ : 〉 + 1

2
xνzµ〈 : ψ̄ D†

νGµρψ : 〉 + · · ·

= zµ

96

[ [
σµρ − m

2
(xµxρ − xρxµ) + i

2
mxνσµρxν

]
i j

× 〈 : ψ̄στk Gτkψ : 〉 +
[

i

(
−2

3
zµγρ + 2

3
zργµ

)
+ 1

2
xνγνσµρ

]
i j

× g2

〈
: ψ̄γρ

λa

2
ψ

∑
f

ψ̄ f γ
ρ λa

2
ψ f :

〉 ]
. (28.16)

This expression also indicates that the propagation of the mixed quark-gluon condensate
induces a quartic condensate. Here, one should remark that the non-local condensates used
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302 VII Power corrections in QCD

in some literature can be identified with the LHS of Eqs. (28.15) and (28.16). In this
framework, the Wilson coefficients of these non-local condensates differ from the standard
SVZ expansion.

28.1.5 Gluon propagator

For a complete calculational purpose, one also likes to have the expression of the propaga-
tors. We only quote their expressions in this gauge. The gluon propagator reads:

Dµν(q) =
∫

d4xeiqx Dµν(x, 0)

= gµν

q2
+ g

2

q4
Gµν + g

4i

q6
(q D)Gµν − g

2i

3q6
gµνDαGαβ qβ

+ g
2

q8
(q D)DαGαβ gβ gµν + g

2

q8
(q2 D2Gµν − 4(q D)2Gµν)

+ g2 1

2q8
gµν(q2GαβGαβ − 4(qαGαβ)2) + g2 4

q6
GµαGαν , (28.17)

where:

Gµν ≡ Gab
µν = Ga

µνλ
b = f abcGc

µν(0) . (28.18)

28.1.6 Quark propagator

The quark propagator satisfies the Dirac equation:
(

i
∂

∂xµ

γµ + g Aµ(x)γµ − M

)
S(x, y) = δ(4)(x − y) , (28.19)

where: Aµ ≡ (λa/2)Aµ
a and M is the quark mass. Under the condition that the position of

the field is much smaller than the characteristic distance x − y, one can have the Taylor
expansion:

i S(x, y) = i S(0)(x, y) + g
∫

d4z i S(0)(x, z) i Â(z) i S(0)(z, y)

+ g2
∫

d4z′ d4z i S(0)(x, z′) i Â(z′) i S(0)(z′, z) i Â(z) i S(0)(z, y)

+ · · · , (28.20)

where S(0)(x, y) is the free quark propagator, and Â ≡ Aµγµ. This expression shows ex-
plicitly how many times the quark from the point y scatters 0,1, . . . external fields before
annihilating at x = 0.

We shall consider the case of the heavy quark propagators in the next section due to the
subtlety that the quark and gluon condensates are related to each other through Eq. (27.52).
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28 Technologies for evaluating Wilson coefficients 303

Let us now consider the massless quark propagator in external fields. It reads in the
x-space:

2π2S(x, y) = r̂

(r2)2
− 1

4

rα

r2
G̃αµ(0)γµγ5

+
{

i

2

r̂

(r2)2
yρxµGρµ(0) − 1

96

r̂

(r2)2
(x2 y2 − (xy)2)Gµν(0)Gµν(0)

}

+ operators of higher dimensions , (28.21)

where:

r = x − y Gµν ≡ g
λa

2
Ga

µν G̃αµ = 1

2
εαµνβGνβ . (28.22)

For two-point correlators without derivative currents, only the first two terms are operative
in the evaluation of the gluon condensate effects, while the other terms contribute in the
case of three-point functions or current with derivatives. The extension of this expression
including higher-dimension gluon operators can be done. For completeness, this expression
is:

S(p) =
∫

d4x eipx S(x, o) = 1

p̂
− pα

p4
gG̃αβγ βγ 5

+ 2

3
g

1

p6
[p2 DαGαβγ β − p̂DαGαβ pβ − pν Dν DαGαβγ β − 3i pν Dν DαG̃αβγ βγ 5]

+ 2

p8

[
i p2i pν Dν DαGαβγ β − i p̂pν Dν DαGαβγ β − i (pν Dν)2 pαGαβγ β

+ 2 (pν Dν)2 pαG̃αβγ βγ 5 − 1

2
Dν Dν p2 pαG̃αβγ βγ 5

]

+ 1

p8
g2[−2 p̂ pαGαβGβν pν + p2 pα(GαβGβν + GβνGαβ)γν

− p2 pα(GαβGβν − GβνGαβ)γν] + · · · (28.23)

where here Gαβ = (λa/2)Ga
αβ . The Wilson coefficient of the gluon condensate having di-

mension D is proportional to p−D+1.

