A CHARACTERIZATION OF THE APPROXIMATELY
CONTINUOUS DENJOY INTEGRAL

YOTO KUBOTA

1. Introduction. The approximately continuous integral which includes
the Lebesgue integral has been considered by Burkill [1] and Ridder [3; 4].
I [2] also defined the AD-integral of this kind which is more general than the
AP-integral of Burkill [1] and the Denjoy integral in the wide sense. But
this integral is equivalent to the B-integral of Ridder.

Our aim in this paper is to characterize the AD-integral in the following
way: The AD-integral is the least general approximately continuous integral
(Definition 1) which includes the Lebesgue integral and fulfils the Cauchy
and Harnack conditions (Definition 2).

2. The AD-integral. A real-valued function F(x) defined on the closed
interval [a, 0] is said to be (ACG) on the interval if [a, b] is the sum of a
countable number of closed sets E, such that F(x) is absolutely continuous
on each set E,.

An extended real-valued function f(x) is said to be AD-integrable on
[a, b] if there exists an approximately continuous function F(x) such that

F(x) is (ACG) on [a, b] and
AD F(x) = f(x) a.e.,

where AD F(x) is the approximate derivative of F(x).

The function F(x) is called an indefinite integral of f(x), and the definite
integral on [a, b], denoted by (AD)fo(t) dt, is defined as F(b) — F(a)
[2: TII].

LeMmMA 1. Let E be a closed set contained in [a, D). If f is a function which 1s
absolutely continuous on E and 1s linear on each contiguous closed interval of E
with respect to [a, b], then f is absolutely continuous on [a, b].

Proof. Let {I;, = [a, bi]} be the sequence of contiguous closed intervals of
E with respect to [a, b]. Since f is absolutely continuous on E, for a given
e > 0 we can find § > 0 such that

Zk: [f(Br) — flow)| < €/2

for all finite non-overlapping sequences of intervals { (ax, 8z)} with end points
on Eand X_; (B: — az) < 6. The function fis linear on each I; and is therefore
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absolutely continuous, so that we can determine such a positive number &
for each ¢/2*1(k=1,2,...). Let N be a natural number such that

S reny1 (0p — az) < 6.

If we put 8o = min(s, 6y, . . ., dx), then we see that for all finite sequences
of non-overlapping intervals { (v, 8;)} contained in [, b] and 2 (6x — vx) < 0o,
we have:

21760 = fn)| <

It follows from Lemma 1 that the AD-integral is equivalent to the 8-integral
[3, Definition 7].

We now establish some essential properties of the AD-integral. If I = [a, 8],
then I° is the open interval (e, 8).

TaeorewM 1. If f(x) is AD-integrable on every interval |a, B], where « < 8 < b,
and

5
app lim (AD) f f@t) dt =1,
B-b a

then f(x) is AD-integrable on [a, b] and

(AD) f:f(t) dt = 1.

Proof. Let {b,} (n = 1,2,...) be an increasing sequence converging to b
and put b1 = a. Since f(x) is AD-integrable on each I, = {b,, b,41], there
exists a function F,(x) which is approximately continuous and (ACG) on I,
and AD F(x) = f(x) a.e. It may be assumed that F,(b,) =0 (n =1,2,...).

Let F(x) be the function defined on [a, b] as follows:

F(x) = Fi(x) (x € 1),

I

n—1
Fn(x) +k2=1 Fk(blc-l-l) (x E Im n g 2)

Then F(x) is approximately continuous on [a, b) and (ACG) on [«, 8] for
a < B <band AD F(x) = f(x) a.e., so that F(x) is an indefinite integral
of f(x) on [a,B]. If we define F(b) =1, then by hypothesis, F(x) is
approximately continuous on [a, b]. It is clear that F(x) is (ACG) on |a, b].
Hence f(x) is AD-integrable on [a, b] and

(AD) f:f(t) dt = F(b) — F(a) = F(b) = L.

THEOREM 2. Let E be a closed set in [y = [a, b] and {1, = [ay, bi]} the sequence
of contiguous closed intervals of E with respect to 1o, and let f(x) be a funciion
which is Lebesgue integrable (L-integrable) on E and AD-integrable on each I.
Suppose that the following conditions are satisfied:
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(i) e [(AD)fnf (1) dt] < 0

(ii) if x € E s a limit point of { I}, then there exists a set E, which has unit
density at x and contains all the end points of {I;} in a sufficiently small
neighbourhood of x, such that

lim O(AD, f, E. N\I};) = 0,
koo
where O(AD, f, E, M I;) means the oscillation of the indefinite AD-integral of
fon E, M I
Then f(x) is AD-integrable on I, and we have:

@) [ soa= ) [ joa+3 ao [ joa

Proof. Let I(x) denote the interval [a, x], where ¢ = x < b, and let

Flx) =Zi (AD) £0) dt.

