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Abstract

The trading strategy of ‘buy-and-hold for superior stock and sell-at-once for inferior
stock’, as suggested by conventional wisdom, has long been prevalent in Wall Street.
In this paper, two rationales are provided to support this trading strategy from a purely
mathematical standpoint. Adopting the standard binomial tree model (or CRR model
for short, as first introduced in Cox, Ross and Rubinstein (1979)) to model the stock
price dynamics, we look for the optimal stock selling rule(s) so as to maximize (i) the
chance that an investor can sell a stock precisely at its ultimate highest price over a fixed
investment horizon [0, T ]; and (ii) the expected ratio of the selling price of a stock to
its ultimate highest price over [0, T ]. We show that both problems have exactly the
same optimal solution which can literally be interpreted as ‘buy-and-hold or sell-at-once’
depending on the value of p (the going-up probability of the stock price at each step):
when p > 1

2 , selling the stock at the last time stepN is the optimal selling strategy; when
p = 1

2 , a selling time is optimal if the stock is sold either at the last time step or at the
time step when the stock price reaches its running maximum price; and when p < 1

2 ,
time 0, i.e. selling the stock at once, is the unique optimal selling time.
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1. Introduction

Suppose that an investor holds a stock and thinks of selling it before a finite time T . If he is
seeking the highest possible return, what is the right time for him to sell? Conventional wisdom
would suggest that if the stock is good enough then the investor should buy-and-hold; on the
other hand, if the stock is inferior, selling it immediately could be wisest. In this work, from a
purely mathematical standpoint, we shall provide two rationales behind the ‘buy-and-hold or
sell-at-once’ strategy; moreover, a simple index for classifying a stock as ‘superior’ or ‘inferior’
will also be given.

From here on, the standard N -step binomial tree model (CRR model) is used to model the
stock price dynamics so that both the theoretical mean and variance of the logarithm of the
stock price process match with those of the ‘actual’ stock price. The binomial tree model has
been extensively used as a model of stock price processes in the context of option pricing; see,
for example, Rubinstein (1994). In addition to binomial tree processes, discrete-time processes
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exhibiting momentum have also been proposed in the existing literature as a model of stock
price processes; for example, Allaart (2004) used a correlated random walk to model a stock
price process and looked for the optimal selling time so as to maximize the expected discounted
return. Under the same model, Allaart and Monticino (2008) considered a multiple buy/sell
trading strategy to maximize the expected value of total return. The intention of the present
paper is not to argue which processes we should use to model the stock price process. Rather,
under the simple model we use, we aim to provide two insights behind the ‘buy-and-hold or
sell-at-once’ rule. Write �t = T/N , and suppose that the random changes of logarithm of the
stock price in all steps are independent and identically distributed with mean µ̂� t and variance
σ̂ 2 � t . Following the notation in Cox et al. (1979), the stock price process (V pn )0≤n≤N with
V
p
n denoting the stock price at time n� t is assumed to satisfy the following recursive relation:

V
p
0 = 1, V

p
n+1 =

{
V
p
n u with (going-up) probability p,

V
p
n d with (going-down) probability q = 1 − p,

where p is the going-up probability and ud = 1 with u > 1. Under this model of stock price,
we want to find the optimal selling rule(s) so as to maximize (i) the chance that the investor can
sell a stock precisely at the highest price of the stock over [0, T ]; and (ii) the expected ratio of
the selling price of a stock to its highest price over [0, T ]. We formulate these two problems as
follows:

V ∗
1 = sup

0≤τ≤N
P

(
V
p
τ

M
p
N

= 1

)
(1.1)

and

V ∗
2 = sup

0≤τ≤N
E

[
V
p
τ

M
p
N

]
, (1.2)

where Mp
n = max0≤i≤n V pi is the running maximum of the stock price, and the supremum is

taken over all possible stopping times 0 ≤ τ ≤ N adapted to the natural filtration (Fn)0≤n≤N
of (V pn )0≤n≤N .

Both problems (1.1) and (1.2) belong to the context of optimal stopping theory since one
aims to optimize the expectation of a functional of a stopped process over a class of stopping
times. For the general theory of optimal stopping, we refer the reader to Chow et al. (1971) and
Shiryaev (1978). Explicit solutions to an optimal stopping problem are sometimes available
for a problem with an infinite-time horizon; for example, Gerber and Shiu (1994) obtained a
closed-form solution to the perpetual American option problem using a Lévy process to model
the stock price. However, this is not usually the case for optimal stopping problems with a
finite-time horizon, and closed-form solutions can rarely be found in general. In this regard,
various numerical methods are often required to approximate the optimal stopping boundary;
for example, Lai and Lim (2002) discussed a few efficient numerical approximations of the
exercising boundary of American lookback options.

