
Nagoya Math. J., 236 (2019), 1–28
DOI 10.1017/nmj.2019.23

AROUND THE NEARBY CYCLE FUNCTOR FOR
ARITHMETIC D-MODULES

TOMOYUKI ABE

Dedicated to Professor Shuji Saito on the occasion of his 60th birthday

Abstract. We will establish a nearby and vanishing cycle formalism for the

arithmetic D-module theory following Beilinson’s philosophy. As an applica-

tion, we define smooth objects in the framework of arithmetic D-modules whose

category is equivalent to the category of overconvergent isocrystals.

Introduction

In this paper, we establish a theory of nearby/vanishing cycle functor

in the framework of arithmetic D-modules and give some applications.

Unipotent nearby/vanishing cycle formalism has already been established

by the author together with Caro in [AC2] after the philosophy of Beilinson.

Beilinson’s philosophy (cf. [Bei, Remark after Corollary 3.2]) also tells us

how to go from unipotent nearby/vanishing cycle functors to the full ones,

and in fact, this philosophy underlies the argument of [A2, Lemma 2.4.13].

The aim of this article is to carry this out more systematically so that the

nearby/vanishing cycle formalism is also accessible in the p-adic cohomology

theory.

Now, let us clarify what properties make full nearby/vanishing cycle

functors different from unipotent counterpart. Let k be a perfect field of

positive characteristic. Given a morphism of finite type f : X → A1
k, and

a “p-adic coefficient object” M on X, we have already defined unipo-

tent nearby/vanishing cycles Ψun
f (M ) and Φun

f (M ) as objects on X0 :=

X ×A1 {0}. These functors are compatible with pushforward by proper

morphisms and pullback by smooth morphisms. An important property

of full nearby cycle functor is that it computes the “cohomology of the

generic fiber” when f is proper. However, Ψun is not powerful enough to

compute the cohomology. Let us explain what this means. Consider the
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2 T. ABE

simplest possible situation, namely X = A1 and f = id. Consider the p-adic

coefficient M defined by the differential equation

x2∂ − π = 0.

This differential equation has singularity at 0, and in fact, we may prove

that the equation is trivialized by an Artin–Schreier type covering. The

“cohomology” of M around the generic point of A1 is merely the “fiber”

of M at the generic point because we are taking f = id. Thus, this should

be some vector space of dimension equal to the rank of M , which is 1

in this situation. In particular, Ψid(M ) should not be zero. However, we

may compute that Ψun
id (M ) = 0. Thus, Ψun

id (M ) does not meet our need.

Beilinson suggests to consider
⊕

L Ψun(M ⊗L ) where L runs over all the

irreducible “local system on a disk”. In the situation above, M ∨ (where

(−)∨ denotes the dual) should be considered as an irreducible local system

on the disk around 0 ∈ A1. Thus the contribution from Ψun(M ⊗M ∨) does

not vanish, which gives us the correct computation of the cohomology of

the generic fiber in terms of nearby cycle functor.

Even though it is straightforward what to do philosophically, some

technical issues come in. First of all, the unipotent nearby/vanishing

cycle functors we have already defined a priori depend on the choice of

“parameter”, whereas it should not be ideally. This issue is treated in

Section 1. Second, it is not clear from the definition that Ψf and Φf have

certain finiteness property. We argue as Deligne to show the finiteness

in Section 2. After constructing nearby/vanishing cycle functors, we give

small applications. In Section 3, we define the category of smooth objects

intrinsically, and show that this category coincides with the category of

overconvergent isocrystals. We also show that this category is stable under

taking pushforward by proper and smooth morphism. In the final section,

Section 4, we propose a category over a Henselian trait which is an analogue

of that of `-adic sheaves, and show that our nearby/vanishing cycle functors

factor through this category.

Finally, it is my great pleasure to dedicate this article to Professor Shuji

Saito, with deep respect to him and his mathematics, on the occasion of

his 60th birthday. As a supervisor, Professor Saito taught me what it is to

study mathematics. Even after I got Ph.D., he continuously encouraged me

strongly in many occasions, advised me both on mathematics and on life.

Without him, my life would not have been as rich.
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AROUND THE NEARBY CYCLE FUNCTOR FOR ARITHMETIC D-MODULES 3

§1. Vanishing cycle functor

1.1 In the whole paper, we fix a (geometric) base tuple (k, R, K, L)

(cf. [A2, 1.4.10, 2.4.14]). This is a collection of data where k is a perfect

field of characteristic p > 0, R is a discrete valuation ring whose residue

field is k such that some power of Frobenius automorphism on k lifts to

R, K := Frac(R), and L is an algebraic extension of K. Once we fix these

data, we are able to define the L-linear triangulated category D(X) for

a separated scheme X of finite type over k. This triangulated category is

denoted by D(X/L∅) or D(X/T) where T is the fixed base tuple to be more

precise in [A2]. When L=K and X is quasi-projective (or more generally,

realizable), we have a classical and more familiar description of D(X) in

terms of arithmetic D-modules of Berthelot: Take an embedding X ↪→P
where P is a proper smooth formal scheme over R. Then D(X) is a full

subcategory of Db
coh(D†P,Q) satisfying some finiteness condition called the

overholonomicity and support condition. See [A2, 1.1.1] for more details.

The category D(X) is equipped with a t-structure, called the holonomic

t-structure, whose heart is denoted by Hol(X). Philosophically, this category

corresponds to the category of perverse sheaves in the `-adic theory.

Furthermore, D(X) is equipped with 6 functors. The category D(X) is a

closed monoidal category, so we have 2 functors ⊗ andHom. The unit object

is denoted by LX . When X is smooth quasi-projective and L=K, LX is, in

fact, represented by the structure sheaf up to some shift. Given a morphism

f : X → Y between schemes of finite type, we have 4 more functors:

f∗, f! : D(X)→D(Y ), f∗, f ! : D(Y )→D(X).

We denote by f∗ and f∗ for normal pushforward and pullback in accordance

with the `-adic theory, and not f+, f+ as in [A2]. These functors enjoy a lot

of standard properties. Some of the properties are summarized in [A2, 1.1.3],

so we do not recall here. Finally, exclusively in Section 1.6, we consider

Frobenius structure. In order to consider this extra structure, we remark

that “arithmetic base tuple” (cf. [A2, 1.4.10, 2.4.14]) should be fixed, which

contains some more information than geometric base tuple. We do not go

into detail here.

Remark. Since [A2, 1.1.3] is written only for realizable schemes, let

us point out where in the paper the corresponding claim for separated

schemes of finite type can be found. The functors f∗, f
∗ are defined in 2.3.7

and 2.3.10. The functor ⊗ is defined in 2.3.14, and Proposition 2.3.15 implies
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4 T. ABE

the existence of Hom. The functor f! is defined in 2.3.21, and f ! in 2.3.32.

The coincidence of f! and f∗ when f is proper follows by construction, and

the base change is checked in 2.3.22. The projection formula is in 2.3.35,

the Künneth formula is in 2.3.36, and the localization sequence is in 2.2.9.

Duality results as well as trace formalism are also written in 2.3.

1.2 A projective system “lim←−”i∈IXi, where I is a filtered category which

is said to be affine étale if all the morphismsXi→Xj are affine and étale. By

[EGA IV, 8.2.3] as well as [SGA 4, Exp. I, Proposition 8.1.6], the projective

limit is representable in the category of schemes over k. Let Schft(k) be the

category of schemes separated of finite type over k. We denote by Sch(k)

the full subcategory of noetherian schemes over k which can be written as a

projective limit of an affine étale inductive system in Schft(k). From now on,

we always mean an object of Sch(k) by simply saying schemes. In particular,

schemes are assumed noetherian.

Lemma 1.3.