IrNI(z)

We shall show that the function F(x) is approximately continuous on
[a, b]. If x is an interior point of some I,, then we have:

z
Fo) = ¥ D) [ @+ @) [ s
Ik C la,an] Ik an
for a, < x < by, and thus F(x) is approximately continuous at x. If x is an
isolated point of E, it is the common end point of some consecutive intervals.
Hence, F(x) is approximately continuous at this point. Finally, we consider
the case in which x is a limit point of {I;}. By (i) and (ii), there exists a natural

number K such that

) = e [ s a] <
and
(2) OAD,f,E;,, N I) < ¢ (B > K).

Except for the case in which x is the end point of some I (¢ < K), we can
select 8§ > 0 such that the interval (x — 8, x 4+ 6) does not contain the
intervals I for & < K and such that the set E, contains the end points of I
in (x—06x+38).Ift€ (x,x +8) N E, and ¢ € E, then we have:

|F() — F(x)| £ 2

Ik Clz, 1]

o) [ sl =3 |y [ roa] <o
Ik K>K Ik
Ift € (x,x+6) N\ E,and ¢ € [,°, then we obtain

FO-Fw = ¥ D) [ joa+ @) [ o

I C [z,an]
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Since the set E, contains the point a,, it follows from (2) that

< e

(AD) J; f@t)dt
and hence "
|F(t) — F(x)| < 2e.

Similarly we obtain the above inequality for the case ¢ < x. Therefore F
is approximately continuous at x. Thus we have proved that F(x) is
approximately continuous on I,.

Next we can prove (asin [5, p. 257]) that F(x) is also (ACG) on I, and that

AD F(x) = 0 a.e. for x € E,

= f(x) a.e. forx € I, — E.
Let

H“>=F@*+@%meﬂ”“

Then we see that H(x) is approximately continuous and (ACG) on I; and
AD H(x) = f(x) a.e. Hence f(x) is AD-integrable on I, and we obtain

@) [ @ di = 10) - H@

= (L) L @) dt +§; (AD) fI ) f@) dt.

THEOREM 3. If f(x) 2s AD-integrable on I, = [a, b], then for any closed set
E C Iy, there exists a portion J° (N E which satisfies the following three conditions:
(1) f(x) zs L-integrable on J M E;
(i) Let {I,} be the sequence of contiguous closed intervals of J M\ E with respect
to J. Then

e}

3 o) [ s

(iii) If x us a limat point of { I}, then there exists a set E, which has unit densily
at x and contains all the end points of I in « sufficiently small neighbourhood
of x, such that

< ©;

lim O(AD, f, E, N\ I,,) = 0.

ko0
Proof. Let F(x) = (AD)fﬁf(t) dt. Then F(x) is (ACG) on I,, so that I,
is represented as the sum of a countable number of closed sets E; on each of
which F(x) is absolutely continuous. Since E = Uz_1 (E M E;), by Baire's
category theorem, there exist an interval J with J° M E # @ and a natural
number # such that J° "\ E C E N E,. Hence F is absolutely continuous on
J M E. Since F is also of bounded variation on J M E, we have:

gl (AD) J;kf(t) dt| = kZ:l |F(by) — Flaw)| < o,

where I, = [ay, b;]. Hence we have proved (ii).
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To prove condition (i), we denote by G(x) the function which coincides
with F(x) on J M E and is linear on each I;. Then the function G(x) is
absolutely continuous on J by Lemma 1 and hence G’(x) is L-integrable.
Since G’ (x) = F'(x) = f(x) at almost all points of J M E, f(x) is L-integrable
onJ N E.

Next we shall show condition (iii). Suppose that there exists no such E,.
Since F(x) is approximately continuous at x, there exists a measurable set
A, having unit density at x, on which F(x) is continuous. The set 4, may
contain all the end points of I; in a sufficiently small neighbourhood of x,
because F is absolutely continuous on J /M E and all the end points of I;
are in J M E. Given ¢ > 0, we can find § > 0 such that ¢t € 4, N (x,x + §)
implies

(3) [F(@t) — Fx)| < e

By assumption, O(F, 4, M I;) does not tend to 0 as & — 0, so that there
exist a positive constant ¢ and a natural number K such that

4) OF, A, N\ I;) >c>0 (k > K).

We may assume that the interval (x, x 4+ 6) does not contain the intervals
I, for k £ K. We have from (4)
(5) ¢/2 < sup |F(t) — F(a)],

€A Ik

and hence there exists a point ¢y € 4, M I} such that

(6) ¢/2 — € < |F(ty) — Flay)|.

It follows from (5), (6), and the relation |F(a;) — F(x)| < € that
|F(ty) — F(x)| > ¢/2 — 2e.

Taking ¢ > 6¢, the above inequality contradicts (3), and the theorem is
proved.

Remark. The property of closedness in (ACG) is used explicitly in the
above proof but not in Theorems 1 and 2. However, it is essential in defining
the AD-integral.