Problem (1.1) can be regarded as a Markovian variant of the classical secretary problem (see
Dynkin (1963) and Lindley (1961) for solutions to the classical secretary problem). To the best
of the authors’ knowledge, this question has not been treated in the existing literature except
for the special case p = 1

2 , which was solved in Hlynka and Sheahan (1988). The continuous
version of problem (1.2) has been considered by various authors. Under the assumption that
the stock price follows a geometric Brownian motion with constant drift α and volatility σ ,
Du Toit and Peskir (2008) solved the problem for general α and σ , Shiryaev et al. (2008) solved
the same problem for α ≤ 0 and α ≥ σ 2/2, andYam et al. (2008) also provided an independent
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proof for the case in which α ≥ σ 2/2. In the present work, despite providing original proofs
for problem (1.1) for general p and problem (1.2) for p ≥ 1

2 , we shall show that solutions to the
two problems actually coincide and that the common solution can literally be interpreted as the
‘buy-and-hold for superior stocks or sell-at-once for inferior stocks’ strategy. Mathematically,
we shall establish the following claims for both problems (1.1) and (1.2): (i) if p > 1

2 then
τ ∗ = N is an optimal selling time, i.e. the investor should buy and then hold the stock until the
terminal time; (ii) if p = 1

2 , a necessary and sufficient condition for selling the stock optimally
is to sell it either at the terminal time N or at any time when the stock price is at its running
maximum; and (iii) if p < 1

2 , τ ∗ = 0 is the unique optimal selling time, i.e. the investor should
sell the stock at once. Consequently, we call a stock superior if p > 1

2 , neutral if p = 1
2 , and

inferior ifp < 1
2 . In a nutshell, any investor adopting the ‘buy-and-hold or sell-at-once’strategy

can solve two problems at one time with a single action: the investor can attain the biggest
chance to sell his stock precisely at the ultimate highest price and also minimize the average
relative error of the stock selling price to its ultimate highest price.

The rest of this paper is organized as follows. In Section 2 we shall provide a review of
some preliminary knowledge of random walks and prove two lemmas that are key for obtaining
the solutions to both problems (1.1) and (1.2). The optimality of the ‘buy-and-hold or sell-at-
once’ rule for problems (1.1) and (1.2) will be discussed in Sections 3 and 4, respectively. We
conclude the paper and discuss some future research directions in Section 5.

2. Preliminaries of p-random walks

For any p ∈ [0, 1], we define

B
p
n := ln(V pn /V0)

ln u
.

In view of the assumption that (V pn )0≤n≤N follows the standard CRR model, Bpn is a p-random
walk such that

B
p
0 = 0, B

p
n+1 =

{
B
p
n + 1 with probability p,

B
p
n − 1 with probability q = 1 − p.

Also, define δ := ln u and Spn := max0≤i≤n Bpi , the running maximum of Bp· . Then we shall
have Mp

N = exp(δSpN). In the rest of this paper, the process (Spn )0≤n≤N will be called the
running maximum of Bp· , while SpN will be referred as the ultimate maximum of Bp· over the
investment horizon [0, T ]. Both problems (1.1) and (1.2) can now be formulated as

V ∗
1 = sup

0≤τ≤N
P(Bpτ = S

p
N) (2.1)

and
V ∗

2 = sup
0≤τ≤N

E[exp(δ(Bpτ − S
p
N))]. (2.2)

The next lemma converts problems (2.1) and (2.2) into the standard formulation of optimal
stopping problems.

Lemma 2.1. The following two identities hold:

P(Bpτ = S
p
N) = E[g(τ,Xpτ )],

E[exp(δ(Bpτ − S
p
N))] = E[G(τ,Xpτ )],
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where
X
p
n := S

p
n − B

p
n ,

and
g(n, i) = P(SpN−n = 0)1{i=0}, (2.3)

G(n, i) = E[exp(−δ(i ∨ SpN−n))]
= E[exp(−δSpN−n)1{SpN−n≥i} + e−δi1{SpN−n<i}].

Proof. Using the fact that, for any stopping time τ ≤ N , B̃pn := B
p
τ+n − B

p
τ is also a

p-random walk independent of the σ -algebra Fτ , we have

P(Bpτ = S
p
N | Fτ ) = P

((
Spτ ∨ max

τ≤n≤N B
p
n

)
− Bpτ = 0

∣∣∣ Fτ
)

= P
(
Xpτ ∨ max

0≤n≤N−τ B̃
p
n = 0

∣∣∣ Fτ
)

= P(SpN−n = 0)1{i=0}|i=Xpτ , n=τ
= g(τ,Xpτ ).

Similar to the above arguments, we also have

E[exp(δ(Bpτ − S
p
N)) | Fτ ] = E

[
exp

(
δ
(
Bpτ−

(
Spτ ∨ max

τ≤n≤N B
p
n

))) ∣∣∣ Fτ
]

= E
[
exp

(
−δ

(
Xpτ ∨ max

τ≤n≤N(B
p
n − Bpτ )

)) ∣∣∣ Fτ
]

= E[exp(−δ(i∨S̃pN−n))]|i=Xpτ , n=τ
= G(τ,Xpτ ),

where S̃pn = max0≤i≤n B̃pi . Hence, using the tower property of conditional expectations,
we have

P(Bpτ = S
p
N) = E[P(Bpτ = S

p
N | Fτ ) = E[g(τ,Xpτ )],

E[exp(δ(Bpτ − S
p
N))] = E[exp(δ(Bpτ−SpN)) | Fτ ] = E[G(τ,Xpτ )].

In view of Lemma 2.1, both problems (2.1) and (2.2) can now be converted to

V ∗
1 = sup

0≤τ≤N
E[g(τ,Xpτ )],

V ∗
2 = sup

0≤τ≤N
E[G(τ,Xpτ )].

We shall need the joint probability density function of (Bpn , S
p
n ), which can be computed via

the reflection principle of a random walk (see Feller (1968, p. 369, Problem 20) or Kijima
(2002, Chapter 6.4)):

P(Bpn = l, S
p
n = k) =

(
C

(
n,
n+ 2k − l

2

)
− C

(
n,
n+ 2(k + 1)− l

2

))
(pq)n/2

(
p

q

)l/2
,

(2.4)
where C(n, k) = n!/k! (n − k)!. The next lemma states that the probability density function
of (Spn )0≤n≤N satisfies a certain recursive relation.
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Lemma 2.2. For any p ∈ [0, 1], the following statements holds.