(1) Any scheme in Sch(k) is separated.

(2) Let S ∈ Sch(k), and X → S be a morphism of finite type. Then X ∈
Sch(k) as well.

(3) The category Sch(k) is closed under taking Henselization (resp. strict

Henselization).

Proof. The first claim follows since, writing X = lim←−Xi with Xi ∈
Schft(k), Xi is assumed separated and X →Xi is affine. The second claim

is [EGA IV, 8.8.2]. For the last claim, we only need to check that the

Henselization and the strict Henselization of a point of a noetherian scheme

are noetherian, but these are [EGA IV, 18.6.6, 18.8.8].

1.4 Now, let us introduce the triangulated category of arithmetic D-

modules for the schemes in Sch(k). Let X ∈ Sch(k). By definition, we may

write X ∼= lim←−i∈IXi where Xi ∈ Schft(k) and “lim←−”i∈IXi is affine étale. Let

i→ j in I. Since the induced morphism φ : Xi→Xj is étale, we have the

isomorphism between pullback functors φ∗ ∼= φ! : D(Xj)→D(Xi). We define

D(X) := 2- lim−→
i∈I

D(Xi).

Since φ∗ is t-exact with respect to the t-structure, D(X) is also equipped

with a t-structure, whose heart is still denoted by Hol(X). This category is
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AROUND THE NEARBY CYCLE FUNCTOR FOR ARITHMETIC D-MODULES 5

independent of the choice of projective system up to canonical isomorphism,

which justifies the notation D(X). Now, assume given any morphism

f : X → Y in Sch(k). Then we can find a morphism of affine étale projective

systems “lim←−”i∈IXi→ “lim←−”j∈JYj in Schft(k) which converges to f . This

presentation makes it possible to extend the pullback and extraordinary

pullback functor on Schft(k) to

f∗, f ! : D(Y )→D(X).

Independence of presentation follows easily. Assume further that f is of

finite type. Then [EGA IV, 8.8.2] implies that by changing the projective

system “lim←−”i∈IXi in Schft(k) if necessary, we may assume that I = J and

that for any i→ j in J the following diagram is cartesian:

Xi

φX //

fi
��

�

Xj

fj
��

Yi
φY // Yj

Since φY is étale, we have the canonical isomorphisms φ∗Y ◦ fj∗ ∼= fi∗ ◦
φ∗X , fi! ◦ φ∗X ∼= φ∗Y ◦ fj! by base change and φ∗?

∼= φ!
?. Thus, we have the

pushforward and extraordinary pushforward functor

f∗, f! : D(X)→D(Y ).

Lemma 1.5. For a scheme X, Hol(X) is a noetherian and artinian

category.

Proof. Let U be a scheme, and write U ∼= lim←− Ui where Ui ∈ Schft(k).

Assume Ui is smooth. We say that F ∈Hol(U) is smooth if there exists

i ∈ I and F ′ ∈Hol(Ui) whose pullback is F such that F ′ is smooth on

Ui in the sense of [A2, 1.3.1]. It is easy to check that any smooth object

is of finite length, and for any F ∈Hol(X), there exists a smooth open

dense subscheme U ⊂ Supp(F ) such that F |U is smooth on U . Now, let

j : V ↪→X be an open immersion. It suffices to check that for an irreducible

object FV ∈Hol(V ), j!∗(FV ) remains to be irreducible. The verification is

standard (see, for example, [AC, Proposition 1.4.7]).
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6 T. ABE

1.6 Exclusively in this paragraph, we consider Frobenius structure for

the future reference. The reader who does not need to consider Frobenius

structure may simply ignore Tate twists appearing in this paragraph.

Let π : X → A1
k be a morphism of finite type, and denote by X0 the fiber

over 0 ∈ A1
k. Then the exact functors

Ψun
π , Φ

un
π : Hol(X)→Hol(X0)

are defined.1 Let us now recall the definition briefly. We put OGm :=

OP̂1
R,Q

(†{0,∞}). We define Logn for an integer n> 0 as follows:

Logn :=
n−1⊕
k=0

OGm · log
[k]
t ,

the free OGm-module of rank n generated by the symbols log
[k]
t . For the

later use, we denote k! · log
[k]
t by logkt . There exists a unique D†

P̂1,Q
-module

structure on Logn so that for k > 0 and g ∈ OGm ,

∂t(g · log
[k]
t ) = ∂t(g) · log

[k]
t +(g/t) · log

[k−1]
t ,

where log
[j]
t := 0 for j < 0. There is a canonical Frobenius structure on Logn.

This defines an object of Hol(A1) when L=K. If L)K, we simply extend

the scalar. We have the following exact sequence:

0→Logn→Logn+m→Logm(−n)→ 0,

where the first homomorphism sends log
[i]
t to log

[i]
t and the second sends log

[i]
t

to log
[i−n]
t . We follow the easy-to-describe definitions of various functors of

Beilinson (cf. [AC2, Remark 2.6 (i)]).

Recall we are given π : X → A1, and put j : X \X0 ↪→X, the open

immersion, and i : X0 ↪→X, the closed immersion. Now, we put Lognπ :=

π∗Logn. Using this we define for F ∈Hol(X)

Π0,i
!∗ (F ) := lim−→

n

Ker
(
j!(F ⊗ Logn+i

π )(i− 1)→ j∗(F ⊗ Lognπ)(−1)
)
,

1In [AC2], the source of the unipotent nearby cycle functor is Hol(X \X0). Let us
denote this functor by ACΨun

π . Then Ψun
π := ACΨun

π ◦ j∗ where j : X \X0 ↪→X.
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and put Ψun
π := Π0,0

!∗ (1), Ξπ := Π0,1
!∗ . A key result of [AC2, Lemma 2.4] is that

these limits are representable in Hol(X). We have the following complex

in Hol(X):

j!F → Ξπ(F )⊕F → j∗F ,

and define Φun
π (F ) to be the cohomology of this complex. Here, the

homomorphism j!F → Ξπ(F ) is the obvious one, and Ξπ(F )→ j∗F is the

inductive limit of the connecting homomorphism of the following diagram,

recalling Log1
π
∼= LX\X0

:

0 //

��

j!(F ⊗ Logn+1
π )

��

j!(F ⊗ Logn+1
π )

��

// 0

0 // j∗(F ⊗ Log1
π) // j∗(F ⊗ Logn+1

π ) // j∗(F ⊗ Lognπ)(−1) // 0

Moreover, this diagram induces the following exact sequence:

0→Ψun(F )→ Ξπ(F )→ j∗(F )→ 0,

where the surjectivity of the last homomorphism is also a part of the key

result of [AC2]. This short exact sequence together with the definition of

the vanishing cycle functor yield the following fundamental exact triangle:

(1.6.1) i∗[−1]→Ψun
π → Φun

π
+1−−→ .

Remark.

(1) In [AC2], the object Ia,b is used instead of Logn. We may check

easily that there exists an isomorphism Ia,b ∼−→Logb−a where slts,

using the notation of [AC2, 2.3], is sent to log
[l−a−1]
t . The embedding

Lognt ↪→Logn+1
t is compatible with the embedding Ia,b ↪→Ia,b+1. The

description using Ia,b is convenient to understand the relation with the

dual functor, but in order to prove the theorem below, Logn description

reduces notation.

(2) We defined Ψun as Π0,0
!∗ (1), but in [AC2], following Beilinson, we did not

put this Tate twist in the definition. This Tate twist is put in order that

no Tate twist appears in (1.6.1). Since we do not consider Frobenius

structure from the next paragraph, we may forget this confusing Tate

twists.
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8 T. ABE

1.7 Now, let S be a scheme of finite type over k, and s ∈ S be a regular

point of codimension 1. Let π : X → S be a morphism of finite type. For

a dominant morphism h : S→ A1 such that h(s) = 0, the functor Ψun
h◦π is

defined. Note that such h exists Zariski locally around s. In this paper, for

a morphism of schemes f : X → Y and a point y ∈ Y , the fiber X ⊗Y k(y)

is denoted by Xy.