3. An approximately continuous integral. Throughout this section we
let I and J be closed intervals.

Let T' = T'(f,I) be a bilinear functional on a subset of M X N, where
M = {f} is the space of functions defined on I,, N = {I} the collection of
subintervals of I,, and I, fixed. The set {f: (f, I) € domain of T} will be
denoted by K(T', I). We also use the notation 7.#(f) in place of T'(f, I)
when I = [a, 8].

Definition 1. A functional T is termed an approximately continuous integral
if the following conditions are fulfilled:
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() Ufe K(T,I),thenf € K(T,J)forallJ CI;
(ii) If I; and I, are abutting intervals and if f € K(T, I;) "\ K(T, I,),
then f € K(T', I, \J I,) and

I'(f, 1\ V1) = T(f, I,) + T(f, I.);

(iii) The function F(x) = T.5(f) (@ < x < B) is approximately continuous
on I = [a, 8].

The AD-integral is an approximately continuous integral.

If T is an approximately continuous integral, any function belonging to
K(T, I) is termed T-integrable on I, and the number 7'(f, I) is called the
definite T-integral of f on I.

Given two integrals 7y and 7', we shall say that the integral 7' includes
the integ,'al T2, written T2 C Tl, if f € K(Tz, Io) 1mp11es f € K(T], Io)
and T1(f, I) = T2(f, I) for every I C I,.

4. A characterization of the AD-integral.

Definition 2. The Cauchy (C) and Harnack (H) properties of an
approximately continuous integral 7" are given by the following conditions:
(C) If f is T-integrable on every interval [y, 8] C |a, 8] and

app lim 75’ (f)

Y-sat;
is finite, then f is T-integrable on [, 8] and

T.L(f) = app lim 7 (f).

Yoo+t
0-p—

(H) Let Q be a closed set in I and let {I; = [a4, b;]} be the sequence of
intervals contiguous to Q with respect to I. Let f be L-integrable on Q and
T-integrable on each I,. Suppose that the following conditions are satisfied:

(i) 2k |[T(f, L)| < 05
(i1) if x € E is a limit point of {I;}, then there exists a set E, which has
unit density at x such that

lim O(T, f, E. M I;) =0,

k>0

where the set E, contains all the end points of I in a sufficiently small
neighbourhiood of x. Then f is T-integrable on I and we have:

16,1 = M) | j0 i+ 16,1,

We have proved in Theorems 1 and 2 that the AD-integral has the properties
(C) and ().
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Lemma 2. Let T be an approximately continuous integral which has the
properties (C) and (H), and I fixed. If for every x € I° we can find an interval
J. containing x in its interior such that T AD on J,, then T D AD on I.

Proof. First we show that T D AD for any J C I°. Since for every point
x € J, there corresponds an interval J,, it follows from the Heine-Borel
covering theorem that there exists a finite sequence of intervals J,,, ..., Js,
such that J C Uj%-1Jz,and T D AD on each J,,. Hence, by Definition 1(ii),
we obtain: 7 D AD on J.

Next we show that 7" AD on I. Let J be any interval contained in I°.
Then we have, for any f € K(4D, J),

(AD) fJ 1) dt = T, J).

It follows from (C)-property of T' and AD-integrals that f € K(7T, I) and
T(f,I) = AD(f, I). However, if I’ is any subinterval of I, then similarly
f€ K(T,I'yand T(f,I') = AD(f, I’). Hence the lemma is proved.

TueoreM 4. Let T be the AD-integral. If T is an approximately continuous
integral which includes the L-integral and satisfies the conditions (C) and (H),
then T DO T.

Proof. Let Q be the set of points in Iy such that forx € Q, T D T on every
interval containing x. Then Q is clearly closed. It follows from Theorem 3
that there exist a 7'¢-integrable function f and an interval J with J°N\ Q # @
such that the following conditions are satisfied:

(i) f is L-integrable on J M Q;

(ii) if {I;} is the sequence of contiguous closed intervals of J /M Q with

respect to J, then

5| [ row

(iii) if x € Q is a limit point of {I;}, then there exists a set E, which has
unit density at x such that

< ©;

lim O(’I‘Oyfy E, N Ik) = 0)

k>

where the set E, contains all the end points of I in a sufficiently small
neighbourhood of .
Hence, by (H)-property of the T¢-integral, f is To-integrable on J and

T =@ [ @ d+3 TG .
JNe k=1
Since I;° N Q = @, it follows from Lemma 2 that
To(fv Ik) = T(f’ Ik)
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We have, by (H)-property of the T-integral, f € K(7', J) and

¢, = L) INCLED D)
Hence

To(f, J) = T(f,J).

The above identity also holds with J’ replaced by any interval J' C J. But
this contradicts the relation J° M Q # @. Hence the theorem is proved.
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