1. For n > 0, (Sqn − B
q
n , S

q
n ) and (Spn , S

p
n − B

p
n ) are equal in law. In particular, for any

i > 0,
P(Spn = i) = P(Xqn = i).

2. For n > 0 and i > 0,

P(Spn = i) = p P(Spn−1 = i − 1)+ q P(Spn−1 = i + 1)

and
P(Spn = 0) = q[P(Spn−1 = 0)+ P(Spn−1 = 1)].

3. For n > 0 and i > 0,

P(Spn ≤ i) = p P(Spn−1 ≤ i − 1)+ q P(Spn−1 ≤ i + 1).

Proof. 1. Let us first note that (Sqn −B
q
n , S

q
n ) = (max0≤k≤n(Bqk −B

q
n ),max0≤k≤n Bqk ), but

(B
q
k − B

q
n , B

q
k )0≤k≤n is equal in law to (Bpn−k, B

p
n−k − B

p
n )0≤k≤n; therefore, (Sqn − B

q
n , S

q
n ) is

equal in law to (
max

0≤k≤n B
p
n−k, max

0≤k≤n(B
p
n−k − B

p
n )

)
= (S

p
n , S

p
n − B

p
n ).

2. For n > 0, by considering the two possible changes of Bqn−1 after one step we have

(a) for i > 0,

{Xqn = i} = {Xqn−1 = i + 1, Bqn = B
q
n−1 + 1} ∪ {Xqn−1 = i − 1, Bqn = B

q
n−1 − 1};

(b) {Xqn = 0} = {Sqn−1−Bqn−1 = 0, Bqn = B
q
n−1+1}∪{Sqn−1−Bqn−1 = 1, Bqn = B

q
n−1+1}.

Therefore,

P(Xqn = i) = q P(Xqn−1 = i + 1)+ p P(Xqn−1 = i − 1), i > 0,

P(Xqn = 0) = q P(Xqn−1 = 1)+ q P(Xqn−1 = 0).

Then the second claim follows by applying the first claim to the above two equalities.

3. Finally, the last assertion of the lemma can be easily deduced either from the first two
statements or by a simple one-step analysis as above.

3. Problem (1.1): maximizing the chance

In this section we shall tackle problem (1.1), which was shown in Lemma 2.1 to be equiva-
lent to

V ∗
1 = sup

0≤τ≤N
E[g(τ,Xpτ )], (3.1)

with the payoff function g as given in Lemma 2.1.
For each stopping time τ ≤ N , we define a new stopping time:

ρτ := inf
n

{τ ≤ n : Bpn = Spτ } ∧N. (3.2)

To put this definition into words, ρτ is the first time after or equal to τ that the p-random walk
reaches its running maximum, and in the case when the p-random walk does not hit its running
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maximum before N , we simply take ρτ to be N . This new class of stopping times plays an
essential role in finding the optimal solution to problem (3.1). Equivalently, ρτ can also be
defined as ρτ := infn{τ ≤ n : Xpn = 0} ∧ N . Since g(n, i) is supported on {(n, i) : i = 0},
we always have g(ρτ ,X

p
ρτ ) ≥ g(τ,X

p
τ ) for any stopping time τ ≤ N ; hence, ρτ always

‘dominates’ τ in the sense that

E[g(ρτ ,Xpρτ )] ≥ E[g(τ,Xpτ )].
This observation suggests that the optimal stopping time must be of the form ρτ for some τ .
Therefore, we are motivated to study ρτ for different stopping times τ , and this can be achieved
via the following two propositions. Let Pn,i be the probability measure of the Markov process
(n,Xn) under which the process starts at (n, i), and let En,i be the expectation taken with
respect to Pn,i . Also, let τ0 ≥ 0 be the first time the process (Xpn )0≤n≤N hits 0.

Proposition 3.1. Define f (n, i) := P(SpN−n = i). For any stopping time τ ≤ N ,

E[g(ρτ ,Xpρτ ) | Fτ ] = Eτ,Xpτ [g(τ0 ∧ (N − τ),X
p

τ0∧(N−τ))] = f (τ,Xpτ ),

and, hence,
E[g(ρτ ,Xpρτ )] = E[f (τ,Xpτ )].

Proof. Since ρτ is a hitting time, by its definition, ρτ = τ + τ0 ◦ θτ , where θ is the shift
operator defined by θn(ω)(k) = ω(n + k). Using the strong Markov property of the process
((n,X

p
n ))0≤n≤N , we have

E[g(ρτ ,Xpρτ ) | Fτ ] = Eτ,Xpτ [g(τ0 ∧ (N − τ),X
p

τ0∧(N−τ))].
To prove the second equality, we define Ti = inf{k > 0 : Bpk = i}. Then we can see that

Pn,i(τ0 = k) = P(Ti = k | Bpn = 0).

Also, observe that

P(SpN−n−k = 0) = P
(

max
n+k≤l≤N B

p
l = i

∣∣∣ Bpn+k = i
)
,

owing to the space homogeneity of (Bpn )0≤n≤N . With the above two observations and (2.3),
we have, for each i > 0,

En,i[g(τ0 ∧ (N − n),X
p

τ0∧(N−n))]

=
N−n∑
k=1

P(SpN−n−k = 0)Pn,i(τ0 = k)

=
N−n∑
k=1

P
(

max
n+k≤l≤N B

p
l = i

∣∣∣ Bpn+k = i
)

P(Ti = k | Bpn = 0)

= P(SpN−n = i)

= f (n, i).

