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ON PRIME IMMERSIONS OF Sl INTO R2 

JOHN R. MARTIN 

1. Introduction. A (^-mapping / from the oriented circle S1 into the 
oriented plane R2 such that f f (t) 9e 0 for all t is called a regular immersion. 
We call a point p in Imf a double point if f~l(p) is a two element set with 
the corresponding tangent vectors being linearly independent. A regular 
immersion which is one-to-one except at a finite number of points whose 
images are double points is called a normal immersion. The work of Whitney 
[7], Titus [3] and Verhey [6] shows that the normal immersions form a dense 
open subset in the space of regular immersions with the usual O-topology, 
and can be characterized up to diffeomorphic equivalence by a combinatorial 
invariant called the intersection sequence. It follows that any invariant which 
produces the intersection sequence characterizes a normal immersion up to 
an orientation preserving diffeomorphism of R2. In [2] it is shown that the 
Marx-Blank invariant has this property. 

In this note, with every normal immersion we associate a "word" and an 
integer ± 1 , both of which may be read from the diagram (oriented image) 
of the immersion. A prime immersion is defined and it is shown that two prime 
immersions are diffeomorphically equivalent if and only if they possess 
equivalent signed words. It is shown that a word of a normal immersion can 
be uniquely factored into prime words. Using this fact, we obtain necessary 
and sufficient conditions for two normal immersions to be diffeomorphically 
equivalent. 

2. The word of a normal immersion. Let / b e a normal immersion of 
S1 into R2. We shall call the directed arc between two successive double points 
in Imf a boundary arc. With each boundary arc A lying in the boundary of 
the unbounded region of R2 — Imf, we shall associate a point in Int A and call 
this point a boundary point. 

Let denote the preimages of double points and boundary 
points in their natural cyclic order in S1 such tha t / (^ i ) is a boundary point. 
Then we shall call f(xi)f(x2) . . -f(xn) the word of/ with respect to / (x i ) . By 
omitting the boundary points from the word of / , we obtain the associated 
reduced word of / . A nonempty reduced word is called prime if it contains no 
proper segment S such that each letter in the alphabet of S occurs precisely 
twice. For instance, abcabc is prime while dabcabcd is not. A word is called 
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prime if its associated reduced word is prime, and we shall call a normal 
immersion prime if it possesses a prime word. 

With each of the points Xi, x2, . . . , xn we associate a sign, denoted by 
e(xf), as follows: 
Hi ^ j a n d / ( x * ) = / ( * , ) , then e(x;) = sgn de t [ / ' (**) , / ' (* , ) ] . If f(xj) is a 
boundary point, then e(Xj) is the sign of the determinant of the outward 
normal a t / ( x ; ) wi th / ' ( a^ ) . We shall define the sign of a boundary point to 
be e(f(Xj)) = e(x ;). 

Two words W\ = a&2 . . . am and W2 = &162 . . . &ra are equivalent if and 
only if m = n and a* = ay if and only if bt = bj. If in addition e(ai) = e(&i), 
we shall call Wi and W2 equivalent signed words. 

As an example of a signed word associated with a normal immersion, con­
sider the normal immersion represented in Figure 1. 

a i a 2 a 3 a 4 « 5 « 6 ^ 3 « 2 « 7 « 6 ^ 4 , e ( « l ) = 1 

FIGURE 1 

We note that a word together with all the signs associated with the pre-
images of the letters in its alphabet determine an intersection sequence 
[6, p. 48] for a normal immersion / . 

THEOREM 1. Two prime immersions / , g are diffeomorphically equivalent if 
and only if they possess equivalent signed words. 

Proof. (Necessity) If / and g are diffeomorphically equivalent normal 
immersions, then by Theorem 2.1 of [6] the set of distinct intersection 
sequences of / is equal to the set of distinct intersection sequences of g. It 
then follows t h a t / and g must possess equivalent signed words. 
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(Sufficiency) Suppose / , g are prime immersions with equivalent signed 
words Wx = f(xi)f(x2) . . ./(*„), W2 = g(yi)g(yi) . . . g(yn) respectively. To 
complete the proof of the theorem it suffices to show that e(xf) = e(yt) for 
i = 2, . . . , n. There are two cases to consider. 

Case 1. There is exactly one double point in Im/ , Im g. In this case there 
are just two distinct words to consider. One word must be of the form a\.a2a2 

with signs e(xi) = 1, e(x2) = 1, e(xz) = — 1 or e(xi) = — 1, e(x2) = — 1, 
e(x3) = 1. The second possibility is a word of the form a\a2a%a2 with signs 
e(xi) = 1, e(x2) = — 1, e(x3) = — 1, e(x4) = 1 or e(xi) = — 1, e(x2) = 1, 
e(xz) = 1, e(x4) = —1. In either event, the theorem follows. 

Case 2. Now suppose I m / and Im g have more than one double point. 
Then the mappings / , g are prime mappings in the sense defined by Treybig 
in [5, p. 248]. Since W\, W2 are equivalent prime words, it follows from 
Theorem 3 of [5] that there is an autohomeomorphism h of R2 which maps 
the boundary arcs of I m / onto the corresponding boundary arcs of Im g. 

Let Di, D2 denote the unbounded regions of R2 — Im/ , R2 — Im g respec­
tively. Since / , g are prime mappings, it follows from Theorem 9 of [4] 
that the boundaries Bd D\, Bd D2 are simple closed curves. Without loss of 
generality we may assume that Bd Dt (i = 1,2) lies on a circle Ct except in a 
neighborhood of double points. 

Let Ai, A2, . . . , Ak denote the boundary arcs lying on Bd Di in a counter­
clockwise order such that /(xi)e^4i and At C\ Ai+i 9e 0 for i = 1, 2, . . . , k, 
where -4 -̂fi = Ai. Let h(At) = B{ for i = 1, 2, . . . , k. Since e(xi) = e(yi), 
it follows that Ax induces a counterclockwise orientation on Ci if and only if 
B\ induces a counterclockwise orientation on C2. Then, since h(At) = Bt 

with the initial (terminal) point of A { being mapped onto the initial (terminal) 
point of Bt for i = 1, 2, . . . , k, an inductive argument can be used to show 
that A i induces a counterclockwise orientation on C\ if and only if Bt induces 
a counterclockwise orientation on C2. Consequently, we may suppose that 
h is the identity on R2 — Int C where C denotes a circle in R2 whose interior 
contains I m / and Im g. Hence h must be an orientation preserving homeo-
morphism. 

Let a : S1 —> S1 be an orientation preserving diffeomorphism such that 
a(yt) = Xi for i = 1,2, . . . , n. Then g = hfa and it follows that e(xt) = e{yi) 
for i = 1, 2, . . . , n. 

We remark that the class of prime immersions is reasonably substantial. 
In fact, it follows from the proof of Theorem 5.1 in [1] that every oriented 
tame knot type has a representative whose projected diagram is the image 
of a prime immersion. 

3. The prime factorization of a normal immersion. L e t / be a normal 
immersion possessing a nonempty reduced word W which is not prime. Then 
W can be written in the form ABC where AC, B are nonempty words such 
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that each letter in the alphabet of B occurs precisely twice. Clearly A C and B 
themselves are the reduced words for some immersion. Moreover, W can be 
written in the above form where B is prime. If AC is not prime the process 
may be repeated and so on. In this manner every nonempty reduced word W 
may be factored into a finite number of prime reduced words, called the 
prime factors of W. Furthermore, it is easy to see that this factorization is 
unique. 

We shall say that two normal immersions/, g have equivalent prime factoriza­
tions if they possess equivalent signed words W\y W2 such that for every pair 
of corresponding prime factors Ui = f(xh) . . ./(*<2Jfe), U2 = giy^) • • • g(yt2k) 
associated with the reduced words of Wi, W2 respectively, e(xtl) = e(ytl). 

THEOREM 2. Two normal immersions f, g are diffeomorphically equivalent 
if and only if they possess equivalent prime factorizations. 

Proof. (Necessity) Since two diffeomorphically equivalent normal immer­
sions possess identical sets of distinct intersection sequences [6, p. 48], it 
follows that they must possess equivalent prime factorizations. 

(Sufficiency) It suffices to show that if / , g are prime immersions with 
equivalent reduced words f(xi)f(x2) . . .f(x2n), g(yi)g(y2) . • • g{yin) such that 
e(xi) = e(yi), then e(xt) = e(yt) for i = 2, . . . , 2n. For then it would 
follow that two normal immersions having equivalent prime factorizations 
would possess identical sets of intersection sequences. 

Let / , g be as above and we may suppose n > 1, for otherwise we are 
finished. Then / , g are prime mappings in the sense defined by Treybig in 
[5, p. 248]. Let a : S1 —•> Sl be an orientation preserving diffeomorphism such 
that a(yt) = xt for i = 1 , 2 , . . . , 2n. By Theorem 2 in [5] there is a natural 
one-to-one correspondence between the complementary regions of I m / and 
those of Im g according to the equation o r 1 / - 1 ( B d U) = g -1(Bd V), where 
U and V are corresponding complementary regions of I m / and Im g, respec­
tively. Unfortunately, since the reduced word of a normal immersion does not 
determine the boundary arcs of the unbounded complementary regions of 
the immersion, the unbounded regions of R2 — I m / and R2 — Im g may not 
be corresponding regions. 

Let D denote the complementary region of Im g which corresponds to the 
unbounded complementary region of I m / and let E denote the unbounded 
region of R2 — Im g. First suppose D has a boundary arc B in common with E. 
Consider a ray L with initial point in D such that L C\ Im g is a single point 
b in Int B, and whose open end tends to oo. Let abc be a directed arc in Int B 
containing b in its interior, and let A be a smooth arc whose interior lies in 
E — L and is such that^l C\ Im g = {a, c). Then, by replacing the arc abc by A 
and smoothing the resulting curve at the points a and b, we obtain the image 
of an immersion whose reduced word and associated signs are identical to 
those of g, and whose unbounded complementary region corresponds to the 
unbounded complementary region of Im/ . 
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If D is not adjacent to the unbounded region of R2 — Im g, then the above 
argument can be successively applied a finite number of times to obtain the 
same result. Hence we may assume that the unbounded complementary 
regions of I m / and Im g correspond. 

By Theorem 3 of [5] there is an autohomeomorphism h of R2 such that 
g = hfa. Since/, g are prime mappings, by Theorem 9 of [4] the boundaries of 
the unbounded complementary regions of Im/ , Im g are simple closed curves, 
and without loss of generality we may assume that except for a neighborhood 
of double points these curves lie on circles d , C2 respectively. Let A\(B\) 
denote the boundary arc [f(x2n),f(xi)]([g(y2n), g(yi]). Since €(*i) = e(yi), 
it follows that Ai induces a counterclockwise orientation on C\ if and only if 
B\ induces a counterclockwise orientation on Ci. Then, as in the proof of 
Theorem 1, it follows that h is orientation preserving and e(xt) = e(j*) for 
i = 1, 2, . . . , 2n. 

We note that any two reduced words for a normal immersion / differ by a 
cyclic permutation and thus have the same number of prime factors. Con­
sequently, we have the following corollary to Theorem 2. 

COROLLARY. The number of prime factors of a normal immersion is a numerical 
invariant. 
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