28.2 Application of the Fock–Schwinger technology to the light quarks
pseudoscalar two-point correlator

In order to illustrate the discussions in the previous sections and chapters, let us consider
the two-point correlator:

�5(q2) ≡ i
∫

d4x eiqx 〈0|T JP (x) (JP (0))† |0〉 , (28.24)
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304 VII Power corrections in QCD

where:

JP = (mi + m j )ψ̄ i (iγ5)ψ j (28.25)

is the light quark pseudoscalar current. The lowest order perturbative result for massive
quarks and the two loop expression for massless quarks has been discussed for illustration
in previous chapters. Here, we shall discuss explicitly the evaluation of the non-perturbative
contributions.

28.2.1 Quark condensate 〈 : ψ̄ψ : 〉
In order to compute the Wilson coefficient, one can start from the Wick’s theorem and leave
one pair of 〈 : ψ̄ψ : 〉 without contraction. Therefore:

�5(q2) = (mu + md )2(γ5)i j (γ5)kl(−i)
∫

d4x eiqx

× [d(x)α j d̄(o)βk〈 : ū(x)αi u(0)βl : 〉 + u(0)βl ū(x)αi 〈 : d̄(0)βkd(x)α j : 〉] .

(28.26)

Using the definition of the propagator:

ψ̄ F
αi (x)ψ F ′

β j (y) = iδαβδF F ′
Si j (x − y)

= iδαβδF F ′
∫

d4 p

(2π )4
δi j (p)e−i p(x−y) , (28.27)

with:

SF
i j (p) = 1

p̂ − m F + iε′ , (28.28)

one obtains:

�5(q2) = (mu + md )2
∫

d4x
∫

d4 p

(2π )4
e−i(p−q)x

× [〈 : ū(x)αi u(0)βl : 〉[γ5Sd (p)γ5]il + 〈 : d̄(0)βkd(x)α j : 〉[γ5Sd (p)γ5]k j ] .

(28.29)

In terms of Feynman diagrams, Eq. (28.29) reads:

q

q

q q

q

+ (28.30)

where • • means that the two-quark fields condense at the same point, so that a Taylor
expansion in xµ of 〈 : ψ̄(x)ψ(0) : 〉 makes sense. Using Eq. (28.15), wherein we shall limit
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28 Technologies for evaluating Wilson coefficients 305

ourselves to the first two terms of the expansion, one obtains:

�5(q2) = (mu + md )2 3

12

×
[
〈 : ūu : 〉

{
Tr γ5Sd (q)γ5 − 1

4
mu

[
− ∂

∂pλ

Tr(γ5Sd (q)γ5γ
λ)

]
p=q

}

× (u ←→ d)

]
. (28.31)

Using the property:

− ∂

∂pλ

S(p) = S(p)γλS(p) , (28.32)

one can deduce the final result:

�5(q2)|ψ̄ψ = (mu + md )2

q2

[(
md − mu

2

)
〈 : ūu : 〉 + (u ←→ d)

]
. (28.33)

The minus sign is due to the γ5 chirality flip which acts on the term ∂/∂pλ. This implies
that for the scalar current, one has to change this minus sign.

28.2.2 Gluon condensate 〈 : αs G2 : 〉
The evaluation of the effect of the gluon condensate can be done by using the previous
expression of the quark propagators in external fields. Diagramatically, one has to compute
(Fig. 28.2):

q

p1
p1 p2

p3

p1-q

p1-q

p3

p1p3

p2

p2

+ +
q q q

(28.34)

As usual, we apply Wick’s theorem where all quark fields should be contracted but not the
gluon ones. The notation • • means again that the gluon fields are put at the same point,
such that the previous Taylor expansion in Eq. (28.20) is valid. Using Feynman rules, one
can deduce:

�5(q2)|G = (mu + md )2(−i)
g2

2

∫
d4 y d4z

∫ ∏
i = 13 d4 p1

(2π )4
〈 : Aa

λ(y)Aa
ρ(z) : 〉

× [
Tr[γ5S(p1 + q)γ λS(p3)γ ρ S(p2)γ5S(p1)]ei(q+p1−p3)y+i(p3−p2)z

+ Tr[γ5S(p1)γ5S(p2)γ ρ S(p3)γ λS(p1 − q)]ei(−p1+q+p3)y+i(p2−p3)z

+ Tr[γ5S(p1)γ ρ S(p2)γ5S(p3)γ λS(p1 − q)]ei(q−p1+p3)y+i(p1−p2)z
]
, (28.35)
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306 VII Power corrections in QCD

where we have omitted the flavour indices u, d as we shall work in the massless quark
limit. Now, one takes advantage of Eq. (28.12), which is valid in the Schwinger gauge.
Substituting it in Eq. (28.35), one gets:

�5(q2)|G = (mu + md )2(−i)
1

16d(d − 1)
〈g2Gµν

a Ga
µν〉[gντ gλρ − gνρgλτ ]

∫
d4 p1

(2π )4

×
[

2
∂

∂p1ν

∂

∂p2τ

Tr[γ5S(p1 + q)γ λS(p3)γ ρ S(p2)γ5S(p1)]p2=p3=p1+q

+ ∂

∂p3ν

∂

∂p2τ

Tr[γ5S(p1)γ ρ S(p2)γ5S(p3)γ λS(p1 − q)]p2=p1=p3=p1−q

]
,

(28.36)

where we have used the fact that the two self-energy-like diagrams give the same contribu-
tion. Using Eq. (28.32) and the properties of Dirac matrices and Feynman integrals given
in Appendices D and F and in that of QSSR1, one can deduce:

�5(q2)|G = − 1

8π

(mu + md )2

q2

〈
αs Gµν

a Ga
µν

〉
. (28.37)

28.2.3 Mixed quark-gluon condensate

This contribution corresponds to the diagram:

q
k

p p+k

+ +

(28.38)

As before, one again writes the Wick product where two quark fields should be contracted.
The first diagram gives:

�5(q2)
∣∣(1)

M = (mu + md )2
∫

d4x d4 y eiqx
∫

d4 p

(2π )4

d4k

(2π )4

× g〈 : ū(x)αi Aa
µu(0)βl : 〉(γ µ)mn(γ5)i j (γ5)kl

× e−i[p(x−y)+(p+k)y]Sd
jm(p)Sd

nk(p + k) + (u ←→ d) . (28.39)

We use now Eq. (28.16), the property in Eq. (28.32) and we do the Dirac algebra.
The self-energy-like diagram can be obtained by considering the propagation of the

〈ψ̄ψ〉 condensate in a weak external field as given in Eq. (28.15). Using iteratively the
property in Eq. (28.32) and doing as usual the Dirac algebra, one obtains the desired result.
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The sum of the mixed quark-gluon condensate contributions is:

�5(q2)|M = − (mu + md )2

2(q2)2
g[md〈ūGu〉 + mu〈d̄Gd〉] , (28.40)

with the shorthand notation:

g〈ψ̄Gψ〉 ≡ g

〈
: ψ̄σµν λa

2
Ga

µνψ :

〉
. (28.41)

The result for the scalar current can be deduced from Eq. (28.40) by changing the overall
-(md + mu)2 factor with (md − mu)2.

28.2.4 Four-quark condensates

Two classes of diagrams contribute to the four-quark condensates.

� Class 1: is that where the gluon fields once contracted give a hard momentum gluon propagator:

+ +

(28.42)

The computation of these diagrams can be done using standard perturbation theory, namely by
writing the Wick product, contracting the gluon fields and two pairs of quark fields and by taking
the vacuum expectation values (v.e.v) of the four-quark operators. Then, one obtains:

�5(q2)
∣∣(1)

4ψ
= (mu + md )2

2(q2)2
παs

〈
: ūσµνγ5

λa

2
u − d̄σµνγ5

λa

2
d :

〉2

. (28.43)

� Class 2 is that where the momentum of the gluon propagator is zero. This contribution is represented
by the diagrams:

+ +

(28.44)

The first two diagrams are generated by the propagation of the 〈 : ψ̄ψ : 〉 condensate in a weak
external field as given in Eq. (28.15). The third diagram is generated by the mixed quark-gluon

https://doi.org/10.1017/9781009290296.039 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.039


308 VII Power corrections in QCD

condensate as in Eq. (28.16). Evaluation of these diagrams leads to:

�5(q2)
∣∣(2)

4ψ
= (mu + md )2

2(q2)2

παs

6

〈
:

(
ūγ µ λa

2
u + d̄γ µ λa

2
d

) ∑
u,d,s

ψ̄γµ

λa

2
ψ :

〉
. (28.45)

If one uses the vacuum saturation and the SU (2)F flavour symmetry of the quark condensates, the
sum of the four-quark contributions reads:

�5(q2)|4ψ = (mu + md )2

2(q2)2

112

27
ρπαs〈 : ψ̄ψ : 〉2 , (28.46)

where ρ measures the deviation from the vacuum saturation estimate.

28.2.5 Triple gluon condensate

The contribution of the triple gluon condensate g〈 : fabcGa
µνGb

νρGc
ρµ : 〉 has been evaluated

in [436,432] and comes from the diagrams:

+ + (28.47)

One can use here the quark propagator in the external field (Eq. (28.23)) and write the gluon
fields in terms of the field strengths as in Eqs. (28.11) and (28.12) in order to form the triple
condensate. The calculation can be done using standard perurbation theory. In the chiral limit
(mi, j = 0), the effect of the triple gluon condensate vanishes for any quark-bilinear currents.

28.3 Fock–Schwinger technology for heavy quarks

28.3.1 General procedure

The technology differs slightly from the light quark one as we can no longer neglect the quark
mass M which is the most important scale in the OPE. Moreover, due to the Wigner–Weyl
realization of chiral symmetry for the heavy quark systems, the heavy quark condensate
vanishes as 1/M and is correlated to the gluon condensate as in Eq. (27.52), which is the
most important non-perturbative scale in the heavy quark sector.

The Fock–Schwinger gauge [435,319] remains the most convenient working gauge and
the momentum space is also the most convenient working space [431]. Let the generic
heavy quark two-point correlator:

��(q2) = i
∫

d4x eiqx 〈0|T J�(x) (J�(0))† |0〉 , (28.48)

where:

J� = ψ̄ i (�)ψ j (28.49)
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and� is any Dirac matrices. The non-perturbative contributions to the correlator are typically
of the form:

��(q2, M2) = 〈gG · · · G〉
∫

d4k

(2π )4

Tr(� . . . , k̂, q̂, m, . . . � . . .)

(k2 − M2)[(k + q)2 − M2]n
. (28.50)

The trace can be done using some algebraic programs. It is convenient to express the
result as inverse powers of k2 − M2 and (k + q)2 − M2. After a Feynman parametrization,
one encounters integrals of the form:

I αβ
n (q2, M2) =

∫ 1

0
dx

xα(1 − x)β

[−q2x(1 − x) + M2]n
. (28.51)

By noting the symmetry x → (1 − x), one can re-expand the previous integral in x(1 − x)
and deduce the recursive relation:

I αα
n ≡ I α

n = 1

Q2

(
I α−1
n−1 − M2 I α−1

n

)
. (28.52)

This leads to the basic integral:

Jn =
∫ 1

0

dx

[1 − x(1 − x)q2/M2]n
, (28.53)

which reads:

Jn = (2n − 3)!!

(n − 1)!

[ (
v2 − 1

2v2

)n

v1/2 log
v + 1

v − 1
+

n−1∑
k=1

(k − 1)!

(2k − 1)!!

(
v2 − 1

2v2

)n−k
]

, (28.54)

where:

v ≡
(

1 − 4M2

q2

)1/2

. (28.55)

28.3.2 D = 4 gluon condensate of the electromagnetic correlator

We use the Fock–Schwinger gauge in order to express the gluon fields in terms of the field
strengths as in Eq. (28.12). The algorithm is very similar to the one used for the light quarks.
The first two self-energy-like diagrams normalized to 〈αs G2〉 give [431]:

Ca
G = − 1

96π

1

q4

[
2

(5v4 + 3)

v4
+ (v2 − 1)2(5v2 + 3)

v5
log

v − 1

v + 1

]
. (28.56)

The vertex-like diagram contributes as:

Cb
G = 1

48π

1

q4

[
2

2(v2 + 1)

v2
+ (v2 − 1)2

v3
log

v − 1

v + 1

]
, (28.57)
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310 VII Power corrections in QCD

where one can notice that each set of diagrams develops a non-transverse part:

qµqν�b
µν = − 1

16π

1

q4

(1 − v2)

v2

[
1 + (v2 + 1)

2v
log

v − 1

v + 1

]
, (28.58)

which vanishes in the sum. One can also express the sum of the transverse contribution in
terms of the basic integral in Eq. (28.53):

C4 ≡ Ca
G + Cb

G = 1

24π

1

q4
(−1 + 3J2 − 2J3) , (28.59)

which is a useful compact expression for further analysis.

28.3.3 D = 6 condensates of the electromagnetic correlator

The light four-quark condensates contribute through the diagram:

(28.60)

via the equation of motion of the gluon fields:

g Jµ
a ≡ DµGµν

a = −g2

2

∑
u,d,s

ψ̄γν

λa

2
ψ , (28.61)

while the triple gluon condensate contributes via the diagrams in Eq. (28.3.3):

+ + (28.62)

In order to reach the desired result, it is useful to express the v.e.v:

〈 : Dα DβGµνGρσ : 〉, 〈 : DαGµν DβGρσ : 〉, 〈
: g3 fabcGa

µνGb
αβGc

ρσ :
〉
. (28.63)

In so doing, one uses the colour trace due to two and three λ matrices, the previous
gluon field equation of motion and the Bianchi identity. After a lengthy but straightforward
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algebraic manipulation, one can express the result in terms of the two condensates:

C3G
〈
g3 fabcGa

µνGb
νρGc

ρµ

〉
, CJ J

〈
g4 J a

µ J a
µ

〉
, (28.64)

where the Wilson coefficients are [1,433]:

C3G = 1

72π2q6

[
2

15
+ 4J2 − 31

3
J3 + 43

5
J4 − 12

5
J5 + q2

10M2

]
,

CJ J = 1

36π2q6

[
41

45
+

(
2

3
− q2

3M2

)
J1 − J2 − 4

9
J3 − 26

15
J4 + 8

5
J5 + 3q2

5M2

]
.

(28.65)

28.3.4 Matching the heavy and light quark expansions

It is instructive to compare the coefficient functions obtained directly from a light quark
expansion and from the heavy quark one by taking the limit v = 1. In order to be explicit,
let us consider the coefficient of the gluon condensate 〈 : αs G2 : 〉. In the light quark-
expansion, one obtains [411]:

Ga
G(m = 0) = 0 ,

Gb
G(m = 0) = 1

12π

1

q4
〈 : αs G2 : 〉 . (28.66)

If one takes naively the heavy quark result, one obtains from Eqs. (28.56) and (28.57):

Ga
G(v → 1) = − 1

6π

1

q4
〈 : αs G2 : 〉 ,

Gb
G(v → 1) = 1

12π

1

q4
〈 : αs G2 : 〉 , (28.67)

which shows that the two limits do not coincide (!). This discrepancy can be restored by
including the effect of the quark condensate which is known to be correlated to that of the
gluon through Eq. (27.52).

One obtains in the two cases [411]:

Cψ (m = 0) = 2

q4
m〈 : ψ̄ψ : 〉 ,

Cψ (v) = 8

3

v + 2

(v + 1)2

1

q4
m〈 : ψ̄ψ : 〉 , (28.68)

where the two results coincide for v → 1. Using the relation in Eq. (27.56), one can in-
troduce the non-normal-ordered quark and gluon condensates, where an extra gluon con-
densate term has been induced by the quark condensate. This term cancels the extra part in
Ca

G(v → 1).
This lesson just tells us that one cannot directly take the v = 1 limit of the heavy quark

correlator in order to get the light-quark result without paying attention to the masked
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contribution of the quark condensate, which induces a gluon condensate effect. Some other
similar relations and properties hold for higher dimension condensates.

28.3.5 Cancellation of mass singularities

Let us now discuss another example related to the previous subtlety of the quark and gluon
condensates.

Let the example of the correlator of the vector current built from one light and one heavy
quark fields:

Jµ(x)i
j = ψ̄ iγ

µψ j . (28.69)

By keeping the quark mass terms and taking the limit −q2 → ∞ after integration, one
obtains for the transverse part [437]:

CT
G = 1

12π

(
1 − mi

m j
− m j

mi

)
1

q4
〈αs G2〉 (28.70)

which exhibits a dangerous mass singularity. The normal ordered quark condensate contri-
bution is:

Cψ = 1

q4
〈 : mi ψ̄ jψ j + m j ψ̄ iψi : 〉 , (28.71)

Expressing it in terms of the non-normal ordered quark condensate as defined Eq. (27.56)
and adding it to the previous gluon condensate contribution, one obtains the IR stable result:

CT
G = 1

12π

1

q4
〈 : αs G2 : 〉 . (28.72)

and:

Cψ = 1

q4
〈 mi ψ̄ jψ j + m j ψ̄ iψi 〉(ν) , (28.73)

However, the natural question to ask is the commutativity of the operation by taking the
limit mi, j = 0 before the loop integration. A positive answer to this question can only be
provided if one treats the IR integral in dimensional regularization and if one removes the
1/ε-pole at the very end of the calculation.

Indeed, in this calculation, one encounters integrals of the type:

I ≡
∫

dnl

(2π )n

(
q2

l2 + iε

)a (
q2

(l + q)2 + iε

)b

,

=
(−q2

4π

)n/2
�(a + b − n/2)�(n/2 − a)�(n/2 − b)

�(a)�(b)�(n − a − b)
(28.74)

where the IR singularity is transformed into 1/ε-pole, which can be removed. In general, the
extension of this method for the calculation of the Wilson coefficients of higher dimension
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condensates can be easily done provided one takes care of the mixing of the operators under
renormalizations as discussed earlier.

28.4 The plane wave method

This method exploits the fact that the Wilson’s expansion is an operator identity, namely
that one can single out a given operator by sandwiching it between appropriate states. Let
us consider the two-point correlator associated with the quark current:

J�(x) = ψ̄�ψ , (28.75)

characterized by the Dirac matrix �, and which possesses the generic OPE (omitting Lorentz
indices):

�(q2) � C11 + Cmψ̄ψ + GgG2 + DG

{
GαδGα

βqδqβ = 1

4
q2G2

}
. (28.76)

The first unit term corresponds to the usual perturbative calculation, which one obtains by
sandwiching the correlator between the vacua. The next term is obtained by sandwiching
the correlator between one-quark states and corresponds to the quark-current scattering
amplitude shown in Fig. 28.1.

The Wilson coefficient CG can be obtained by sandwiching the correlator between one-
gluon states. Therefore, the problem reduces to the evaluation of the forward gluon scattering
amplitude on a colour-singlet current. From Lorentz invariance, this amplitude can be
decomposed as:

T µν(q, k) ≡ i
∫

d4xeiqx 〈k, µ|T J�(x)
(
J�(0)

)† |k, ν〉
= Fµν

1 C(q, k) + Fµν

2 D(q, k) , (28.77)

where:

Fµν

1 = 4(k2gµν − kµkν) ≡ 〈k, µ|G2|k, ν〉 , (28.78)

and:

Fµν

2 = 2[k2qµqν − (k.q)(qµkν + qνkµ) + gµν(k · q)2] − q2(k2gµν − kµkν)

≡ 〈k, µ|GαδGαβqδqβ − 1

4
q2G2|k, ν〉 . (28.79)

Fig. 28.1. ‘Weak’ quark (full line)-current (dashed line) scattering amplitude.
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They correspond to the diagrams:

+ +

(28.80)

A comparison of Eqs (28.76) and (28.77)–(28.79) gives:

DG(q2) = CG(q, k)|kα=0. (28.81)

In practice, the plane wave method is convenient when one has external weak quark fields
as in Fig. 28.1. In the case of many ‘weak’ external gluon fields, the extraction of a partic-
ular operator from various possible candidates having the same dimensions becomes very
difficult. In one sense, this is the main inconvenience of this method.

28.5 On the calculation in a covariant gauge

The evaluation of the Wilson coefficients can be also obtained in a covariant gauge. Unlike
the usual perturbative term, and the quark condensate term, which are easily obtained in
this gauge, the evaluation of the Wilson coefficients of the gluon condensates is much more
cumbersome in this gauge than in that of Fock–Schwinger. A published evaluation of the
gluon condensate contribution in this gauge can be found in [626]. As applications of this
method, we give at the end of this part a compilation of QCD two-point functions useful
for further analysis.
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