Theorem. The functors Ψun
h◦π|Xs, Φun

h◦π|Xs does not depend on the choice

of h up to canonical equivalence. This justifies to denote these functors by

Ψun
π,s and Φun

π,s respectively.

Proof. Let A2
(x,y)→ A1

t be the morphism sending t to xy. On A2, we

construct a homomorphism

α : Lognxy→Lognx ⊗ Logny .

by sending (log xy)k to
∑k

i=0

(
k
i

)
(log x)i ⊗ (log y)k−i. It is easy to check that

this defines a homomorphism of D†-modules. Now, shrink S around s, which

is allowed since we only need the equivalence after |Xs , so that the closure of

s, is a smooth divisor denoted by D. Let u, v ∈ OS . These functions define

a morphism ρ : S→ A2 by sending x, y to u, v respectively. Then we get a

homomorphism in Hol(S)

αu,v := ρ∗(α) : Lognuv→Lognu ⊗ Lognv .

Given u, v, w ∈ OS , the following diagram is commutative:

(1.7.2)

Lognuvw
αu,vw

//

αuv,w

��

Lognu ⊗ Logvw

id⊗ αv,w
��

Lognuv ⊗ Lognw
αu,v ⊗ id

// Lognu ⊗ Lognv ⊗ Lognw

Now, for h : S→ A1, we denote Ψun
hπ, Φun

hπ, Ξun
hπ by Ψh, Φh, Ξh respectively.

Take another dominant morphism h′ : S→ A1 such that h′(s) = 0. Possibly

shrinking S around s, we may assume that there exists u ∈ O×S such that h′ =

uh. Because the image of the associated morphism u : S→ A1 is contained

in Gm, the object Lognu is an iterated extension of the trivial object LS .

This implies that for ? ∈ {!, ∗},

(1.7.3) j?
(
F ⊗ Lognuπ ⊗ Lognhπ

)∼= j?(F ⊗ Lognhπ)⊗ Lognuπ,
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AROUND THE NEARBY CYCLE FUNCTOR FOR ARITHMETIC D-MODULES 9

where j : X \ (h ◦ π)−1(0) ↪→X. Define

Π0,i
(u,h)!∗(F ) := lim−→

n

Ker
(
j!(F ⊗ Logn+i

uπ ⊗ Logn+i
hπ )

→ j∗(F ⊗ Logn+i
uπ ⊗ Lognhπ)

)
,

and put Ψu,h := Π0,0
(u,h)!∗, Ξu,h := Π0,1

(u,h)!∗ as usual. Then (1.7.3) induces the

canonical isomorphisms

Ξu,h ∼=
(

lim−→
n

Lognuπ
)
⊗ Ξh, Ψu,h

∼=
(

lim−→
n

Lognuπ|D
)
⊗Ψh

as Ind objects. We have a homomorphism

Lognu |D ∼=
n−1⊕
k=0

LD · log[k]
u

pr0−−→ LD,

where pr0 denotes the projection by the factor indexed by log
[0]
u . By taking

the limit, we have a homomorphism pr0 : lim−→n
Lognu |D→ LD. Composing

everything, we have

φh,uh : Ψh′ = Ψuh
αu,v−−−→Ψu,h

∼=
(

lim−→
a

Lognu |D
)
⊗Ψh

pr0−−→Ψh.

We may check easily that φh,h = id. Using (1.7.2), it is also an easy

exercise to show that φvuh,uh ◦ φuh,h = φvuh,h for v ∈ O×S . Thus, φuh,h is an

isomorphism for any u ∈ O×S . In order to show the theorem for Φun, we

define Φu,h by the cohomology of the following complex

j!F ⊗ lim−→
n

Lognuπ→ Ξu,h(F )⊕
(

F ⊗ lim−→
n

Lognuπ
)
→ j∗F ⊗ lim−→

n

Lognuπ,

and argue similarly.

1.8 Let X
π−→ S

h−→ S′ be morphisms of schemes of finite type over k, h

is dominant, and s ∈ S, s′ ∈ S′ be codimension 1 regular points such that s

is sent to s′. We have the canonical morphism h′ : Xs→Xs′ . Then by the

construction of nearby/vanishing cycle functors, we have

(1.8.4) h′∗Ψun
h◦π,s′

∼= Ψun
π,s, h′∗Φun

h◦π,s′
∼= Φun

π,s.

https://doi.org/10.1017/nmj.2019.23 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.23


10 T. ABE

By saying (S, s, η) is a Henselian trait, we mean S is a scheme which is

the spectrum of a Henselian discrete valuation ring with closed point s and

generic point η, and a fixed separable closure k(η) of k(η) often denoted by

ηsep. Let (S, s, η) be a Henselian trait. Assume given a morphism π : X → S.

Even if X and S are not of finite type over k, we may define exact functors

Ψun
π , Φ

un
π : Hol(X)→Hol(Xs).

Indeed, we can find a diagram using [EGA IV, 8.8.2]

X
γ
//

π ++

X ×S S

��

//

�

X

π̃
��

S
ρ

// S

Here, π̃ is a morphism of schemes of finite type over k, ρ(s) is a regular point

t ∈ S of codimension 1, γ is the limit of a projective system of affine étale

X ×S S-schemes. Let γX : Xs→Xt be the morphism induced by γ. Then we

define Ψun
π := γ∗XΨun

π̃,t, Φun
π := γ∗XΦun

π̃,t. We claim that these do not depend on

the choice of the diagram. Indeed, assume we are given another morphism

ρ′ : S→S ′ such that ρ′(s) is a regular point of codimension 1 and also

a morphism of finite type π̃′ : X ′S′ →S ′ having analogous properties as π̃.

We need to show that the resulting Ψun and Φun are canonically equivalent.

By (1.8.4), we may change bases S, S ′, and assume that there is a morphism

S → S ′, and we may even assume that S = S ′. Further changing the base,

we may assume that there is a diagram of S-schemes

X

yy �� %%
XS Y //oo X ′S

such that schemes on the 2nd row are of finite type over S and the vertical

morphisms are étale. Since Ψun, Φun are compatible with pullback by étale

morphism, the independence follows.

1.9 Now, let (S, s, η) be a strict Henselian trait, and we define the

category Hen(S) to be the category of Henselian traits over S which is

generically étale, and the morphisms are morphisms of traits respecting

the fixed separable closure. This is a filtered category. Morphisms are
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S-morphisms. Given a morphism h : S′→ S in Hen(S), consider the fol-

lowing commutative diagram:

s′
i′ //

hs ∼
��

S′

h
��

�

η′
j′
oo

hη

��
s

i // S η
j

oo

Now, assume given a morphism f : X → S. Let f ′ : X ×S S′→ S′. By abuse

of notation, we use the same symbols for the base change from S to X,

for example h× id : X ×S S′→X is denoted by h. We have a canonical

morphism

Ψun
f →Ψun

f ◦ h∗ ◦ h∗ ∼= hs,∗ ◦Ψun
f ′ ◦ h∗,

where the isomorphism follows since h is proper and s′→ s×S S′ is a

nilpotent immersion. Since Ψun
f ′ ◦ h∗ ∼= Ψun

f ′ ◦ (j′∗h
∗
ηj
∗) and the functor j′∗h

∗
ηj
∗

sends holonomic objects to holonomic objects, the exactness of Ψun implies

that we have H i
(
Ψun
f ′ ◦ h∗(F )

)
= 0 for any F ∈Hol(X) and i 6= 0. Now, we

have the following diagram of exact sequences by (1.6.1).

0 //

��

H −1i∗(F ) //

∼
��

Ψun
f (F )
� _

��
0 // H −1(hs∗Φun

f ′ (h∗F )
)

// H −1(hs∗i′∗(h∗F )
)

// hs∗Ψun
f ′ (h∗F )

Here the middle homomorphism is an isomorphism since hs is an isomor-

phism, and the right vertical morphism is split injective since j∗F is a direct

factor of hη∗h
∗
ηj
∗F . This implies that H −1

(
hs∗Φ

un
f ′ (h

∗F )
)

= 0. Together

with the other parts of the diagram of long exact sequences, we have

H i
(
hs∗Φ

un
f ′ (h

∗F )
)

= 0 for i 6= 0 and Φun
f (F ) ↪→ hs∗Φ

un
f ′ (h

∗F ). This enables

us to define exact functors IndHol(X)→ IndHol(Xs) as follows:

Ψf := lim−→
S′∈Hen(S)

hs,∗ ◦Ψun
f ′ ◦ h∗, Φf := lim−→

S′∈Hen(S)

hs,∗ ◦ Φun
f ′ ◦ h∗.

For Ind-categories, see [A2, 1.2.2]. These are endowed with an action of

I := Gal(ηsep/η) where ηsep is the separable closure of η. By construction,

we have the homomorphism c : Ψf → Φf compatible with the action of I.

https://doi.org/10.1017/nmj.2019.23 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.23


12 T. ABE

Moreover, for σ ∈ I, we have the variation homomorphism

v(σ) : Φf (F )→Ψf (F )

such that σΨ = id + v(σ) ◦ c, σΦ = id + c ◦ v(σ) where σ− is the action of σ

on (−). The variation homomorphism is defined as follows: Let α ∈ Φ(F ).

There exists αun ∈ Φun(F )⊂ Φ(F ) such that the images of α and αun in

H 0i∗(F ) coincide. Then there exists β ∈Ψ(F ) so that c(β) = α− αun. We

define v(σ)(α) := σΨ(β)− β. We leave the reader to check that this is well-

defined, and satisfies the desired properties.

Proposition 1.10. Let (S, s, η), (S′, s′, η′) be strict Henselian traits,

and π : S′→ S be a finite dominant morphism.

(1) For F ∈Hol(η′), the nearby cycles Ψπ(F ) are representable in Hol(s′).

(2) For F ∈Hol(η′), we have rk(F ) = rk(Ψπ(F )).

(3) The morphism π∗s ◦Ψid
∼−→Ψid ◦ π∗, where πs : s′

∼−→ s is the induced

morphism, is isomorphic.

Proof. Let us check 3. Assume π is generically étale. Then S′ ∈
Hen(S). Thus we have the functor Hen(S′)→Hen(S) sending S′′→ S′ to

S′′→ S′→ S. This functor is cofinal, and since πs is an isomorphism, we

get the claim in this case. If π is not generically étale, the morphism η′→ η

breaks up into η′
a−→ ηsep b−→ η where a is purely inseparable and b is étale.

By the generically étale case we have already treated, it suffices to check the

claim for the case where πη is purely inseparable. In this case, π is universally

homeomorphic, thus the functors do not see the difference between S and

S′ (cf. [A2, Lemma 1.1.3]).

Let us check the other two claims. By 3, we may assume that π = id. Let

Y be a scheme and y be a point such that S is a strict Henselization of Y

at y. By [EGA IV, 18.8.13], by replacing Y by a neighborhood of y, we may

assume that Y is smooth. Moreover, by [EGA IV, 18.8.12 (ii), 6.1.3], OY,y
is of dimension 1. Thus, we may assume that y is a generic point ηD of a

smooth divisor D in Y . By Kedlaya’s semistable reduction theorem [K2], at

the cost of shrinking Y further, there exists a surjective morphism g : Y ′→ Y

such that Y ′ is smooth, g is étale outside of D, and the pullback of F to

Y ′ is log-extendable along the smooth irreducible divisor D′ := g−1(D) with

generic point ηD′ . Replacing Y by its étale neighborhood around ηD, we

may assume that ηD′ → ηD is an isomorphism. Take any function h ∈ OY ′
such that the zero locus is equal to D′. In this situation, the computation
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of [AC2, Lemma 2.4] shows that Ψun
h (g∗F ) is a smooth object on D′ of rank

equal to that of F . Now, take a finite morphism α : Y ′′→ Y ′ which is étale

outside of D′. Then g∗F |Y ′\D′ is a direct factor of α∗α
∗g∗F |Y ′\D′ , so we

get that the canonical homomorphism

(1.10.5) Ψun
h (g∗F )→ α∗Ψ

un
h◦α(α∗g∗F )

is a split injective homomorphism. Since α∗g∗F is also log-extendable,

the rank is the same as that of F . This implies that the canonical map

(1.10.5) is an isomorphism. Thus, Ψun
id (F ) is the same as the pullback

of g∗Ψ
un
h (F ).

§2. Finiteness of nearby cycle

Throughout this section, we fix a strict Henselian trait (S, s, η).

2.1 First, we need a preparation. Let f : X → Y be a morphism of

finite type. We put f i∗ := H if∗ : Hol(X)→Hol(Y ). This extends canonically

to Ind-categories (cf. [A2, after (4) of 1.2.2]), and defines a functor

If i∗ : IndHol(X)→ IndHol(Y ), which we still denote by f i∗. If f is smooth

of codimension d, we have the exact functor f∗[d] : Hol(Y )→Hol(X). This

functor also extends to Ind-categories, and is denoted by f~.

Lemma. Let S be a strict Henselian trait, and f : X → Y be a morphism

of S-schemes.

(1) If f is proper, then there exists a canonical isomorphism Ψ ◦ f i∗ ∼= f i∗ ◦Ψ

in IndHol(Y ) for each i.

(2) If f is smooth, then there exists a canonical isomorphism f~ ◦Ψ∼=
Ψ ◦ f~ in IndHol(X).

Proof. These are exercise of six-functor formalism, so we leave the

verification to the reader.

Theorem 2.2. If π : X → S is of finite type, the functors Ψπ and Φπ

define functors from Hol(X) to Hol(Xs).

By the fundamental exact triangle Ψun
π → Φun

π → i∗
+−→, where i : Xs→X,

it suffices to check the theorem just for Ψπ. The idea of the proof is

essentially the same as [D, Théorème 3.2]. The proof is divided into several

parts. We prove the theorem by induction on the dimension of Xη. The case

where dim(Xη) = 0 has already been treated in Proposition 1.10. We assume
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that the theorem holds for X such that dim(Xη)< n. From now on, we

assume that dim(Xη) = n.

Lemma 2.3. [D, Lemme 3.5] Let K be a field containing k. Let X ⊂ AnK
be a closed subscheme, F ∈ IndHol(X), and η be a geometric generic

point of A1
K . Let Xη,i be the geometric generic fiber of the morphism

X ⊂ An pri−−→ A1, where pri denotes the ith projection, and Fη,i denotes the

pullback of F to Xη,i. Assume Fη,i ∈Hol(Xη,i) for all i. Then there exists

F ′ ∈Hol(X) contained in F such that the local sections of F/F ′ are

supported on finitely many points, namely it is isomorphic to
⊕

x∈|An| Gx
where Gx is supported on x.

Proof. Let π : An→ A1 be a projection. For each x ∈ A1, denote by

ix : Ax := π−1(x) ↪→ An and by η the generic point of A1. Assume given

G ∈ IndHol(An) such that the pullback to Aη is 0. Then

G ∼=
⊕
x∈|A1|

ix,∗i
∗
xG .

Indeed, since Hol(An) is a noetherian category by Lemma 1.5, we may write

G ∼= lim−→i
Gi where Gi ↪→ G and Gi ∈Hol(An). Since the pullback by Aη→ An

is exact, by assumption, Gi becomes 0 on Aη. This implies that Gi is

supported on
∐n
i=1 Axi where xi are closed points of A1, and the claim

follows.

Fix i. There exists an étale neighborhood U of η and Hi ∈Hol(XU,i),

where ji : XU,i :=X ×pri,A1 U ↪→X, such that its pullback to Xη,i is Fη,i. By

shrinking U if necessary, we may assume that the isomorphism Hi,η,i
∼−→Fη,i

is induced by a homomorphism Hi→FU,i where FU,i denotes the pullback

of F to XU,i. Now, put

F ′ :=
n∑
i=1

Im
(
ji!Hi→F

)
⊂F .

By construction, F ′ ∈Hol(X) and (F/F ′)η,i = 0 for any n. Thus, using

the observation above, any local section of F/F ′ is supported on finitely

many points.

2.4 Let s′ be the generic point of A1
s, and let (S′, s′, η′) be the strict

Henselization of A1
S at the generic point s′ of the divisor A1

s. Let h : S′→ S

https://doi.org/10.1017/nmj.2019.23 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.23


AROUND THE NEARBY CYCLE FUNCTOR FOR ARITHMETIC D-MODULES 15

be the morphism. Deligne constructed the following diagram in the proof

of [D, Lemme 3.3]:

η′
P //

##

Spec(k′)
G //

��

η′

��
η

G // η

where horizontal maps are algebraic extensions of fields, and P , G denote

the Galois groups of the extension. The group P is a pro-p-group. Now, let

π′ : X ′→ S′ be a morphism, and let F ∈Hol(X ′η′). Note that X ′η =X ′η′ and

X ′s =X ′s′ . Then we have Ψh◦π′(F )∼= Ψπ′(F )P .

2.5 Proof of Theorem 2.2

Now, let π : X → S be a morphism of finite type. We first assume X affine,

and take a closed immersion X ↪→ AnS , and let f : X ⊂ AnS → A1
S where the

second morphism is a projection. Recall from the previous paragraph that

λ : S′ ↪→ A1
S is a strict Henselization of A1

S . Consider the following diagram:

X ′
f ′

//

λX
��

�

S′

λ
��

X
f

//

π

66A1
S

// S

Let F ′ be the pullback of F to X ′. Then we have

λ~XΨπ(F )∼= Ψπ◦λX (F )∼= Ψf ′(F )P ,

where the first isomorphism follows by Lemma 2.1, and the second by 2.4.

Now, the induction hypothesis tells us that Ψf ′(F )P ∈Hol(X ′s′), and by

construction X ′s′ =X ′s. This implies that λ~XΨπ(F ) ∈Hol(X ′s). Lemma 2.3

ensures the existence of G ∈Hol(Xs) contained in Ψπ(F ) such that the

local sections of Ψπ(F )/G are supported on finitely many points. Now, if

X is not affine, we take a finite affine open covering {Ui} and we can get

such Gi for each subscheme. Then G := Im
(⊕

H 0Gi,!→Ψπ(F )
)
, where Gi,!

denotes the extension by zero of Gi to X, is in Hol(Xs) and the local sections

of Ψπ(F )/G are supported on finitely many points.
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In order to show the finiteness of Ψπ(F ), we may assume X is proper

over S. Take G as above, and we may write Ψπ(F )/G ∼=
⊕

x∈|Xs| Gx where

Gx is supported on x. We have the following long exact sequence:

. . . // πis∗
(
Ψπ(F )

)
//

∼

πis∗
(⊕

x Gx
)

// πi+1
s∗ (G )

:::::::

// . . .

Ψid(πi∗F )
:::::::::

where the vertical isomorphism follows by Lemma 2.1. Since we already

know that the objects with (−)
:::

are in Hol(s), we have

⊕
x

πs∗Gx ∼= πs∗

(⊕
x

Gx

)
∈Hol(s).

This implies that
⊕

x∈|Xs| Gx ∈Hol(Xs), and thus Ψπ(F ) ∈Hol(Xs) as

required.

Corollary 2.6. Let π : X → S be a morphism of finite type, and

f : X → Y be a morphism of S-schemes of finite type.

(1) If f is proper, then there exists a canonical isomorphism Ψ ◦ f∗ ∼= f∗ ◦Ψ

in D(Y ).

(2) If f is smooth, then there exists a canonical isomorphism f∗ ◦Ψ∼= Ψ ◦
f∗ in D(X).

(3) We have the exact triangle of functors i∗[−1]→Ψπ→ Φπ
+−→.

Remark. Let Rψ and Rφ be the nearby and vanishing cycle functors

for `-adic sheaves. The exact triangle for nearby/vanishing cycle functor

usually goes i∗→Rψ→Rφ
+−→. This difference arises because in the spirit

of Riemann–Hilbert correspondence, Ψ =Rψ[−1], Φ =Rφ[−1]. We could

have employed this normalization, but in order to be consistent with [AC2],

we decided not to take the shift.

§3. Smooth objects

3.1 Let X be a scheme of finite type over k. Then D(X) is equipped with

two t-structures; the holonomic t-structure whose heart is Hol(X), and the

constructible t-structure defined in [A2, §1.3]. The heart of constructible

t-structure is denoted by Con(X). Given a morphism of finite type
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f : X → Y , the pullback f∗ is exact with respect to constructible t-structure

by [A2, 1.3.4]. Thus constructible t-structure extends to a t-structure on

D(X) for any scheme X. The cohomology functor for holonomic t-structure

is denoted by H ∗, as we have already used several times, and the

constructible t-structure by cH ∗.

Definition 3.2. Let X be a scheme. Then F ∈ Con(X) is said to

be smooth if for any morphism φ : S→X from a strict Henselian trait,

Φid(φ∗F ) = 0. The full subcategory of smooth objects in Con(X) is denoted

by Sm(X).

By Theorem 3.8, we can see that this definition is in fact a generalization

of smoothness defined in [A2, 1.3.1]. To be more precise, when X is a

realizable scheme over k such that Xred is smooth, Sm(X) is the same as

the category introduced in [A2, 1.1.3 (12)].

Lemma 3.3. Let f : Y →X be a proper surjective morphism, and F ∈
Con(X). If f∗F is smooth, then F is smooth.

Proof. Let f : S′→ S be a finite morphism between strict Henselian

traits. In this case, we have an isomorphism f∗sΨid(F )∼= Ψid(f∗F ) by

Proposition 1.10.3. Since f∗s is an isomorphism, the claim follows. Consider

the general case. Given a morphism φ : S→X from a strict Henselian trait,

the fiber Y ×X η is nonempty since f is assumed surjective. There exists

a finite extension η′ of η and a morphism η′→ Y compatible with η→X,

thus, by valuative criterion of properness, we have a commutative diagram

S′
φ′
//

f ′

��

Y

f
��

S
φ
// X

where S′ is a strict Henselian trait, and f ′ is dominant. By the finite

morphism case we have already treated, it suffices to check that f ′∗φ∗F
is smooth, which follows by assumption.

3.4 Let us recall briefly some basics of the theory of descent. Let

∆ be the category of three objects [0], [1], [2] where [i] = {0, . . . , i}. The

morphism [i]→ [j] is a nondecreasing map. We denote by δnj : [n− 1]→
[n] the map skipping j and σnj : [n+ 1]→ [n] be the map such that
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(σnj )−1(j) = {j, j + 1}. A simplicial scheme X• is a contravariant functor

∆◦→ Sch(k). Usually, this type of simplicial scheme is called 2-truncated

simplicial scheme, but since we only use these, we abbreviate the word

“2-truncated”. We put Xi :=X•([i]), and dnj :=X•(δ
n
j ) and snj :=X•(σ

n
j ).

The category of descent data for X• denoted by Con(X•) consists of the

following data as objects:

• an object F ∈ Con(X0);

• an isomorphism φ : d1∗
0 F

∼−→ d1∗
1 F ;

which satisfies the cocycle condition d2∗
2 (φ) ◦ d2∗

0 (φ) = d2∗
1 (φ) on X2 and

s0∗
0 φ= id on X0. Given an augmentation f : X•→X, namely a morphism

of simplicial schemes considering X as the constant simplicial scheme, we

say that Con(X) satisfies the descent with respect to f if the canonical

functor Con(X)→ Con(X•) is an equivalence of categories. An augmenta-

tion X•→X is a proper hypercovering if the canonical morphisms X0→X,

X0 ×X X0→X1, and X2→ cosk1sk1(X•)2 are proper surjective. For the

functors sk1 and cosk1, one can refer, for example, to [St, Tag 0AMA].

Lemma 3.5. Let f : Y →X be a proper surjective morphism. Then the

hypercovering Y• := cosk1(Y ×X Y ⇒ Y )→X satisfies the descent.

Proof. We have the natural functor α : Con(X)→ Con(Y•), and we need

to show that this is an equivalence. Let us construct the quasi-inverse. Let

(F , d1∗
0 F ∼= d1∗

1 F ) where F ∈ Con(Y ) is a descent data. This is sent to

Ker
(
f0
∗F ⇒ (f ◦ d1

0)0
∗d

1∗
0 F

)
,

where g0
∗ denotes cH 0g∗ for a morphism g. This functor is denoted by β.

By adjunction, we have functors id→ β ◦ α and α ◦ β→ id, and it remains

to check that these functors are equivalent. Since f is assumed proper, by

proper base change and [A2, 1.3.7 (i)], we may assume that X is a point.

Further, by replacing X by its finite extension, we may assume that f has

a section s : X → Y . In this case, the argument is standard.

Corollary 3.6. Any proper hypercovering satisfies the descent.

Proof. Although the argument is very standard (for example, see [St,

Tag 0D8D]), we give a proof for the convenience of the reader. Let Y•→X

be a hypercovering of X. If the hypercovering is cosk1(Y0 ×X Y0⇒ Y0), then

we already know the result by the lemma. The lemma also tells us that for

a proper surjective morphism W → Z, the pullback Con(Z)→ Con(W ) is
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faithful. Thus, giving a descent data on Y• is equivalent to giving a descent

data on cosk1(Y1⇒ Y0). From now on, we assume that Y• = cosk1(Y1⇒ Y0).

Given a proper hypercovering Y•, a descent data for Y• is F ∈ Con(Y0)

and an isomorphism φ : d1∗
0 F ∼= d1∗

1 F satisfying some conditions. In order

to define a descent data for cosk1(Y0 ×X Y0⇒ Y0), we only need to descent

φ to Y0 ×X Y0. Now, we have the following morphism

α := (pr1, pr2, s
0
0 ◦ d1

1 ◦ pr1) : Y1 ×(Y0×XY0) Y1→ Y1 × Y1 × Y1.

This defines the following diagram of simplicial schemes:

Y1 ×(Y0×XY0) Y1
////

d′2i

//

��

Y1
//// Y0

Y2

d2i ////// Y1

d1i //// Y0

where d′2i := pri ◦ α. By the universal property of cosk, we have the dotted

vertical arrow so that they form a morphism of simplicial schemes. The

cocycle condition for φ on Y2 pulled back to Y1 ×(Y0×XY0) Y1 by the dotted

arrow gives us the following commutative diagram:

pr∗1d
1∗
0 F

pr∗1φ

∼

∼

pr∗1d
1∗
1 F

∼

pr∗2d
1∗
0 F

pr∗2φ

∼ pr∗2d
1∗
1 F

Thus, the isomorphism φ descends to Y0 ×X Y0, and defines a descent data

on cosk1(Y0 ×X Y0⇒ Y0). Finally, use Lemma 3.5 to conclude.

Lemma 3.7. Let X be a scheme, and F ∈D60(X). Then H 0(F ) = 0

if and only if for any closed immersion i : Z ↪→X, there exists a dense

subscheme U ⊂ Z such that H 0(i∗F )|U = 0.

Proof. Only if part follows since i∗ is right exact by [AC, Proposi-

tion 1.3.13]. Assume H 0F is supported on a reduced scheme Z. Consider

the triangle

i∗Zτ<0F → i∗ZF → i∗ZH 0(F )
+−→ .

Since i∗ is right exact, H ii∗Zτ<0F = 0 for i> 0, which implies that

H 0i∗Z(F )∼= H 0i∗ZH 0(F ). Since we assumed that Z is the support of
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H 0F , we have iZ∗H
0i∗ZH 0(F )∼= H 0(F ). Combining these, we have

iZ∗H
0i∗Z(F )∼= H 0(F ), and this vanishes generically on Z by assumption.

This can happen only when Z = ∅.

3.8 Let us compare smooth objects with isocrystals. For a scheme X of

finite type over k, we denote by Isoc†(X) the subcategory of the category of

overconvergent isocrystals on X consisting of isocrystals whose constituents

can be endowed with Frobenius structure (see right after [A2, 1.1.3 (11)]).

Caution that Isoc†(X) is slightly smaller than the category of overconvergent

isocrystals on X.

Theorem. Let X be a scheme of finite type over k. Then we have a

canonical equivalence of categories Isoc†(X)
∼−→ Sm(X). This equivalence is

compatible with pullback.

Proof. First, let us construct the functor in the case where X is smooth.

In this situation, Caro [C1] (cf. [A2, 2.4.15] for a summary) defines a fully

faithful functor

ρX : Isoc†(X)→D(X).

Note that this functor is compatible with pullback. All we need to show is

that the essential image of this functor is Sm(X). First, let us check this

claim when X is a curve. In this case, the inclusion Im(ρX)⊂ Sm(X) follows

easily, and the other inclusion follows by [A2, Lemma 2.4.11]. We note that

in [A2], M ∈D(X) being smooth means M is in the essential image of

ρX . Now assume X is smooth but not necessarily a curve. We show by

using the induction on the dimension of X. We assume the equivalence is

known for any smooth X of dimension < n. Assume X is of dimension n. Let

E ∈ Isoc†(X), and let us check that ρX(E) is smooth. By definition and some

limit argument, it suffices to check that for any morphism c : C→X from

a smooth curve C, c∗ρX(E) is smooth. However, since c∗ρX(E)∼= ρX(c∗E)

by the compatibility of pullback and we have already checked the claim

for curves, ρX(c∗E) is smooth, thus ρX(E) ∈ Sm(X). Let L ∈ Sm(X), and

let us show that L comes from an isocrystal. There exists an open dense

subscheme j : U ⊂X such that L |U ∼= ρU (EU ). We claim that EU extends to

an isocrystal E on X. Indeed, let c : C→X be a morphism from a smooth

curve C. By the compatibility of pullback and the equivalence of ρC we

have already checked, c∗EU does extend to an isocrystal on C. Now, let

W ⊂X be a closed subscheme of codimension > 2 such that (X \ U) \W is

smooth. By Shiho’s cut-by-curve theorem [S, Theorem 0.1] (see footnote of
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[A2, 2.4.13] when the base field k is not uncountable for some explanation),

EU extends to an isocrystal on X \W . Finally, by Kedlaya’s purity

result [K1, Proposition 5.3.3], EU extends even to X, and the claim

follows. To conclude the proof, we need to show that the isomorphism

L |U ∼= ρU (EU ) extends uniquely to an isomorphism L ∼= ρX(E).

Let i : Z→X be the complement of U . Let us show that H n
(
i∗L

)
= 0.

In order to show this, it suffices to check that for any closed immersion

iW : W ↪→ Z, H n
(
i∗W i

∗L
)

vanishes generically on W by Lemma 3.7. Since

the associated reduced scheme of W is generically smooth, i∗W i
∗L is

smooth on W , and by induction hypothesis, i∗W i
∗L generically comes

from an isocrystal. Since isocrystals concentrate on degree 6 dim(W )< n,

we get the claim. Now, since L is constructible, H iL = 0 for i > n.

Considering the exact triangle j!L →L → i∗L
+−→, the homomorphism

H nj!L →H nL is surjective because we have checked that H ni∗L = 0.

Thus, we have a canonical homomorphism L → j!∗(L ). This induces L →
j!∗L ∼= j!∗ρU (EU )∼= ρX(E) whose restriction to U is the given map. The

compatibility of pullback and induction hypothesis implies that this is in

fact an isomorphism and is a unique homomorphism extending the given

L |U ∼= ρU (EU ).

In the general case, by using de Jong’s alteration, we can take a proper

hypercovering Y• of X such that Yi is smooth for any i. By Corollary 3.6,

proper descent of isocrystals [S, Proposition 7.3], and the compatibility of

pullback, we have a functor Isoc†(X)→ Con(X). It is easy to check that

this functor does not depend on the choice of Y0, Y1 up to canonical

isomorphism. The essential image coincides with Sm(X) since smooth

objects are preserved by pullback and Lemma 3.3.

Corollary 3.9. Let X be a scheme, j : U ↪→X an open immersion,

and L ∈ Sm(X). For any G ∈D(X), we have a canonical isomorphism

L ⊗ j∗(G )
∼−→ j∗

(
j∗L ⊗ G

)
.

Proof. By limit argument, we may assume X is of finite type over k. The

homomorphism is defined by adjunctions. Since it is an isomorphism on U ,

it suffices to check that i!
(
L ⊗ j∗(G )

)
= 0 where i : X \ U →X. Let us show

the claim using the induction on the dimension of the support of G . When

the dimension is 0, there is nothing to show. Take an alteration g : X ′→X

such that X ′ is smooth, and let jUV : V ⊂ U be an open dense subscheme

such that gV : g−1(V )→ V is finite étale. By induction hypothesis, we may
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assume that G = jUV ∗GV for some GV . Since gV is finite étale, GV is a direct

factor of gV ∗g
∗
V GV . Consider the following diagram

V ′

gV
��

�

j′V // X ′

g

��
�

Z ′

gZ
��

i′oo

V
jV // X X \ U

ioo

Using the projection formula and the commutation of g∗ and i!, we have

i!
(
L ⊗ jV ∗gV ∗g∗V (GV )

) ∼= i!g∗
(
g∗L ⊗ j′V ∗g∗V (GV )

)
∼= gZ∗i

′!(g∗L ⊗ j′V ∗g∗V (GV )
)
.

Thus, it suffices to check that i′!
(
g∗L ⊗ j′V ∗g∗V (GV )

)
= 0, and may assume

that X is smooth. Then we use Theorem 3.8 and [A1, Proposition 5.8] to

conclude.

Corollary 3.10. Let (S, s, η) be a Henselian trait. Let π : X → S be

a morphism of finite type and L ∈ Sm(X). Then for any G ∈Hol(X), we

have a canonical isomorphism

Ψπ

(
L ⊗ G

)∼= L |Xs ⊗Ψπ(G ).

Theorem 3.11. Let f : X → Y be a morphism of schemes.

(1) The functor f∗ preserves smooth objects. In particular, it induces a

functor f∗ : Sm(Y )→ Sm(X).

(2) Assume that f is proper and smooth. Then f∗ preserves smooth objects.

Proof. The preservation under pullback follows directly by definition,

and we write it just for the future reference. Let us check the second claim.

Take a strict Henselian trait S and a morphism φ : S→ Y . Using 1 and the

commutation of f∗ and φ∗ because f is assumed proper, it suffices to check

the claim when Y is strict Henselian trait. Let L be a smooth object on X.

We have

Φidf∗(L )∼= f∗Φf (L )∼= f∗
(
Φf (LX)⊗L |Xs

)
,

where the first isomorphism follows by Corollary 2.6.1, and the second by

Corollary 3.10. Finally, since f is assumed smooth, we have Φf (LX)∼=
f∗Φid(LY ) by Corollary 2.6.2. Since Y is assumed strict Henselian trait,

rk
(
Ψid(LY )

)
= 1 by Proposition 1.10. Thus, the exact triangle 2.6.3 tells us

that Φid(LY ) = 0, and the theorem follows.

https://doi.org/10.1017/nmj.2019.23 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.23


AROUND THE NEARBY CYCLE FUNCTOR FOR ARITHMETIC D-MODULES 23

Remark. One can think part 2 of the theorem above as a D-module

theoretic version of Berthelot’s conjecture [Ber, (4.3)]. This variant has

already been considered by Caro in [C2, Théorème 4.4.2] when X, Y

are realizable schemes. In that case, he proved without the existence of

Frobenius structure, whereas we assume the existence implicitly in the

construction of the category Hol(X). However, our theorem is stronger in

the sense that the schemes need not be realizable. In order to deduce the

original Berthelot’s conjecture from our result, one might need to compare

our pushforward and relative rigid cohomology (cf. [A2, 2.4.16]). This will

be addressed in future works.

Question 3.12. Assume X is smooth. For any object M ∈D(X), the

characteristic variety Car(M ) is defined as a closed subscheme of codimen-

sion dim(X) in T ∗X by Berthelot. We expect that this characteristic variety

has the following characterization: for any X ⊃ U f−→ A1 such that U is an

open subscheme of X and df(U) ∩ Car(M ) = ∅ we have Φf (M ) = 0, and

Car(M ) is the smallest closed subscheme of T ∗X having possessing such a

property.

§4. Toward a local theory

Definition 4.1.

(1) Let S be a Henselian local scheme (i.e., it is a scheme which is the

spectrum of a Henselian local ring), and let i : s ↪→ S be the closed

immersion from the closed point. The category Loc(S) is defined

as follows: The object is the same as Hol(S). For F ∈Hol(S) the

corresponding object in Loc(S) is denoted by F loc. Then

HomLoc(S)(F
loc, G loc) :=H0

(
s, i∗HomS(F , G )

)
,

where H i(s,H ) := HomD(s)(Ls,H [i]). The object Lloc
S is denoted by

LS for simplicity.

(2) Let S be a local Henselian scheme, and f : X → S be a morphism of

finite type. Then Loc(X/S) is defined as follows. The objects are the

same as Hol(X). For F , G ∈Hol(X), we define

HomLoc(X/S)(F , G ) := HomLoc(S)

(
LS , f∗Hom(F , G )

)
.
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Remark 4.2.

(1) The category Loc(X/S) is certainly an additive category. However, we

do not know if this is abelian or not.

(2) We assume we are in the situation of 4.1.1. We remark that

H i
(
s, i∗HomS(F , G )

)
= 0

for i < 0. Indeed, let us check first that for any scheme X and F , G ∈
Hol(X), cH iHomX(F , G ) = 0 for i < 0. We may assume X is smooth.

For F ∈D60(X), G ∈D>0(X), we may check as [BBD, 2.1.20] that

Hom(F , G ) ∈ cD>0(X). Thus, cH iHom(F , G ) = 0 for i < 0. Since i∗

is c-t-exact and Ls is constructible object, we get the claim.

(3) Ultimately, we expect a triangulated category Dloc(X/S) with the

following properties: First, we have a functor ρ : D(X)→Dloc(X/S).

For F , G ∈D(X), we should have

HomDloc(X/S)

(
ρ(F ), ρ(G )

)∼= HomD(s)

(
Ls, i

∗f∗Hom(F , G )
)
.

Second, we have a t-structure on Dloc(X/S) whose heart contains

ρ(Hol(X)). The computation of part 2 above shows that the “higher

homotopies” of ρ(Hol(X)) vanish in the category Dloc(X/S). This

gives us an evidence of the existence of such t-structure. The category

Loc(X/S) should be a full subcategory of this heart.

This category should be an analogue of the derived category of

constructible sheaves for `-adic sheaves of a scheme of separated of

finite type over a local Henselian scheme as in [E, Theorem 6.3]. The

following Theorem 4.6 gives an evidence for this philosophy.

4.3 Let S be a strict Henselian trait, and π : X → S be a morphism of

finite type. The nearby cycle formalism extends to that on Loc(X). For

F , G ∈D(X), we have the canonical homomorphism

Ψπ(F )⊗ G |Xs →Ψπ

(
F ⊗ G

)
.

On the other hand, the adjunction induces a map

LXs �H
0(Xs,H )→H

for any H ∈D(Xs). Combining these, we obtain a homomorphism

Ψπ(F )�HomLoc(X)(F
loc, G loc)→Ψπ

(
F ⊗Hom(F , G )

)
→Ψπ(G ).
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Thus, we have a homomorphism

HomLoc(X)(F
loc, G loc)→HomHol(Xs)

(
Ψπ(F ),Ψπ(G )

)
.

If F = G , then the identity is sent to the identity, and the map is compatible

with the composition. Thus, Ψπ is defined also on the level of the category

Loc(X).

4.4 Let us describe the category Loc(S) when S is a Henselian trait in

terms of the theory on a formal unit disk after Crew. Let S := k[[t]], a formal

disk. For this disk, he constructed the category Cohan(D†) in [Cr1, 5.2].

Crew defined a category of holonomic objects in Cohan(D†) with Frobenius

structure, and denote it by Holan(FD†). As usual, we consider the full

subcategory of Cohan(D†) consisting of objects which are of finite length and

whose constituent can be endowed with a Frobenius structure with which

the constituent is in Holan(FD†). We denote this category by Holan(D†),
or Holan(D†S ,Q) if we want to emphasize the formal disk. In this situation,

the functors j+, j+ i+, i+, i! are defined (cf. [Cr1, 5.2]). Even though the

definition seems to be a bit involved, Holan(D†) is very close to the category

which has already appeared in the theory of p-adic differential equation.

In fact, the category MLS(R, F, pot) appearing in [CM, Définition 6.0-19]

is contained full faithfully in Holan(D†), and it is easy to characterize this

subcategory: it consists of the objects M∈Holan(D†) such that i!M= 0.

The verification of this characterization is left to the reader.

4.5 Let S be the Henselization of A1
k at 0. Recall that Crew constructed

a canonical functor An: Hol(S)→Holan(D†) sending an object F ∈Hol(S)

to F an in [Cr1, (5.2.3)]. Since Dan is flat over D†, this functor extends to

An: D(S)→D(Dan
S ,Q) by simply considering Dan⊗D† .

Lemma. For F , G ∈Hol(S), we define F ⊗an G to be Dan ⊗D†
(
F ⊗† G

)
in Db(Dan). Then this functor factors through Holan(D†).

Proof. Let X be an étale neighborhood of A1 at 0 so that F , G
are defined in Hol(X). Let X be a smooth lifting of X. We have the

functor ⊗† : LD
−→

b

Q
(D̂

(•)
X )⊗ LD

−→
b

Q
(D̂

(•)
X )→ LD

−→
b

Q
(D̂

(•)
X ). This functor is iso-

morphic to ∆!(−�† −) up to some shift. Thus, by [C3, Theorem 3.4.9],

⊗† sends LD
−→

b

Q,coh
× LD
−→

b

Q,coh
to LD

−→
b

Q,coh
. Let F = F (•), G = G (•) in

LD
−→

b

Q,coh
. For HQ in Db

coh(D̂
(m)
X ,Q), we denote by H

(m)an
Q the complex
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R lim←−r
(
R lim←−n(Or,n ⊗LO H )

)
⊗Q where H is a complex in Db

coh(D̂
(m)
X ) such

that H ⊗Q∼= HQ, using the notation appearing in [Cr1, (4.1.8)]. Then

Caro’s finiteness above together with [Cr1, Theorem 4.1.1] implies that

Dan ⊗D†
(
F ⊗† G

)∼= lim−→
m

(
F (m)⊗̂OX

G (m)
)(m)an

Q .

This description implies that the functor factors through Holan(D†).

For M,N ∈Holan(D†), we define Hom(M,N ) := (D(M)⊗an N )[−1].

The definition of ⊗an implies that for F , G in Hol(S), we have

Hom(F , G )an ∼=Hom
(
F an, G an

)
.

This implies

(4.5.6) i∗Hom(F , G )∼= i+Hom(F , G )an ∼= i+Hom
(
F an, G an

)
.

Theorem 4.6. Let S be a Henselian trait such that the closed point

is of finite type over k. Let S be the formal completion of S with respect

to the closed point. Then we have the canonical equivalence of categories

Loc(S)∼= Holan(D†S ,Q).

Proof. Let us show that the functor An factors through Hol(S)→
Loc(S). Recall that we have the Crew–Matsuda canonical extension

Can: Holan(D†)→Hol(A1)

which is fully faithful and An ◦ Can∼= id (cf. [Cr1, Theorem 8.2.1]). Con-

sider the canonical homomorphism Hom(F , G )→H 0i∗Hom(F , G ) for

F , G ∈D(A1). Let us show that this is an isomorphism if F and G are

canonical extensions. Denote by i : 0 ↪→ A1 the closed immersion and j

the complement. If F or G is of the form i∗H ∼= i!H , then the claim

follows by adjunction. Considering the localization sequence, this implies

that we may assume that G = j∗j
∗G . In this case, we have Hom(F , G )∼=

j∗Hom(j∗F , j∗G ) by adjunction. If F , G are canonical extensions, we

get that Hom(F , G ) is a canonical extension as well. Thus, it remains

to check that if H is a canonical extension and H ∼= j∗j
∗H , then

the restriction H0(A1,H )→H 0i∗H is an isomorphism. The source is

isomorphic to H0(S ,H an) since the canonical extension is fully faithful,
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and the claim follows by the proof of [AM, Lemma 3.1.10] where we showed

Hn(S ,H an)∼= H ni+H an. Now, we have

Hom(F loc, G loc) := H0
(
s, i∗Hom(F , G )

)
∼= H0

(
s, i∗Hom(Can(F an), Can(G an))

)
∼←− Hom

(
Can(F an), Can(G an)

)∼= Hom(F an, G an),

where the 2nd isomorphism follows by (4.5.6) and the 3rd by the isomor-

phism we have just proven, and the last by full faithfulness of Can. It is

easy to check that this isomorphism is compatible with composition, and

we have the desired functor Loc(S)→Holan(D†), which is moreover fully

faithful. To check the equivalence, it remains to check that the functor is

essentially surjective. This follows by Crew–Matsuda canonical extension.

Remark 4.7.

(1) It might be possible to reprove [AM] without using microlocal technique

by using the foundation of this paper instead.

(2) It would be interesting to compare the theory developed here and recent

works of Lazda–Pal [LP], Caro–Vauclair [CV], or Crew [Cr2] on the

theory of p-adic cohomology theory for formal schemes or schemes over

Laurent series field.
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