Finally, for i = 0, in accordance with the definition of g, we have

f (n, 0) = g(n, 0) = En,0[g(τ0 ∧ (N − n),X
p

τ0∧(N−n))].
Combining the above results, our claim then follows immediately.
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Proposition 3.2. The process (f (n,Xpn ))0≤n≤N is (i) a submartingale if p > 1
2 ; (ii) a martin-

gale if p = 1
2 ; and (iii) a supermartingale if p < 1

2 .

Proof. Note that, if Xpn = i > 0, we have

X
p
n+1 =

{
X
p
n − 1 with probability p,

X
p
n + 1 with probability q = 1 − p.

The second assertion in Lemma 2.2 suggests that

E[f (n+ 1, Xpn+1) | Fn] = pf (n+ 1, Xpn − 1)+ qf (n+ 1, Xpn + 1)

= f (n,X
p
n ),

provided that Xpn > 0. If Xpn = 0 for some n ≥ 0 then we have

X
p
n+1 =

{
0 with probability p,

1 with probability q = 1 − p.

Therefore,

E[f (n+ 1, Xpn+1) | Fn] = pf (n+ 1, 0)+ qf (n+ 1, 1)

= p P(SpN−n−1 = 0)+ q P(SpN−n−1 = 1)

= P(SpN−n = 0)+ (p − q)P(SPN−n−1 = 0)⎧⎪⎪⎪⎨⎪⎪⎪⎩
> f (n, 0) if p > 1

2 ,

= f (n, 0) if p = 1
2 ,

< f (n, 0) if p < 1
2 ,

(3.3)

from which the lemma follows.

We now conclude this section with our first main theorem.

Theorem 3.1. Suppose that the dynamics of a stock price are modeled by the CRR model.

1. If p > 1
2 then τ ∗ = N is an optimal selling time for problem (1.1), and

V ∗
1 = P(BpN = S

p
N).

2. If p = 1
2 then any τ satisfying τ = ρτ almost surely is an optimal selling time for

problem (1.1), and
V ∗

1 = P(B1/2
τ = S

1/2
N )

for any stopping time τ satisfying τ = ρτ . In particular,

V ∗
1 = P(B1/2

0 = S
1/2
N ) = P(B1/2

N = S
1/2
N ).

3. If p < 1
2 then τ ∗ = 0 is the unique optimal selling time for problem (1.1), and

V ∗
1 = P(Bp0 = S

p
N).
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Proof. 1. When p > 1
2 , f (n,X

p
n ) is a submartingale. Using the optional stopping theorem

together with the fact that ρN = N , we have

P(Bpτ = S
p
N) ≤ P(Bpρτ = S

p
N)

= E[f (τ,Xpτ )]
≤ E[f (N,XpN)]
= P(BpρN = S

p
N)

= P(BpN = S
p
N),

which implies that V ∗
1 = P(BpN = S

p
N) and that τ ∗ = N is an optimal selling time.

2. When p = 1
2 , f (n,X

1/2
n ) is a martingale; hence, the above chain of (in)equalities remains

valid except that the inequality

E[f (τ,X1/2
τ )] ≤ E[f (N,X1/2

N )]
can now be replaced by an equality. As a consequence, the optimal valueV ∗

1 = P(B1/2
N = S

1/2
N )

can be achieved by any stopping time τ satisfying τ = ρτ ; in particular, both 0 andN are optimal
stopping times.

3. When p < 1
2 , f (n,X

p
n ) is a supermartingale. Applying the optional stopping theorem again,

together with the fact that ρ0 = 0, we have

P(Bpτ = S
p
N) ≤ E[f (0, Xp0 )] = P(Bp0 = S

p
N),

which implies that V ∗
1 = P(Bp0 = S

p
N) and that τ ∗ = 0 is an optimal selling time. Finally, we

want to show that 0 is the unique optimal selling time; indeed, if a stopping time τ is such that
P(τ > 0) = P(τ ≥ 1) > 0 then

E[f (τ,Xpτ )1{τ>0}] ≤ E[f (1, Xp1 )1{τ>0}]
= E[E[f (1, Xp1 ) | F0]1{τ>0}]
< E[f (0, 0)1{τ>0}],

where the last strict inequality comes from (3.3). Therefore,

P(Bpτ = S
p
N)− P(Bp0 = S

p
N) ≤ E[f (τ,Xpτ )] − f (0, Xp0 )

= E[f (τ,Xpτ )1{τ>0}] − E[f (0, 0)1{τ>0}]
< 0.

4. Problem (1.2): maximizing the expected ratio

In this section we shall tackle problem (1.2), which was shown in Lemma 2.1 to be equiva-
lent to

V ∗
2 = sup

0≤τ≤N
E[G(τ,Xpτ )],

where the payoff function G is as given in Lemma 2.1. For any stopping time τ , we again
define ρτ as in (3.2). In the following we shall prove that, for any p ≥ 1

2 , ρτ dominates τ and
is dominated by N , i.e.

E[exp(δ(BpN − S
p
N))] ≥ E[exp(δ(Bpρτ − S

p
N))] ≥ E[exp(δ(Bpτ − S

p
N))],
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while, for p < 1
2 , ρτ does not dominate τ anymore, and we will prove, following Peskir’s

approach (see Du Toit and Peskir (2008)), that every stopping time τ ≤ N is dominated by
0, i.e. E[exp(δ(Bp0 − S

p
N))] ≥ E[exp(δ(Bpτ − S

p
N))]. To state our first proposition, we need

to define, for the p < 1
2 case, another process, (B̂n)0≤n≤N , on the same probability space as

(B
p
n )0≤n≤N that equals a q-random walk in law. Suppose that p < 1

2 . Let (Zn)1≤n≤N be a
sequence of independent Bernoulli random variables that are defined on the same probability
space as (Bpn )0≤n≤N and are independent of (Bpn )0≤n≤N , such that

P(Zn = 1) = q − p

q
and P(Zn = −1) = p

q
for each 1 ≤ n ≤ N.

Define the new random walk B̂n as

B̂0 = 0, B̂n+1 =

⎧⎪⎨⎪⎩
B̂n + 1 if Bpn+1 = B

p
n + 1,

B̂n + 1 if Bpn+1 = B
p
n − 1 and Zn+1 = 1,

B̂n − 1 if Bpn+1 = B
p
n − 1 and Zn+1 = −1,

and define F̂n to be the smallest σ -algebra containing both Fn and σ(Z1, . . . , ZN); then B̂n is
F̂n-measurable. It is evident that B̂n equals a q-random walk in law with the property that, for
any k ≤ n,

B
p
n − B

p
k ≤ B̂n − B̂k.

Therefore, if we define X̂n := Ŝn − B̂n, where Ŝn := max0≤k≤n B̂k , then we have

X
p
n = S

p
n − B

p
n = max

0≤k≤n(B
p
k − B

p
n ) ≥ max

0≤k≤n(B̂k − B̂n) = X̂n.

Proposition 4.1. For any stopping time τ of (Fn)0≤n≤N ,

E[exp(δ(Bpρτ − S
p
N))] = E[F(τ,Xpτ )],

and, for any stopping time τ of (F̂n)0≤n≤N (and, hence, for any stopping time τ of (Fn)0≤n≤N ),

E[exp(δ(−SpN))] = E[D(τ, X̂τ )],

where

F(n, i) = E[exp(δ(i − S
p
N−n))1{SpN−n≥i} + exp(δ(BpN−n − i))1{SpN−n<i}] (4.1)

and

D(n, i) = E[exp(δ(BqN−n − i ∨ SqN−n))]
= E[exp(δ(BqN−n − S

q
N−n))1{SqN−n≥i} + exp(δ(BqN−n − i))1{SqN−n<i}].

Proof. Denote E[Z1A] by E[Z;A], where 1A is an indicator function. Using the fact that,
for any stopping time τ ≤ T , the post-τ process of a p-random walk is still a p-random walk
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itself and is also independent of the σ -algebra Fτ , and the definition of ρτ , we then have

E[exp(δ(Bpρτ − S
p
N)) | Fτ ]

= E
[
exp

(
δ
(
Bpρτ−

(
Spτ ∨ max

τ≤n≤N B
p
n

)))
; max
τ≤n≤N B

p
n ≥ Spτ

∣∣∣ Fτ
]

+ E
[
exp

(
δ
(
Bpρτ−

(
Spτ ∨ max

τ≤n≤N B
p
n

)))
; max
τ≤n≤N B

p
n < Spτ

∣∣∣ Fτ
]

= E
[
exp

(
δ
(
Spτ − max

τ≤n≤N B
p
n

))
; max
τ≤n≤N B

p
n ≥ Spτ

∣∣∣ Fτ
]

+ E
[
exp(δ(BpN − Spτ )); max

τ≤n≤N B
p
n < Spτ

∣∣∣ Fτ
]

= E
[
exp

(
δ
(
(Spτ − Bpτ )−

(
max
τ≤n≤N B

p
n − Bpτ

)))
; max
τ≤n≤N B

p
n − Bpτ ≥ Spτ − Bpτ

∣∣∣ Fτ
]

+ E
[
exp(δ((BpN − Bpτ )− (Spτ − Bpτ ))); max

τ≤n≤N B
p
t − Bpτ < Spτ − Bpτ

∣∣∣ Fτ
]

= E[exp(δ(i − S̃
p
N−n)); S̃pN−n ≥ i]|i=Spτ −Bpτ , n=τ

+ E[exp(δ(B̃pN−n − i)); S̃pN−n < i]|i=Spτ −Bpτ , t=τ
= F(τ,Xpτ ).

Therefore, using the tower property of conditional expectation, we deduce that

E[exp(δ(Bpρτ − S
p
N))] = E[F(τ,Xpτ )].

Finally, since both SpN and XqN are equal in law as random variables, we have

E[exp(−δSpN)] = E[exp(−δXqn)] = E[exp(−δX̂n)].
So, for any stopping time τ of (F̂n)0≤n≤N ,

E[exp(−δX̂n) | F̂τ ] = E
[
exp

(
δ
(
(B̂N−B̂τ )− (Ŝτ − B̂τ ) ∨

(
max
τ≤n≤N B̂n − B̂τ

))) ∣∣∣ F̂τ
]

= E[exp(δ(B̂N−n − i ∨ ŜN−n))]|i=X̂τ , n=τ
= D(τ, X̂τ ).

Hence, we also have
E[exp(−δSpN)] = E[D(τ, X̂τ )].

As a consequence of Proposition 4.1, in order to establish the claim that E[exp(δ(Bpρτ −
S
p
N))] ≥ E[exp(δ(Bpτ −SpN))] when p ≥ 1

2 , it is sufficient to show that F(n, i) ≥ G(n, i)when
p ≥ 1

2 . On the other hand, for the p < 1
2 case, since i 
→ G(n, i) (as defined in Lemma 2.1)

is a decreasing function (see (4.5), below) and Xpn ≥ X̂n, as mentioned above Proposition 4.1,
we have G(τ, X̂τ ) ≥ G(τ,X

p
τ ) for any stopping time τ of (Fn)0≤n≤N ; moreover, as long as

P(τ > 0) > 0 with τ ≤ N , then we must have P(Xpτ > 0) > 0. To see this, suppose that
P(Xpτ = 0) = 1 and let σ0 denote the first time after 0 that the process Xn equals 0. Then
P(σ0 > N) > 0. Since {τ > 0} ∈ F0, P(τ > 0) > 0 implies that P(τ > 0) = 1. Our
assumption that P(Xpτ = 0) = 1 implies that P(τ ≥ σ0) = 1. Therefore, P(τ > N) > 0,
contradicting the fact that τ ≤ N . Thus, we have

P(X̂τ < Xpτ ) = P(X̂τ < Xpτ | Xpτ > 0)P(Xpτ > 0) > 0;
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therefore, we also have P(G(τ, X̂τ ) > G(τ,X
p
τ )) > 0. As a result, we arrive at the claim that,

for any stopping time τ of (Fn)0≤n≤N ,

E[G(τ, X̂τ )] ≥ E[G(τ,Xpτ )] with equality if and only if τ = 0. (4.2)

Therefore, if we can establish the inequality D(n, i) ≥ G(n, i) when p < 1
2 , we can deduce

that, for any stopping time τ of (Fn)0≤n≤N ,

E[D(τ, X̂τ )] ≥ E[G(τ, X̂τ )] ≥ E[G(τ,Xpτ )],
which, by Proposition 4.1, is the same as E[exp(δ(Bp0 − S

p
N))] ≥ E[exp(δ(Bpτ − S

p
N))].

The comparisons among these deterministic functions will be established in the following
proposition.

Proposition 4.2. 1. If p ≥ 1
2 , F(n, i) ≥ G(n, i) for any i ≥ 0 and 0 ≤ n ≤ N with equality if

and only if either i = 0 or n = N .

2. If p < 1
2 ,D(n, i) ≥ G(n, i) for any i ≥ 0 and 0 ≤ n ≤ N with equality if and only if i = 0.

Proof. 1. We first consider the case in which p ≥ 1
2 . Write �(n, i) = G(n, i) − F(n, i).

We aim to show that�(n, i) ≤ 0 when p ≥ 1
2 . From the expression in Proposition 4.1, for any

0 ≤ n ≤ N , we have

�(n, 0) = G(n, 0)− F(n, 0) = E[exp(−δSpN−n)] − E[exp(−δSpN−n)] = 0,

while, for any 0 ≤ i ≤ N , we also have

�(N, i) = G(N, i)− F(N, i) = E[e−δi] − E[e−δi] = 0.

So the two functions agree on the boundary. Now suppose, on the contrary, that�(n0, i0) > 0
for some n0 and i0 with n0 < N and i0 > 0. For this n0, since both G and F are bounded
above by 1, we can define i∗ such that

�(n0, i
∗) = max

0≤i≤n0
�(n0, i).

Then i∗ > 0 and
�(n0, i

∗) ≥ �(n0, i
∗ − 1), �(n0, i

∗) > 0. (4.3)

On the other hand, for any i > 0,�(n, i) > 0 means thatG(n, i) > F(n, i). Upon substituting
the expressions for G and F into this equation, we have

E[exp(−δSpN−n)1{SpN−n≥i} + e−δi1{SpN−n<i}]
> E[exp(δ(i − S

p
N−n))1{SpN−n≥i} + exp(δ(BpN−n − i))1{SpN−n<i}].

Since E[exp(−δSpN−n)1{SpN−n≥i}] < E[exp(δ(i − S
p
N−n))1{SpN−n≥i}] for i > 0, the above in-

equality implies that

E[e−δi1{SpN−n<i}] > E[exp(δ(BpN−n − i))1{SpN−n<i}].
After multiplying both sides by (u− 1), this inequality becomes

(u− 1)e−δi P(SpN−n < i) > (u− 1)E[exp(δ(BpN−n − i))1{SpN−n<i}]. (4.4)
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Explicit computation yields, for any n and any i > 0,

G(n, i − 1)−G(n, i) = (e−δ(i−1) − e−δi)P(SpN−n < i)

= (u− 1)e−δi P(SpN−n < i), (4.5)

which says that the left-hand side of (4.4) is equal to G(n, i − 1) − G(n, i). If we can prove
that the right-hand side of (4.4) is larger or equal to F(n, i − 1) − F(n, i), that is, if we can
show that

(u− 1)E[exp(δ(BpN−n − i))1{SpN−n<i}] ≥ F(n, i − 1)− F(n, i),

then (4.4) will imply that

G(n, i − 1)−G(n, i) > F(n, i − 1)− F(n, i),

which is the same as
�(n, i − 1) > �(n, i).

Therefore, we have proved that

�(n, i) > 0 implies that �(n, i − 1) > �(n, i) for any i > 0,

which contradicts (4.3) at i = i∗, and, hence, our claim follows. Upon using the expression of
F in Proposition 4.1, direct calculation yields, for any n and any i > 0,

(u− 1)E[exp(δ(BpN−n − i))1{SpN−n<i}] − F(n, i − 1)− F(n, i)

= (u− 1)E[exp((δ(i − 1 − S
p
N−n))); SpN−n ≥ i − 1]

− uE[(1 − exp((δ(BN−n − i)))); SpN−n = i − 1].
Define

ϕ(n, i) = (u− 1)E[exp((δ(i − 1 − S
p
n ))); Spn ≥ i − 1]

− uE[(1 − exp((δ(Bpn − i)))); Spn = i − 1], (4.6)

so all we need is to prove that, when p ≥ 1
2 ,

ϕ(n, i) ≥ 0 for any 0 ≤ n ≤ N. (4.7)

The proof of inequality (4.7) is a simple but tedious computation. We defer this computation
to Appendix A.

2. For the case in which p < 1
2 , we aim to show that, for any 0 ≤ n ≤ N ,

eδiD(n, i) ≥ eδiG(n, i). (4.8)

We note that, for any 0 ≤ n ≤ N ,

D(n, 0) = E[exp(δ(BqN−n − S
q
N−n))] = E[exp(−δSpN−n)] = G(n, 0),

sinceXqn = S
q
n −Bqn and Spn are equal in law. Therefore, by telescoping both sides of (4.8) and

applying the fact thatD(n, 0) = G(n, 0), in order to prove (4.8), it is sufficient to first establish
the inequality

eδ(i+1)D(n, i + 1)− eδiD(n, i) > eδ(i+1)G(n, i + 1)− eδiG(n, i) for any 0 ≤ n ≤ N.

https://doi.org/10.1239/jap/1253279844 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1253279844


Two rationales behind the ‘buy-and-hold or sell-at-once’ strategy 663

By substituting the expressions forD andG, as defined in Lemma 2.1 and Proposition 4.1, the
above inequality can be reduced to

(u− 1)E[exp(δ(BqN−n − S
q
N−n + i)); SqN−n ≥ i + 1]

> (u− 1)E[exp(δ(i − S
p
N−n)); SpN−n ≥ i + 1] for any 0 ≤ n ≤ N,

which is equivalent to

E[exp(δ(Bqn − S
q
n )); Sqn ≥ i + 1] > E[exp(−δSpn ); Spn ≥ i + 1] for any 0 ≤ n ≤ N. (4.9)

The proof of (4.9) again follows from a simple but tedious computation which we defer to
Appendix A.

According to the discussion immediately after Proposition 4.1, Proposition 4.2 concludes
that, when p < 1

2 , for any stopping time τ of (Fn)0≤n≤N ,

E[exp(δ(Bpτ − S
p
N))] = E[G(τ,Xpτ )] ≤ E[G(τ, X̂τ )] ≤ E[D(τ, X̂τ )] = E[exp(−δSpN)].

This suggests that, using τ ∗ = 0, we can obtain the optimal value V ∗
2 = E[exp(−δSpN)].

On the other hand, for any τ with P(τ > 0) > 0, applying (4.2) we obtain the strict
inequality E[G(τ,Xpτ )] < E[G(τ,Xqτ )], which in turn implies that E[exp(δ(Bpτ − S

p
N))] <

E[exp(−δSpN)], and, hence, τ ∗ = 0 is the unique optimal selling time when p < 1
2 . For the

case in which p ≥ 1
2 , as an immediate consequence of Proposition 4.1 and Proposition 4.2, we

have E[exp(δ(Bpρt −SpN))] ≥ E[exp(δ(Bpτ −SpN))], which suggests that the optimal selling time
should be in the form of ρτ for some τ . Therefore, we are motivated to study ρτ for different
stopping times τ , and this can be achieved via the following proposition.

Proposition 4.3. The process F(n,Xpn ) is (i) a submartingale if p > 1
2 ; (ii) a martingale if

p = 1
2 ; and (iii) a supermartingale if p < 1

2 .

Proof. We first show that

E[F(n+ 1, Xpn+1) | Fn] = F(n,X
p
n ), (4.10)

provided that Xpn > 0. Recall that

F(τ,Xpτ ) = E[exp(δ(Bpρτ − S
p
N)) | Fτ ],

and, hence, by the tower property of conditional expectations we have

F(τ,Xpτ ) = E[E[exp(δ(Bpρτ − S
p
N)) | Fρτ ] | Fτ ]

= E[G(ρτ ,Xpρτ ) | Fτ ]. (4.11)

As pointed out in Proposition 3.1, ρτ = τ + τ0 ◦ θτ . Then (4.11) can be expressed through the
strong Markov property as

F(τ,Xpτ ) = Eτ,Xpτ [G(τ0 ∧ (N − τ),X
p

τ0∧(N−τ))].

In particular, since (τ,Xpτ ) can attain all possible states with positive probability, for any feasible
pair (i, n), we have

F(n, i) = En,i[G(τ0 ∧ (N − n),X
p

τ0∧(N−n))],
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and, hence, provided that Xpn > 0, using a first-step analysis and the Markov property of
(n,X

p
n ), we can also obtain

F(n,X
p
n ) = En,Xpn [G(τ0 ∧ (N − n), X

p

τ0∧(N−n))]
= p En+1,Xpn−1[G(τ0 ∧ (N − n− 1),Xpτ0∧(N−n−1))]

+ q En+1,Xpn+1[G(τ0 ∧ (N − n− 1), Xpτ0∧(N−n−1))]
= E[F(n+ 1, Xpn+1) | Fn].

Thus, we establish (4.10). For the case when Xpn = 0, we would like to show that

E[F(n+ 1, Xpn+1) | Fn] − F(n,X
p
n )

= pF(n+ 1, 0)+ qF(n+ 1, 1)− F(n, 0)⎧⎪⎪⎪⎨⎪⎪⎪⎩
> 0 if p > 1

2 ,

= 0 if p = 1
2 ,

< 0 if p < 1
2 .

(4.12)

The proof of (4.12) constitutes a straightforward computation which we defer to Appendix A.
We complete the proof by combining (4.10) and (4.12).

Finally, by combining all previous results, we can now conclude with our main theorem in
this section.

Theorem 4.1. Suppose that the dynamics of a stock price are modeled by the CRR model.

1. If p > 1
2 then τ ∗ = N is an optimal selling time for problem (1.2), and

V ∗
2 = E[exp(δ(BpN − S

p
N))].

2. Ifp = 1
2 then any τ satisfying τ = ρτ almost surely is an optimal selling time for problem

(1.2), and

V ∗
2 = E[exp(δ(B1/2

τ − S
1/2
N ))]

for any stopping time τ satisfying τ = ρτ . In particular,

V ∗
2 = E[exp(−δS1/2

N )] = E[exp(δ(B1/2
N − S

1/2
N ))].

3. If p < 1
2 then τ ∗ = 0 is the unique optimal selling time for problem (1.2), and

V ∗
2 = E[exp(−δSpN)].

Proof. The third claim has already been proved in Proposition 4.2 together with the discus-
sion that followed. It remains to show the first two claims. In accordance with Proposition 4.1
and Proposition 4.2, we know that

E[exp(δ(Bpρτ − S
p
N))] ≥ E[exp(δ(Bpτ − S

p
N))], whenever p ≥ 1

2 .
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1. When p > 1
2 , since F(n,Xpn ) is a submartingale, for any stopping time τ , by using the

optional stopping theorem and the fact that N = ρN , we have

E[exp(δ(Bpτ − S
p
N))] ≤ E[exp(δ(Bpρτ − S

p
N))]

= E[F(τ,Xpτ )]
≤ E[F(N,XpN)]
= E[exp(δ(BpρN − S

p
N))]

= E[exp(δ(BpN − S
p
N))],

which implies that V ∗
2 = E[exp(δ(BpN − S

p
N))] and that τ ∗ = N is an optimal selling time

2. When p = 1
2 , since F(n,X1/2

n ) is a martingale, the above chain of inequalities remains valid,
except that the inequality

E[F(τ,Xpτ )] ≤ E[F(N,XpN)]
can now be replaced by an equality. As a consequence, the optimal value V ∗

2 = E[exp(δ(B1/2
N−S1/2

N ))] can be achieved by any stopping time τ satisfying τ = ρτ ; in particular, both 0 and
N are optimal stopping times.

5. Conclusions and future work

We conclude by pointing out two possible extensions of our present work. Firstly, as both
problems (1.1) and (1.2) are solved in the CRR framework, it is natural to consider the same
problems under a trinomial tree model or even a multinomial tree model (see the work of Boyle
(1988), in which a trinomial tree model was used in the context of option pricing). Secondly,
our simple binomial tree model has neglected the possible long-range dependence of stock price
movement; instead of using binomial tree processes, which is an exponential of a simple random
walk, we may consider modeling a stock price by an exponential of a correlated random walk.
In this case, as long as this new ‘correlated’ binomial tree process is directionally reinforced,
i.e. if the last step is going up or going down then at the present step it is more likely to go up
or, respectively, go down, it is interesting to ask whether the ‘buy-and-hold or sell-at-once’ rule
would still be optimal for problems (1.1) and (1.2).

Appendix A. Proofs of inequalities (4.7) and (4.9), and statement (4.12)

Proof of (4.7). We shall prove that the function ϕ defined in (4.6) satisfies

ϕ(n, i)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
> 0 if p > 1

2 ,

= 0 if p = 1
2 ,

< 0 if p < 1
2 ,

which will in turn imply inequality (4.7). For this, let us write

ϕ(n, i) = ϕ1(n, i)− ϕ2(n, i),

where
ϕ1(n, i) := (u− 1)E[exp((δ(i − 1 − S

p
n ))); Spn ≥ i − 1], (A.1)

ϕ2(n, i) := uE[(1 − exp((δ(Bpn − i)))); Spn = i − 1]. (A.2)
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Let d = e−δ . Then

ϕ1(n, i) := (u− 1)E[dδ(Spn−i+1); Spn ≥ i − 1]

= (u− 1)
n−i+1∑
j=0

dj P(Spn = i − 1 + j)

= (u− 1)
n−i+1∑
j=0

dj
j+i−1∑

l=2(j+i−1)−n
P(Spn = i − 1 + j, B

p
n = l)

= (u− 1)
n−i+1∑
j=0

dj
i−1−j∑

l=2(i−1)−n
P(Spn = i − 1 + j, B

p
n = l + 2j), (A.3)

and, by using 1 − dl = (1 − d)(1 + d+· · ·+ dl−1) and P(Spn = k, B
p
n ≤ l) = 0 if l < 2k−n,

ϕ2(n, i) := uE[(1 − di−B
p
n ); Spn = i − 1]

= (u− 1)E

[i−1−Bpn∑
j=0

dj1{Spn=i−1}
]

= (u− 1)
n∑
j=0

dj P(Spn = i − 1, