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Geometric Invariant Theory

based on Weil divisors

Jürgen Hausen

Abstract

Given an action of a reductive group on a normal variety, we describe all invariant open
subsets admitting a good quotient with a quasiprojective or a divisorial quotient space.
We obtain several new Hilbert–Mumford type theorems, and we extend a projectivity
criterion of Bia�lynicki-Birula and Świȩcicka for varieties with semisimple group action
from the smooth to the singular case.

Introduction

This paper is devoted to a central task of geometric invariant theory (GIT), formulated in [BB02]:
Given an action of a reductive group G on a normal variety X, describe all G-invariant open subsets
U ⊂ X admitting a good quotient, which means a G-invariant affine morphism U → U//G such
that the structure sheaf of U//G equals the sheaf of invariants p∗(OU )G. We call these U for the
moment the G-sets.

In [MFK94], Mumford obtains G-sets with quasiprojective quotient spaces. Given a G-linearized
line bundle L→ X, which means that G acts on the total space making the projection equivariant
and inducing linear maps on the fibres, he calls a point x ∈ X semistable if some positive power of
L admits a G-invariant section f such that removing the zeroes gives an affine neighbourhood Xf

of x.
The set Xss(L) of semistable points of a G-linearized line bundle L admits a good quotient

Xss(L) → Xss(L)//G with a quasiprojective quotient space. For smooth X, basically all quasipro-
jective quotient spaces arise in this way: every G-set U with U//G quasiprojective is G-saturated in
some Xss(L), which means that U is saturated with respect to the quotient map.

For singular X, Mumford’s method does not provide all quasiprojective quotients (see Propo-
sition 3.6). Here, replacing the bundles L with Weil divisors D yields a more rounded picture:
We define a G-linearization of D to be a certain lifting of the G-action to Spec(A), where A =⊕

E∈Λ O(E) with Λ = ND, and the set Xss(D) of semistable points is the union of all affine
sets Xf , where f ∈ A(X) is G-invariant and homogeneous of positive degree. The first result is
Theorem 3.3, as follows.

Theorem. Let a reductive group G act on a normal variety X.

i) For any G-linearized Weil divisor D on X, there is a good quotient Xss(D) → Xss(D)//G with
a quasiprojective variety Xss(D)//G.

ii) If U ⊂ X is open, G-invariant, and has a good quotient U → U//G with U//G quasiprojective,
then U is a G-saturated subset of some Xss(D).
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GIT based on Weil divisors

However, the quasiprojective quotient spaces are not the whole story by far, and a further
aim is to complement also the picture developed in [Hau01] for divisorial quotient spaces, which
means (possibly nonseparated) prevarieties Y such that every y ∈ Y has an affine neighbourhood
Y \ Supp(E) with an effective Cartier divisor E (see [Bor63] and [BGI71]). For the occurrence
of nonseparatedness in quotient constructions, compare also [MFK94, Proposition 1.9], [Sum74,
Corollary 1.3], and [ACH01].

To obtain divisorial quotient spaces, we work with finitely generated groups Λ of Weil divisors.
Similarly as before, G-linearization of such a Λ is a lifting of the G-action to Spec(A), where now A =⊕

D∈Λ O(D). We also have a notion of semistability, and the resulting statements generalize [Hau01]
(see Theorem 3.5).

Theorem. Let a reductive group G act on a normal variety X.

i) For any G-linearized group Λ of Weil divisors on X, there is a good quotient Xss(Λ) →
Xss(Λ)//G with a divisorial prevariety Xss(Λ)//G.

ii) If U ⊂ X is open, G-invariant, and has a good quotient U → U//G with U//G divisorial, then
U is a G-saturated subset of some Xss(Λ).

A simple example shows that, in general, the respective sets of semistable points of a single
linearized divisor D and the group ZD differ (compare [Hau01, Example 3.5]). Let G := C∗ act
linearly on X := C2 via

t · (z,w) := (tz, t−1w).
Consider the invariant divisor D := div(z) on X. Then D as well as the group Λ := ZD are canon-
ically G-linearized, via the induced action of G on the function field. According to the respective
Definitions 3.2 and 3.4 of semistability, one obtains

Xss(D) = C∗ × C, Xss(Λ) = C2 \ {(0, 0)}.
Moreover, let us have a look at the quotient spaces. For the first set, the quotient space is the affine
line, whereas in the second case a true (divisorial) pre-variety occurs: the affine line with a doubled
point.

For practical purposes, it is often helpful to perform the construction of G-sets by means of
subtori of G. Classically, this is done by the Hilbert–Mumford Lemma [MFK94, Theorem 2.1]: for
a G-linearized ample bundle L on a projective variety X, it gives a semistability criterion in terms
of one-parameter subgroups; here, we deal with the following version, involving a maximal torus
T ⊂ G (compare [BB02] and [Sch03]):

Xss(L,G) =
⋂
g∈G

g ·Xss(L, T ).

In this form, the statement allows a far reaching generalization; in particular, the hypotheses of
projectivity and ampleness can be dropped (see Theorem 4.1).

Theorem. Let a reductive group G act on a normal variety X, and let T ⊂ G be a maximal torus.

i) Let D be a G-linearized Weil divisor on X. Then we have

Xss(D,G) =
⋂
g∈G

g ·Xss(D,T ).

ii) Let Λ ⊂ WDiv(X) be a G-linearized subgroup. Then we have

Xss(Λ, G) =
⋂
g∈G

g ·Xss(Λ, T ).
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Finally, in § 5, we focus on the case of a semisimple group G. We ask for maximal G-sets
(compare [BB02]): A qp-maximal G-set is a G-set U ⊂ X with U//G quasiprojective such that U
does not occur as a G-saturated proper subset in some U ′ ⊂ X with the same properties. Similarly,
a d-maximal G-set is a subset having the analogous properties with respect to divisorial quotient
spaces.

Reducing the construction of these sets to the construction of the qp- and the d-maximal T -sets
for a maximal torus T ⊂ G amounts to tackling Bia�lynicki-Birula’s Conjecture [BB02, § 12.1]: Given
a maximal T -set U ⊂ X which is invariant under the normalizer N ⊂ G of T , he asks if the following
set is open and admits a good quotient by G:

W (U) :=
⋂
g∈G

g · U.

Here are the known positive results concerning qp- and d-maximal T -sets U ⊂ X: The case of
G = SL2 acting on a smooth X is settled in [BBS92, Theorem 9] and [Hau03, Theorem 2.2]. If
U//T is projective and X is smooth, then [BBS95, Corollary 1] gives a positive answer for a general
connected semisimple group G. Moreover, the problem is solved in the case U = X (see [BB02,
Theorem 12.4] and [Hau01, Theorem 5.1]). We show the following in Theorem 5.2 and Corollary 5.5.

Theorem. Let G be a connected semisimple group, and T ⊂ G a maximal torus with normalizer
N ⊂ G. Let X be a normal G-variety, U ⊂ X anN -invariant open subset, andW (U) the intersection
of all translates g · U , where g ∈ G.

i) If U ⊂ X is a qp-maximal T -set, then W (U) is open and T -saturated in U , and there is a good
quotient W (U) →W (U)//G with W (U)//G quasiprojective.

ii) If U admits a good quotient U → U//T with U//T projective, then W (U) is open and
T -saturated in U , and there is a good quotient W (U) → W (U)//G with W (U)//G
projective.

iii) If U ⊂ X is a d-maximal N -set, then W (U) is open and T -saturated in U , and there is a good
quotient W (U) →W (U)//G with W (U)//G divisorial.

In the setting of part ii, we can prove much more. It turns out that U and W (U) are the sets
of semistable points of an ordinary linearized ample line bundle, and – even more surprising – that
X is projective. This extends the main result of [BBS95] from the smooth to the normal case and
thus gives an answer to the problem discussed in [BBS95, Remark p. 965]. More precisely, we prove
the following in Theorem 5.4.

Theorem. Let G be a connected semisimple group, T ⊂ G a maximal torus with normalizer
N ⊂ G, and X be a normal G-variety. Suppose that U ⊂ X is N -invariant, open and admits a good
quotient U → U//T with U//T projective. Then there is an ample G-linearized line bundle L on X
with U = Xss(L, T ), we have X = G · U , and X is projective.

1. Polyhedral semigroups and G-linearization

In this section, we transfer Mumford’s concepts of [MFK94, § 1.3] to the framework of Weil divisors.
We introduce polyhedral semigroups of Weil divisors, and define the notion of a G-linearization for
such a semigroup. Moreover, we give a geometric interpretation of this concept, and provide basic
statements concerning existence and uniqueness of linearizations.

Throughout the whole paper, we work over an algebraically closed field K of characteristic zero.
In this section, X denotes an irreducible normal prevariety over K, which means that X is an
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GIT based on Weil divisors

integral, normal, but possibly nonseparated scheme of finite type over K (compare also [Hum81,
§ I.2.2]). The word ‘point’ always refers to a closed point.

By WDiv(X) we denote the group of Weil divisors of X, and CDiv(X) ⊂ WDiv(X) is the
subgroup of Cartier divisors. For a finitely generated subsemigroup Λ ⊂ WDiv(X), let Γ(Λ) ⊂
WDiv(X) denote the subgroup generated by Λ. We say that the semigroup Λ is polyhedral if it is
the intersection of Γ(Λ) with a convex polyhedral cone in Q ⊗Z Γ(Λ).

Fix a polyhedral semigroup Λ ⊂ WDiv(X). Since we assumed X to be normal, there is an
associated OX -module OX(D) of rational functions for any D ∈ Λ. In fact, multiplication in the
function field K(X) even gives rise to a Λ-graded OX -algebra:

A :=
⊕
D∈Λ

AD :=
⊕
D∈Λ

OX(D).

Now, let G be a linear algebraic group, and let G act on X. That means in particular that this
action is given by a morphism α : G×X → X, and, denoting by µ : G×G→ G the multiplication
map, we have the following commutative diagram.

G×G×X
idG×α ��

µ×idX

��

G×X

α

��
G×X α

�� X

Similarly to [MFK94, Definition 1.6], the definition of a G-linearization of the semigroup Λ ⊂
WDiv(X) is formulated in terms of A, the above maps and the projection maps

prG×X : G×G×X → G×X, (g1, g2, x) �→ (g2, x),
prX : G×X → X, (g, x) �→ x.

Definition 1.1. A G-linearization of Λ is an isomorphism Φ: α∗A → pr∗XA of Λ-graded OG×X -
algebras such that Φ is the identity in degree zero, and the following diagram is commutative.

(idG × α)∗α∗A (idG×α)∗Φ �� (idG × α)∗pr∗XA pr∗G×Xα
∗A

pr∗G×XΦ

��
(µ× idX)∗α∗A

(µ×idX)∗Φ
�� (µ× idX)∗pr∗XA pr∗G×Xpr∗XA

Note that if Λ =
⊕

n�0 nD with a Cartier divisor D, then the G-linearizations Φ: α∗A → pr∗XA
of Λ correspond to the G-linearizations of the invertible sheaf OX(D) in the sense of [MFK94,
Definition 1.6] via passing to the corresponding map in degree one, Φ1 : α∗OX(D) → pr∗XOX(D).

In order to interpret Definition 1.1 geometrically, look at the scheme X̃ := Spec(A) over X.
Note that the Λ-grading of A defines an action of the torus S := Spec(K[Γ(Λ)]) on X̃ . We list some
properties; for example, over the smooth locus, the canonical map q : X̃ → X is locally trivial with
an affine toric variety as fibre.

Proposition 1.2. Let U ⊂ X be an open subset such that every D ∈ Λ is Cartier on U , and set
Ũ := q−1(U).

i) The map q : Ũ → U is locally trivial with typical fibre Ũx
∼= Spec(K[Λ]). The open set Û ⊂ Ũ

of free S-orbits is an S-principal bundle over U .

ii) The inclusion Û ⊂ Ũ corresponds to the inclusion A ⊂ B of the graded OU -algebras A and B
arising from Λ and Γ(Λ).

1521

https://doi.org/10.1112/S0010437X04000867 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000867


J. Hausen

iii) For any homogeneous section f ∈ A(U), its zero set as a function on Û equals the set Û ∩
q−1(Supp(div(f) +D)).

Proof. Consider the group Γ(Λ) generated by Λ and its OX -algebra B. Locally, B is a Laurent
monomial algebra over OU , i.e. for small affine open V ⊂ U , we have a graded isomorphism over
O(V ):

B(V ) ∼= O(V ) ⊗K K[Γ(Λ)].

Cutting this down to the subsemigroup Λ ⊂ Γ(Λ) and the associated subalgebra A ⊂ B, we obtain
local triviality of q : Ũ → U . The remaining statements then follow easily.

Any G-linearization Φ: α∗A → pr∗XA of the polyhedral semigroup Λ ⊂ WDiv(X) defines the
following commutative diagram.

Spec(pr∗XA)
Spec(Φ) �� Spec(α∗A) �� Spec(A)

G× X̃ α̃
�� X̃

(1)

Note that Spec(α∗A) is the fibre product of α : G×X → X and the canonical map X̃ → X. Then
the upper right arrow is merely the projection to X̃.

Proposition 1.3.

i) The map α̃ : G× X̃ → X̃ is a G-action that commutes with the S-action on X̃, and makes the
canonical map X̃ → X equivariant.

ii) For every action α̃ : G×X̃ → X̃ as in part i, there is a unique G-linearization Φ: α∗A → pr∗XA
making the diagram (1) commutative.

Proof. For part i, note that q ◦ α̃ equals α ◦ (idG × q), because Φ is the identity in degree zero.
Moreover, the commutative diagram of Definition 1.1 yields the associativity law of a group action
for α̃, and eG ∈ G acts trivially because Φ is an isomorphism. Finally, the actions of G and S
commute, because α̃ has graded comorphisms.

To verify ii, we use that Spec(α∗A) is the fibre product of α : G × X → X and X̃ → X. By
the universal property, α̃ : G× X̃ → X̃ lifts to a unique morphism Spec(pr∗XA) → Spec(α∗A). It is
straightforward to check that this morphism stems from a G-linearization Φ: α∗A → pr∗XA.

Eventually, via the lifted G-action on X̃ , we associate to any G-linearization of Λ a graded G-sheaf
structure on A. The latter is a collection of graded O(U)-algebra homomorphisms A(U) → A(g ·U),
f �→ g · f , being compatible with group operations in G and with restriction and algebra operations
in A; thereby G acts as usual on the structure sheaf OX via g · f(x) := f(g−1 · x).

Proposition 1.4. Let Φ: α∗A → pr∗XA be a G-linearization. Then there is a unique graded G-sheaf

structure on A satisfying g · f(x̃) := f(g−1 · x̃) for any x̃ ∈ X̃ lying over the smooth locus of X. For
every G-invariant open U ⊂ X, the induced representation of G on A(U) is rational.

Proof. Over the smooth locus of X, we may define the G-sheaf structure according to g · f(x̃) :=
f(g−1 ·x̃). By normality, it uniquely extends to X. Rationality of the induced representations follows,
for example, from [KKLV89, Lemma 2.5].

Remark 1.5. Let Φ: α∗A → pr∗XA be a G-linearization. Then a section f ∈ A(X) is invariant with
respect to the induced G-representation on A(X) if and only if Φ(α∗(f)) = pr∗X(f) holds.
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We give two existence statements for G-linearizations. The first one is the analogue of Mumford’s
result [MFK94, Corollary 1.6] and [KKLV89, Proposition 2.4]. We use the following terminology:
Given polyhedral semigroups Λ′ ⊂ Λ, we say that Λ′ is of finite index in Λ if there is a positive
n ∈ Z with nΛ ⊂ Λ′.

Proposition 1.6. Suppose that X is separated and that G is connected. Then, for any polyhedral
semigroup Λ ⊂ WDiv(X), some subsemigroup Λ′ ⊂ Λ of finite index admits a G-linearization.

Proof. By normality, it suffices to provide a G-linearization of A over the smooth locus. Hence, we
may assume that Γ ⊂ CDiv(X) holds. Consider the group Γ(Λ) ⊂ CDiv(X) generated by Λ, and fix
any basis D1, . . . ,Dk of Γ(Λ). Then [KKLV89, Proposition 2.4] gives us ni � 1 and linearizations
in the sense of [MFK94, Definition 1.6]:

Φi : α∗OX(niDi) → pr∗XOX(niDi).

Let Γ′ ⊂ Γ(Λ) be the subgroup generated by the niDi. Then, via tensoring the Φi, we obtain
for each D ∈ Γ′ ∩ Λ an isomorphism α∗AD → pr∗XAD. These maps are compatible with the
multiplicative structures of α∗A and pr∗XA, and hence fit together to a linearization of Γ′ ∩ Λ.

The second existence statement provides canonical G-linearizations. As usual, we say that a
Weil divisor D =

∑
nEE is G-invariant if ng·E = nE holds for any prime divisor E. The support

of a G-invariant Weil divisor is G-invariant, whereas its components may be permuted.
Moreover, we have to consider pullbacks of A under dominant maps p : Z → X, where Z is

normal. If the inverse image p−1(X ′) of the smooth locus X ′ ⊂ X has a complement of codimension
at least two in Z, then the pullback CDiv(X ′) → CDiv(p−1(X ′)) induces a map p∗ : WDiv(X) →
WDiv(Z), and we obtain

p∗A =
⊕
D∈Λ

OZ(p∗D).

Proposition 1.7. Let Λ consist of G-invariant divisors. Then there is a canonical G-linearization

α∗A =
⊕
D∈Λ

OG×X(α∗D) =
⊕
D∈Λ

OG×X(pr∗XD) = pr∗XA.

The induced G-sheaf structure on A is given by the usual action of G on the function field K(X)
via g · f(x) = f(g−1 · x).

Proof. We have to show that any G-invariant Weil divisor D =
∑
nEE satisfies α∗D = pr∗XD.

For this, we consider the isomorphism

β : G×X → G×X, (g, x) �→ (g, g−1 · x).

Then we have β∗pr∗XD = pr∗XD, and pr∗XD = β∗α∗D. Since β∗ has an inverse, the assertion
follows.

We turn to uniqueness properties of G-linearizations. Let Char(G) denote the group of characters
of G, i.e. the group of all homomorphisms G→ K∗. For groups G with few characters, we have the
following two statements (compare [MFK94, Proposition 1.4] and [Hau01, Proposition 1.5]).

Proposition 1.8. Let X be separated, and let Λ ⊂ WDiv(X) be a polyhedral semigroup.

i) If Char(G) is trivial and G is connected, then any two G-linearizations of Λ coincide.

ii) If Char(G) is finite and O∗(X) = K∗ holds, then any two G-linearizations of Λ induce the
same G-linearization on some Λ′ ⊂ Λ of finite index.
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Proof. Again by normality, it suffices to treat the problem over the smooth locus. Then q : X̃ →
X is locally trivial with toric fibres, having S = Spec(K[Γ(Λ)]) as their big torus. Given two
G-linearizations of Λ, we denote the two corresponding G-actions on X̃ by g · z and g∗z. Consider
the morphism

ψ : G× X̃ → X̃, z �→ g−1∗g · z.
For fixed g, the map z �→ ψ(g, z) is an S-equivariant bundle automorphism. Hence, on each fibre

it is multiplication with an element of the torus S. Consequently, there is a morphism η : G×X → S
such that ψ is of the form

ψ(g, z) = η(g, q(z)) · z.
In the setting of part i, Rosenlicht’s Lemma [FI73, Lemma 2.1] yields a decomposition η(g, z) =

χ(g)β(q(z)) with a regular homomorphism χ : G→ S and a morphism β : X → S. Since we assumed
G to have only trivial characters, we can conclude that ψ is the identity map.

If we are in the situation of part ii, then O∗(X) = K∗ implies that ψ(g, z) = χ(g) · z holds with
a regular homomorphism χ : G→ S. Hence, after dividing X̃ by the finite subgroup χ(G) ⊂ S, the
two induced G-actions coincide. But this process means replacing Λ with a subsemigroup of finite
index.

Let us remark that there are simple examples showing that for nonconnected G, one cannot
omit the assumption O∗(X) = K∗ in the second statement.

2. The ample locus

We introduce the Cartier locus and the ample locus of a polyhedral semigroup of Weil divisors,
and study its behaviour in the case of G-linearized semigroups. The considerations of this section
prepare the proofs of the various Hilbert–Mumford type theorems given later.

Unless otherwise stated, X denotes in this section an irreducible normal prevariety. Given a
polyhedral semigroup Λ ⊂ WDiv(X), let A denote the associated Λ-graded OX -algebra. For a
homogeneous local section f ∈ AD(U), we define its zero set to be

Z(f) := Supp(div(f) +D|U ).

Definition 2.1. Let Λ ⊂ WDiv(X) be a polyhedral semigroup with associated Λ-graded
OX-algebra A.

i) The Cartier locus of Λ is the set of all points x ∈ X such that every D ∈ Λ is Cartier near x.

ii) The ample locus of Λ is the set of all x ∈ X admitting an affine neighbourhood X \Z(f) with
a homogeneous section f ∈ A(X) such that X \ Z(f) is contained in the Cartier locus of Λ.

We shall speak of an ample semigroup Λ ⊂ WDiv(X) if the ample locus of Λ equals X. Thus,
ample semigroups consist by definition of Cartier divisors. The relations to the usual ampleness
concepts [GD61, Bor63, BGI71] are the following; recall that X is said to be divisorial if every
x ∈ X has an affine neighbourhood X \ Supp(E) with an effective Cartier divisor E on X.

Remark 2.2.

i) A polyhedral semigroup of the form Λ = ND is ample if and only if D is an ample Cartier
divisor in the usual sense.

ii) An irreducible normal prevariety is divisorial if and only if it admits an ample group of Cartier
divisors.
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Let us explain the geometric meaning of the ample locus of a polyhedral semigroup Λ ⊂ CDiv(X)
in terms of the corresponding toric bundle q : X̃ → X. Recall from Section 1 that X̃ comes along
with an action of the torus S = Spec(K[Γ(Λ)]), and that the set X̂ ⊂ X̃ of free S-orbits is an
S-principal bundle over X.

Proposition 2.3. Let Λ ⊂ CDiv(X) be a polyhedral semigroup with associated toric bundle
q : X̃ → X and ample locus U ⊂ X. Then q−1(U) ∩ X̂ is quasiaffine.

Proof. Consider the subgroup Γ(Λ) ⊂ CDiv(X) generated by Λ, and denote the associated graded
OX -algebra by B. Then X̂ equals Spec(B), and for any homogeneous f ∈ B(X), its zero set as a
function on X̂ is equal to the inverse image q−1(Z(f)) ∩ X̂ . Consequently, the set q−1(U) ∩ X̂ is
covered by affine open subsets of the form X̂f with f ∈ O(X̂). This gives the assertion.

We turn to the equivariant setting. Let G be a linear algebraic group, and suppose that G
acts on the normal prevariety X. A first observation is that the zero set Z(f) of a homogeneous
section f behaves natural with respect to the G-sheaf structure of Proposition 1.4 arising from a
G-linearization.

Lemma 2.4. Let Λ ⊂ WDiv(X) be a G-linearized polyhedral semigroup, and let f ∈ AD(U) be
a local section of the associated graded OX -algebra A. Then we have Z(g · f) = g · Z(f) for any
g ∈ G.

Proof. By normality of X, we may assume that U is smooth. The problem being local, we may
moreover assume that D is principal on U , say D = −div(h). Then the section f is of the form
f = f ′h with a regular function f ′, and Z(f) is just the zero set Z(f ′) of f ′. Translating with g ∈ G
gives

Z(g · f) = Z(g · f ′ g · h) = Z(g · f ′) ∪ Z(g · h).

Since h is a generator of A(U), the translate g · h is a generator of A(g · U). This means that
Z(g · h) is empty. By definition of the G-sheaf structure, G acts canonically on the structure sheaf
OX , which means that g ·f ′(x) equals f ′(g−1 ·x). This implies Z(g ·f ′) = g ·Z(f ′), and the assertion
follows.

Proposition 2.5. Let Λ ⊂ WDiv(X) be a G-linearized polyhedral semigroup. Then the Cartier
locus and the ample locus of Λ are G-invariant.

Proof. Let A denote the graded OX -algebra corresponding to Λ. The Cartier locus of Λ is the set
of all points x ∈ X such that for any D ∈ Λ the stalk AD,x is generated by a single element. Thus,
using the G-sheaf structure of A, we obtain that the Cartier locus is G-invariant. Invariance of the
ample locus is then a simple consequence of Lemma 2.4.

As a direct application, we extend a fundamental observation of Sumihiro on actions of connected
linear algebraic groups G on normal varieties X (see [Sum74, Lemma 8] and [Sum75, Theorem 3.8]):
Every point x ∈ X admits a G-invariant quasiprojective open neighbourhood. Our methods give
more generally the following proposition.

Proposition 2.6. Let G be a connected linear algebraic group, let X be a normal G-variety, and
let U ⊂ X be an open subset.

i) If U is quasiprojective, then G · U is quasiprojective.

ii) If U is divisorial, then G · U is divisorial.

In particular, the maximal quasiprojective and the maximal divisorial open subsets of X are
G-invariant.

1525

https://doi.org/10.1112/S0010437X04000867 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000867


J. Hausen

If X admits a normal completion for which the factor group of Weil divisors modulo Q-Cartier
divisors is of finite rank, then [Wlo99, Theorem A] says that X has only finitely many maximal
open quasiprojective subvarieties. In particular, then Proposition 2.6, part i even holds with any
connected algebraic group G (see [Wlo99, Theorem D]). A special case of the second statement is
proved in [ACH02, Lemma 1.7].

Lemma 2.7. Let X be a normal variety, D′ a Weil divisor on some open U ⊂ X, and f ′1, . . . , f
′
r

sections of D′ with U \ Z(f ′i) affine. Then there is a Weil divisor D on X allowing global sections
f1, . . . , fr such that

D|U = D′, fi|U = f ′i , X \ Z(fi) = U \ Z(f ′i).
Moreover, if U and D′ are invariant with respect to a given algebraic group action on X, then one
can also choose D to be so.

Proof. Let D1, . . . ,Ds be the prime divisors contained in X \U . Since the complement of U \Z(f ′i)
in X is of pure codimension one, we have

U \ Z(f ′i) = X \ (D1 ∪ · · · ∪Ds ∪ Z(f ′i) ).

Consequently, by closing the components of D′ and adding a suitably big multiple of D1 + · · ·+Ds,
we obtain the desired Weil divisor D on X.

Proof of Proposition 2.6. For part i, we choose a D′ ∈ CDiv(U) allowing sections f ′1, . . . , f ′r such
that the sets U \ Z(f ′i) are affine and cover U . Similarly, for part ii, we find D′

1, . . . D
′
r ∈ CDiv(U)

allowing sections f ′1, . . . , f ′r such that the sets U \ Z(f ′i) are affine and cover U .
Use Lemma 2.7 to extend D′ (respectively the D′

i) to Weil divisors D (respectively Di) on X
such that the f ′i extend to global sections fi over X and satisfy X \Z(fi) = U \Z(f ′i). Let Λ be the
semigroup generated by D (respectively the subgroup generated by the Di). Then, in both cases U
is contained in the ample locus of the extension Λ.

Now, passing to subsemigroups of finite index does not shrink the ample locus. Hence, we can use
Proposition 1.6, and endow Λ with a G-linearization. The assertion then follows from G-invariance
of the ample locus of Λ and the fact that quasiprojectivity as well as divisoriality transfer to open
subvarieties.

We conclude this section with an equivariant and refined version of Proposition 2.3; again, we
consider the subset X̂ ⊂ X̃ of free orbits of the torus S = Spec(K[Γ(Λ)]).

Proposition 2.8. Let Λ ⊂ CDiv(X) be a G-linearized polyhedral semigroup with associated toric
bundle q : X̃ → X. Let U ⊂ X be the ample locus of Λ, and set Û := X̂ ∩ q−1(U). Then there
is a (G × S)-equivariant open embedding Û → Z into an affine (G × S)-variety Z. Moreover, the
following hold.

i) One can achieve that the image of the pullback map O(Z) → O(Û) is contained in O(X̃).
ii) Given f1, . . . , fk ∈ A(X) as in Definition 2.1 with X̃fi

⊂ X̂, one can achieve that each fi

extends regularly to Z and satisfies Ûfi
= Zfi

.

iii) For every f ∈ O(Z) ⊂ O(X̃) with X̃f ⊂ X̂ and f |Z\Û = 0, we have Zf = X̂f .

Proof. Let f1, . . . , fk ∈ A(X) be as in part ii, and complement this collection by further homoge-
neous sections fk+1, . . . , fr ∈ A(X) as in Definition 2.1 such that the affine sets Xi := X \ Z(fi)
cover the ample locus U ⊂ X. Then each fi, regarded as a regular function on X̃, vanishes outside
the affine open set X̃i := q−1(Xi) and has no zeroes inside X̃i ∩ X̂.

For each i, we choose finitely many homogeneous functions hij ∈ O(X̃) such that the affine
algebra O(X̃)fi

is generated by functions hij/f
lij
i . Since the G-representation on O(X̃) is rational,
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we find finite-dimensional graded G-modules Mi,Mij ⊂ O(X̃) such that fi ∈ Mi and hij ∈ Mij

holds.
Let R ⊂ O(X̃) denote the subalgebra generated by the elements of the Mi and the Mij . Then

R is graded, G-invariant, and hence defines an affine (G × S)-variety Z := Spec(R). Note that
Zfi

= X̃fi
holds. This gives Û ⊂ Z and part ii. Moreover, we obtain part iii by covering X̃f and Zf

with the affine sets X̃fif = Zfif .

3. Construction of quotients

In this section, G is a reductive group, and X is a normal G-variety. We describe the G-invariant
open subsets U ⊂ X admitting a good quotient with a quasiprojective or a divisorial good quotient
space. First recall the precise definition of a good quotient (compare [MFK94, p. 38] and [Ses72,
Definition 1.5]).

Definition 3.1. A good quotient for a G-prevariety X is an affine G-invariant morphism p : X → Y
such that the canonical map OY → p∗(OX)G is an isomorphism. A good quotient is called geometric
if its fibres are precisely the G-orbits.

In our setting, a separated G-variety may have a good quotient with a nonseparated quotient
space. If a good quotient X → Y exists for a G-variety X, then it is categorical, i.e. any G-invariant
morphism X → Z factors uniquely through X → Y . In particular, good quotient spaces are unique
up to isomorphism. As usual, we write X → X//G for a good and X → X/G for a geometric
quotient.

In general, the G-variety X itself need not admit a good quotient, but there frequently exist
many G-invariant open subsets U ⊂ X with a good quotient. Following [BB02], we say that a subset
V of an open G-invariant subset U ⊂ X with good quotient p : U → U//G is G-saturated in U if
V = p−1(p(V )) holds.

We begin with the construction of quasiprojective good quotient spaces. Fix a Weil divisor
D on X, and a G-linearization of the semigroup Λ := ND; we shall speak in the sequel of the
G-linearized Weil divisor D. Recall from Proposition 1.4 that there is an induced G-representation
on the global sections A(X) of the associated Λ-graded OX-algebra A.

Definition 3.2. We call a point x ∈ X semistable if there is an integer n > 0 and a G-invariant
f ∈ AnD(X) such that X \ Z(f) is a affine neighbourhood of x and D is Cartier on X \ Z(f).

Following Mumford’s notation, we denote the set of semistable points of a G-linearized Weil
divisor D on X by Xss(D), or by Xss(D,G) if we want to specify the group G. Our concept of
semistability yields all open subsets admitting a quasiprojective good quotient space.

Theorem 3.3. Let a reductive group G act on a normal variety X.

i) For any G-linearized Weil divisor D on X, there is a good quotient Xss(D) → Xss(D)//G with
a quasiprojective variety Xss(D)//G.

ii) If U ⊂ X is open, G-invariant, and has a good quotient U → U//G with U//G quasiprojec-
tive, then U is a G-saturated subset of the set Xss(D) of semistable points of a canonically
G-linearized Weil divisor D.

Proof. For part i, we can follow the lines of [MFK94, Theorem 1.10]: Choose G-invariant homo-
geneous sections f1, . . . , fr ∈ A(X) as in Definition 3.2 such that Xss(D) is covered by the sets
Xi := X \ Z(fi). Replacing the fi with suitable powers, we may assume that all of them have the
same degree. Consider the good quotients:

pi : Xi → Xi//G = Spec(O(Xi)G).
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Each Xi \Xj is the zero set of the G-invariant regular function fj/fi. Thus Xi ∩Xj is saturated
with respect to the quotient map pi : Xi → Xi//G. It follows that the pi glue together to a good
quotient p : Xss(D) → Xss(D)//G. Moreover, for fixed i0, the fi0/fi are local equations for an ample
divisor on Xss(D)//G.

To prove part ii, let Y := U//G, and let p : U → Y be the quotient map. Choose an ample divisor
E on Y allowing global sections h1, . . . , hr such that the sets Y \ Z(hi) form an affine cover of Y .
Consider the pullback data D′ := p∗E and f ′i := p∗(hi). Then Lemma 2.7 provides a G-invariant
Weil divisor D on X extending D′ and sections fi extending f ′i such that

X \ Z(fi) = U \ Z(f ′i) = p−1(Y \ Z(hi)).

Let A be the graded OX-algebra associated to D, and consider the canonical G-linearization
of D provided by Proposition 1.7. Then the sections fi ∈ A(X) are G-invariant, and satisfy the
conditions of Definition 3.2. It follows that U is a saturated subset of Xss(D).

For the construction of divisorial quotient spaces, we work with finitely generated subgroups
Λ ⊂ WDiv(X); these are in particular polyhedral semigroups. Fix such a subgroup Λ ⊂ WDiv(X),
and a G-linearization of Λ as introduced in Section 1. Again, we have an induced G-representation
on the global sections A(X) of the associated Λ-graded OX -algebra A.

Definition 3.4. We call a point x ∈ X semistable if x has an affine neighbourhood U = X \ Z(f)
with some G-invariant homogeneous f ∈ A(X) such that all D ∈ Λ are Cartier on U , and the D ∈ Λ
admitting a G-invariant invertible h ∈ AD(U) form a subgroup of finite index in Λ.

As before, the set of semistable points is denoted by Xss(Λ), or Xss(Λ, G) if we want to specify
the group G. Note that for G-linearized groups of Cartier divisors we retrieve the notion of
semistability introduced in [Hau01, Definition 2.1]. We obtain the following generalizations of [Hau01,
Theorems 3.1 and 4.1].

Theorem 3.5. Let a reductive group G act on a normal variety X.

i) For any G-linearized group Λ ⊂ WDiv(X), there is a good quotient Xss(Λ) → Xss(Λ)//G with
a divisorial prevariety Xss(D)//G.

ii) If U ⊂ X is open, G-invariant, and admits a good quotient U → U//G with U//G
divisorial, then U is a G-saturated subset of the set Xss(Λ) of semistable points of a canonically
G-linearized group Λ ⊂ WDiv(X).

Proof. To prove part i, consider the Cartier locus X0 ⊂ X of Λ. By Proposition 2.5, the set X0 is
G-invariant. Since X is normal, X \X0 is of codimension at least two in X. Hence Xss

0 (Λ) equals
Xss(Λ), and we may assume that Λ consists of Cartier divisors. But then [Hau01, Theorem 3.1]
gives the assertion.

The proof of part ii is analogous to that of [Hau01, Theorem 4.1]. Using divisoriality of Y := U//G
and [Hau01, Lemma 4.3], we find effective E1, . . . , Er ∈ CDiv(Y ) and global sections hij of the Ei

such that the sets Vij := Y \ Z(hij) form an affine cover of Y , and every Ek admits an invertible
section hijk over Vij.

Let p : U → Y be the quotient map. Lemma 2.7 provides invariant Weil divisors Di on X
admitting global sections fij such that with Uij := p−1(Vij) we have

Di|U = p∗Ei, fij|Uij = p∗(hij), X \ Z(fij) = p−1(Vij).

By Proposition 1.7, the group Λ ⊂ WDiv(X) generated by the Di is canonically G-linearized.
The sections fij and p∗(hijk) serve to verify U ⊂ Xss(Λ). Since each Uij is G-saturated in Xss(Λ),
the same holds for U .
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We conclude the section with an example, showing that in the singular case Mumford’s method
and the generalization given in [Hau01] need no longer provide all open subsets with quasiprojective
or divisorial quotient spaces. Consider the cone X over the image of P1 × P1 in P3 under the Segre
embedding, i.e.

X = V (K4; z1z3 − z2z4).

Then X is a normal variety having precisely one singular point. Let U := Xz2 ∪Xz4 be the set
of points having nonvanishing second or fourth coordinate. We consider the following action of the
two-dimensional torus T := K∗ × K∗ on X:

t · x := (t21x1, t1t
2
2x2, t1t2x3, t

2
1t

−1
2 x4).

Proposition 3.6. The set U ⊂ X has a geometric quotient U → U/T with U/T ∼= P1, but U
is not the set of semistable points of a T -linearized line bundle on X in the sense of [MFK94,
Definition 1.7].

Proof. The most convenient way is to view X as a toric variety, and to work in the language of
lattice fans (see [Ful93] for the basic notions). As a toric variety, X corresponds to the lattice cone
σ in Z3 generated by the vectors

v1 := (1, 0, 0), v2 := (0, 1, 0), v3 := (0, 1, 1), v4 := (1, 0, 1).

The big torus of X is TX = (K∗)3. The torus T acts on X by (t, x) �→ ϕ(t) ·x, where ϕ : T → TX

is the homomorphism of tori corresponding to the linear map

Z2 → Z3, (1, 0) �→ (2, 1, 1), (0, 1) �→ (0, 2, 1).

Our open set U ⊂ X is a union of three TX-orbits: the big TX -orbit, and the two two-dimensional
TX-orbits corresponding to the rays �1 := Q�0v1 and �3 := Q�0v3 of the cone σ. The fan theoretical
criterion [Ham00, Theorem 5.1] tells us that there is a geometric quotient for the action of T on U ;
namely the toric morphism p : U → P1 defined by the linear map

P : Z3 → Z, (w1, w2, w3) �→ w1 + 2w2 − 4w3.

We show now that there is no T -linearized line bundle on X having U as its set of semistable
points. First note that, as an affine toric variety, X has trivial Picard group. Thus we only have to
consider T -linearizations of the trivial bundle. Since O∗(X) = K∗ holds, each such linearization is
given by a character χ of T :

t · (x, z) = (t · x, χ(t)z).

Consequently, in view of [MFK94, Definition 1.7], we have to show that U is not a union of
sets Xf , for a collection of functions f ∈ O(X) that are T -homogeneous with respect to a common
character of the torus T .

Now, any T -homogeneous regular function on X is a sum of T -homogeneous character functions
χu ∈ O(X) , where u = (u1, u2, u3) is a lattice vector of the dual cone σ∨ of σ. Recall that u ∈ σ∨

means that the linear form u is nonnegative on σ, i.e. we have

u1 � 0, u2 � 0, u2 + u3 � 0, u1 + u3 � 0.

For such a character function χu ∈ O(X), we can determine its weight with respect to T by
applying the dual of the embedding Z2 → Z3 to the vector u. Thus, χu is T -homogeneous with
respect to the character of T corresponding to the lattice vector

(2u1 + u2 + u3, 2u2 + u3).
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The conditions that a character function χu ∈ O(X) does not vanish along the orbit TX · xi

corresponding to one of the rays �i are u1 = 0 for nonvanishing along TX · x1, and u3 = −u2 for
nonvanishing along TX · x3.

Suppose that χu ∈ O(X) does not vanish along TX · x1 and that χũ ∈ O(X) does not vanish
along TX · x3. Then their respective T -weights are given by the vectors

(u2 + u3, 2u2 + u3), (2ũ1, ũ2).

If both are T -homogeneous with respect to the same character, then we must have 2ũ1 � ũ2.
But then nonvanishing along TX · x3 and the last regularity condition imply ũ = 0.

In conclusion, we obtain that only the trivial character of T admits homogeneous functions that
do not vanish along TX · x1 and functions that do not vanish along TX · x3. Since T acts with an
attractive fixed point on X, this means that we cannot obtain U as a union of sets Xf as needed.

4. First Hilbert–Mumford type statements

We come to the first Hilbert–Mumford type result of the paper. It allows us to express the set of
G-semistable points in terms of the T -semistable points for a maximal torus T ⊂ G. In the case of an
ample divisor D on a projective G-variety, the first assertion of our result is equivalent to [MFK94,
Theorem 2.1].

Theorem 4.1. Let a reductive group G act on a normal variety X, and let T ⊂ G be a maximal
torus.

i) Let D be a G-linearized Weil divisor on X. Then we have

Xss(D,G) =
⋂
g∈G

g ·Xss(D,T ).

ii) Let Λ ⊂ WDiv(X) be a G-linearized subgroup. Then we have

Xss(Λ, G) =
⋂
g∈G

g ·Xss(Λ, T ).

The proof (presented after Lemma 4.5) relies on a geometric analysis of instability; it makes
repeated use of the classical Hilbert–Mumford Theorem (see for example [Bir71, Theorem 4.2]).

Theorem 4.2. Let a reductive group G act on an affine variety Z, let z ∈ Z, and let Y ⊂
G · z be a G-invariant closed subset. Then there is a one-parameter subgroup λ : K∗ → G with
limt→0 λ(t) · z ∈ Y .

The basic preparatory steps concern the following situation: G is a reductive group, Z is an
affine G-variety, and T ⊂ G is a maximal torus. Then we have good quotients

pT : Z → Z//T, pG : Z → Z//G.

Lemma 4.3. Let A ⊂ Z be G-invariant and closed, and let z ∈ p−1
G (pG(A)). Then there is a g ∈ G

with g · z ∈ p−1
T (pT (A)).

Proof. Since pG : Z → Z//G separates disjoint G-invariant closed sets, the closure of G · z
intersectsA. By Theorem 4.2, there is a maximal torus S ⊂ G such that the closure of S · z inter-
sects A. Choose a g ∈ G with T = gSg−1. Then the closure of T · g · z intersects A. This implies
pT (g · z) ∈ p−1

T (pT (A)).

Suppose that in addition to the G-action there is an action of K∗ on Z such that these two
actions commute. Then there are induced K∗-actions on the quotient spaces Z//T and Z//G making
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the respective quotient maps equivariant. Let B0
T ⊂ Z//T and B0

G ⊂ Z//G denote the fixed point
sets of these K∗-actions.

Lemma 4.4. Let z ∈ Z with pG(z) ∈ B0
G. Then there is a g ∈ G with pT (g · z) ∈ B0

T .

Proof. Let G · z0 be the closed G-orbit in the fibre p−1
G (pG(z)). If z0 is a fixed point of the K∗-action

on Z, then the whole orbit G·z0 consists of K∗-fixed points, and the assertion is a direct consequence
of Theorem 4.2. So we may assume for this proof that the orbit K∗ · z0 is nontrivial.

By Theorem 4.2, there is a one-dimensional subtorus S0 ⊂ G and a g0 ∈ G such that z0 lies in
the closure of S0 · z′, where z′ := g0 · z. Note that, for any t ∈ K∗, the point t · z0 lies in the closure
of S0 · t · z′. This implies in particular that any point of K∗ · z0 is fixed by S0. Consequently, S0 is a
subgroup of the stabilizer G0 of K∗ · z0.

Let n ∈ N denote the order of the isotropy group of K∗ in z0. Then the orbit maps µ : g �→ g · z0
of G0 and ν : t �→ t · z0 of K∗ give rise to a well defined morphism of linear algebraic groups:

G0 → K∗, g �→ (ν−1(µ(g)))n.

Clearly, S0 is contained in the kernel of this homomorphism. By general properties of linear
algebraic groups, any maximal torus of G0 is mapped onto K∗ (see e.g. [Hum81, Corollary C,
p. 136]). We choose a maximal torus S1 ⊂ G0 such that S1 contains S0.

Let S ⊂ G be a maximal torus with S1 ⊂ S. Then z0 lies in the closure of S ·z′. Moreover, K∗ ·z0
is contained in S · z0. Writing S = g−1

1 Tg1 with a suitable g1 ∈ G, we obtain that g1 · z0 lies in the
closure of T · g1 · z′, and K∗ · g1 · z0 is contained in T · g1 · z0. Thus, g := g1g0 is as wanted.

The next observation concerns limits with respect to the K∗-action on the quotient spaces.
For H = T and H = G we consider the sets:

B−
H :=

{
y ∈ Z//H; lim

t→∞ t · y exists and differs from y
}
.

Lemma 4.5. Let z ∈ Z with pG(z) ∈ B−
G . Then there is a g ∈ G such that pT (g · z) ∈ B−

T holds.

Proof. Let y0 ∈ Z//G be the limit point of pG(z), and choose z0 ∈ Z with G · z0 closed in Z and
pG(z0) = y0. Note that G · z0 is K∗-invariant. Consider the quotient q : Z → Z//K∗. Then G · q(z0)
is contained in the closure of G · q(z), because q(G · z0) is closed, and we have

(Z//G)//K∗ = (Z//K∗)//G.

Thus, according to Theorem 4.2, there exist g, g0 ∈ G such that g0 · q(z0) lies in the closure of
T ·g ·q(z). We can conclude that, in Z//T , the K∗-orbit closures of the points pT (g ·z) and pT (g0 ·z0)
intersect nontrivially; this time we use

(Z//T )//K∗ = (Z//K∗)//T.

Since we have a K∗-equivariant map Z//T → Z//G, and there is a G-invariant homogeneous
function f ∈ O(Z) of negative weight with f(z) �= 0 and f(z0) = 0, it follows that pT (g · z) belongs
to B−

T .

Proof of Theorem 4.1. For part i, we may assume that D is nontrivial. By Proposition 2.5, the
Cartier locus X0 ⊂ X of Λ := ND is G-invariant. Moreover, by normality of X, the complement
X\X0 is of codimension at least two in X. Consequently, Xss

0 (D,T ) equals Xss(D,T ), andXss
0 (D,G)

equals Xss(D,G). Thus we may assume for this proof that X = X0 holds.
Let A be the graded OX -algebra associated to Λ. The associated X̃ := Spec(A) is a line bundle

over X, and the torus acting on X̃ is K∗. Consider the G-action on X̃ provided by Proposition 1.3.
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Removing the zero section gives the (G× K∗)-invariant open subvariety X̂ ⊂ X̃. Let q : X̃ → X be
the canonical G-equivariant map, U ⊂ X the ample locus of D, and Û := q−1(U) ∩ X̂ .

Choose T -invariant homogeneous f1, . . . , fr ∈ A(X) and G-invariant homogeneous h1, . . . , hs ∈
A(X) as in Definition 3.2 such that the sets X \Z(fi) and X \Z(hj) cover Xss(D,T ) and Xss(D,G)
respectively. Regarded as functions on X̃ , the fi and the hj vanish along the zero section X̃ \ X̂,
because they are of positive degree.

According to Proposition 2.8, we can choose an equivariant open embedding Û ⊂ Z into an affine
(G×K∗)-variety Z with the following two properties: Firstly, we have O(Z) ⊂ O(X̃). Secondly, the
functions fi, hj ∈ O(Û) extend regularly to Z and satisfy Ûfi

= Zfi
and Ûhj

= Zhj
.

Now consider the induced K∗-actions on the quotient spaces Z//T and Z//G. As before, let B0
T ,

B0
G be the fixed point sets of these K∗-actions, and let B−

T , B−
G be the sets of nonfixed points

admitting a limit for t → ∞. Then, setting A := Z \ Û , we claim that for the respective sets of
semistable points one has:

X̂ ∩ q−1(Xss(D,T )) = Z \ p−1
T (pT (A) ∪B0

T ∪B−
T ),

X̂ ∩ q−1(Xss(D,G)) = Z \ p−1
G (pG(A) ∪B0

G ∪B−
G).

Indeed, the inclusion ‘⊂’ of the first equation is due to the facts that the intersection
X̂ ∩ q−1(X \ Z(fi)) equals Zfi

, and that each fi by T -invariance and homogeneity of positive
degree vanishes along the set p−1

T (pT (A) ∪B0
T ∪B−

T ). Analogously one obtains the inclusion ‘⊂’ for
the second equation.

To see the inclusions ‘⊃’, we again treat the first equation for illustration purposes. The ideal of
pT (A)∪B0

T ∪B−
T in O(Z//T ) is generated by functions f ′ that are homogeneous of positive degree.

Since O(Z) ⊂ O(X̃) holds, each f := p∗T (f ′) is a T -invariant homogeneous section of positive degree
in A(X). By Proposition 2.8, we have

Zf = X̂f = X̂ ∩ q−1(X \ Z(f)).

It follows that X \Z(f) is affine, and hence f is as in Definition 3.2. Consequently, Zf lies over
the set of T -semistable points of X. Since the functions f generate the ideal of p−1

T (pT (A)∪B0
T ∪B−

T ),
we obtain the desired inclusion.

Now, Lemmas 4.3, 4.4, and 4.5 show that the inclusion ‘⊃’ of the assertion is valid. The reverse
inclusion is easy: Every translate g ·Xss(D,T ) is the set of semistable points of gTg−1 and hence
contains Xss(D,G).

The proof of part ii is similar. As in the proof of part i, we may assume that Λ consists of Cartier
divisors. Let A be the associated Λ-graded OX -algebra. Consider X̂ := Spec(A) with its actions of
S := Spec(K[Λ]) and G, and the G-equivariant canonical map q : X̂ → X. Let U ⊂ X be the ample
locus of Λ, and set Û := q−1(U).

Cover Xss(Λ, T ) by sets X \Z(fi) with T -invariant homogeneous fi ∈ A(X) as in Definition 3.4.
Similarly, cover Xss(Λ, G) by X \ Z(hj) with G-invariant homogeneous hj ∈ A(X). Lemma 2.8
provides an equivariant open embedding Û ⊂ Z into an affine (G×S)-variety Z with O(Z) ⊂ O(X̂)
such that all fi, hj extend regularly to Z, and satisfy Ûfi

= Zfi
and Ûhj

= Zhj
.

For H = T,G, consider the quotient pH : Z → Z//H and the induced action of S on Z//H. We
describe Xss(Λ,H) in terms of these data. Let A := Z \ Û , and let B0

H ⊂ Z//H be the set of all
y ∈ Z//H with an infinite isotropy group Sy. We claim

q−1(Xss(Λ,H)) = Z \ p−1
H (pH(A) ∪B0

H). (2)

The inclusion ‘⊂’ follows from [Hau01, Proposition 2.3 (i)]. For the reverse inclusion, we use
[Hau01, Lemma 2.4]: it tells us that the ideal of pH(A) ∪ B0

H in O(Z//H) is generated by
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S-homogeneous elements f ′ such that O(Z//H)f ′ admits homogeneous invertible elements for almost
every character of the torus S.

For such f ′, the pullback f := p∗H(f ′) is an H-invariant element of O(Z) and hence of A(X),
and, by Lemma 2.8, part iii, we have X̂f = Zf . Thus q(X̂f ) = X \Z(f) is affine, and we see that f
is as in Definition 3.4. Hence, q−1(Xss(Λ,H)) ⊃ Zf holds, which finally gives the claim.

Now, B0
H ⊂ Z//H is the union of the fixed point sets B0

H(µ) of all one-parameter subgroups
µ : K∗ → S. Lemmas 4.3 and 4.4 tell us that

p−1
G (pG(A)) =

⋃
g∈G

g · p−1
T (pT (A)), p−1

G (B◦
G(µ)) =

⋃
g∈G

g · p−1
T (B◦

T (µ)).

Together with (2), this gives ‘⊃’ in the assertion. The reverse inclusion is due to the fact that
g ·Xss(Λ, T ) is the set of semistable points of gTg−1 ⊂ G.

5. Actions of semisimple groups

In this section, we apply our results to actions of semisimple groups. This gives generalizations of
several results presented in [BBS92], [BBS95] and [Hau03]. We work with the following notions
of maximality (compare [BBS92] and [Hau03]).

Definition 5.1. Let G be a reductive group, let X be a G-variety, and let U ⊂ X be a G-invariant
open subset. We say that

i) U is a qp-maximal G-set if there is a good quotient U → U//G with U//G quasiprojective,
and U is not a G-saturated subset of a properly larger U ′ ⊂ X admitting a good quotient
U ′ → U ′//G with U ′//G quasiprojective,

ii) U is a d-maximal G-set if there is a good quotient U → U//G with U//G divisorial, and U is
not a G-saturated subset of a properly larger U ′ ⊂ X admitting a good quotient U ′ → U ′//G
with U ′//G divisorial.

In the sequel, G is a connected semisimple group, T ⊂ G a maximal torus, and N ⊂ G the
normalizer of T in G. Moreover, X is a normal G-variety. The first result is a further Hilbert–
Mumford type statement. It generalizes [BBS95, Corollary 1], and the results in the case G = SL2

given in [BBS92, Theorem 9] and [Hau03, Theorem 2.2].

Theorem 5.2. Let U ⊂ X be anN -invariant open subset ofX, and letW (U) denote the intersection
of all translates g · U , where g ∈ G.

i) If U ⊂ X is a qp-maximal T -set, then W (U) is open and T -saturated in U , and there is a good
quotient W (U) →W (U)//G with W (U)//G quasiprojective.

ii) If U ⊂ X is a d-maximal N -set, then W (U) is open and T -saturated in U , and there is a good
quotient W (U) →W (U)//G with W (U)//G divisorial.

The proof of this theorem consists of combining the Hilbert–Mumford Theorem (Theorem 4.1)
with the following observation.

Proposition 5.3. Let U ⊂ X be an N -invariant open subset.

i) If U is a qp-maximal N -set, then there exists a G-linearized Weil divisor D on X with U =
Xss(D,N).

ii) If U is a d-maximal N -set, then there is a G-linearized group Λ ⊂ WDiv(X) with U =
Xss(Λ, N).
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Proof. For illustrative purposes we prove the first assertion. By Theorem 3.3, part ii, there is a
canonically N -linearized Weil divisor D on X such that U is N -saturated in Xss(D,N). By qp-
maximality of U , this implies U = Xss(D,N). We show now that, after possibly replacing D with
a positive multiple, the N -linearization extends to a G-linearization.

Let Z be a G-equivariant completion of X (see [Sum74, Theorem 3]). Applying equivariant
normalization, we achieve that Z is normal. By closing the support, we extend D to a Weil divisor
E of Z. Then E is N -invariant and hence, by Proposition 1.7, it is canonically N -linearized.

Proposition 1.6 tells us that after replacing E (and D) with a suitable multiple, we can choose a
G-linearization of E. Since we have O(Z) = K and the character group of N is finite, Proposition 1.8,
part ii says that, after possibly passing to a further multiple, the G-linearization of E induces the
canonical N -linearization of E over Z. Restricting to X ⊂ Z, we obtain the assertion.

Note that this proposition is the place where semisimplicity of G came in. In the proof, we made
essential use of the fact that the character group of N is finite.

Proof of Theorem 5.2. Note first that in the setting of part i, the induced action of the Weyl group
N/T on U//T admits a geometric quotient with a quasiprojective quotient space. The composition
of the quotients by T and N/T is a good quotient U → U//N . It follows that U is a qp-maximal
N -set.

Now, for part i, choose a G-linearized semigroup Λ = ND, and, for part ii, a G-linearized group
Λ ⊂ WDiv(X) as provided by Proposition 5.3. By the definition of semistability, we have

Xss(Λ, G) ⊂
⋂
g∈G

g ·Xss(Λ, N) ⊂
⋂
g∈G

g ·Xss(Λ, T ).

From Theorem 4.1 we infer that also the reverse inclusions hold. This gives the assertion.

In the case of complete quotient spaces, the approach via Weil divisors finally turns out to be a
detour: here everything can be done in terms of line bundles. More precisely, we have the following
generalization of [BBS95, Theorem 1]; compare also [BBS95, Remark, p. 965].

Theorem 5.4. Let U ⊂ X be an N -invariant open subset admitting a good quotient U → U//T with
U//T projective. Then there is an ample G-linearized line bundle L on X such that U = Xss(L, T )
holds. Moreover, we have X = G · U , and X is a projective variety.

Combining this result with [MFK94, Theorem 2.1] gives the following supplement to the Hilbert–
Mumford Theorem (Theorem 5.2).

Corollary 5.5. Let U ⊂ X be as in Theorem 5.4. Then the intersection W (U) of all translates
g · U , g ∈ G, is an open T -saturated subset of U , there is a good quotient W (U) → W (U)//G, and
W (U)//G is projective.

We come to the proof of Theorem 5.4. A first ingredient is an observation due to Bia�lynicki-Birula
and Świȩcicka concerning semisimple group actions on the projective space.

Lemma 5.6. Let G act on Pn. Then the translates g · Pss
n (O(1), T ), where g ∈ G, cover Pn.

Proof. Consider the complement Y of the union of all translates g ·Pss
n (O(1), T ), where g ∈ G. Then

Y is empty, because otherwise [BBS95, Lemma, p. 963] would provide a T -semistable point in some
irreducible component of Y .

The second ingredient of the proof is the following refinement of Sumihiro’s Embedding Theorem
(compare [Sum74, Theorem 1] and [MFK94, Proposition 1.7]).
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Lemma 5.7. Let D be a G-linearized Cartier divisor. If X = G · Xss(D,T ) holds, then there
is a G-equivariant locally closed embedding X ⊂ Pn such that Xss(D,T ) is T -saturated in
X ∩ Pss

n (O(1), T ), where X is the closure of X in Pn.

Proof. Let A be the graded OX -algebra associated to D, and let U := Xss(D,T ). Since we assumed
X = G · U , Proposition 2.5 tells us that the divisor D is in fact ample. Moreover, replacing D with
a multiple, we may even assume that D is very ample, and that there are T -invariant f1, . . . , fr

∈ AD(X) such that the sets X \ Z(fi) are affine and cover U .
Choose any G-invariant vector subspace M ⊂ AD(X) of finite dimension such that f1, . . . , fr

∈ M holds, and the corresponding morphism ı : X → P(N) is a locally closed embedding, where
N is the dual G-module of M . Then ı is G-equivariant, and AD equals as a G-sheaf the pullback
of O(1). Moreover, by construction, the fi extend to T -invariant sections of O(1).

Proof of Theorem 5.4. First note that U is as well a qp-maximal N -set. Thus we can choose a
G-linearized Weil divisor D on X as in Proposition 5.3, part i. By Proposition 2.5, D is an ample
Cartier divisor on X0 := G · U . In particular, on X0 the G-sheaf AD is the sheaf of sections of a
G-linearized line bundle.

Now choose a locally closed G-equivariant embedding X0 ⊂ Pn as in Lemma 5.7, and let X0

denote the closure of X0 in Pn. Since U//T is complete, we obtain

U = X0 ∩ Pss
n (O(1), T ).

Moreover, from Lemma 5.6 we infer that the translates g ·U , where g ∈ G, cover X0. But this means
that we have X0 = X0. In particular X0 is projective, X = X0 holds, and D is ample.
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BBS92 A. Bia�lynicki-Birula and J. Świȩcicka, On complete orbit spaces of SL(2)-actions, II, Colloq. Math.
63 (1992), 9–20.
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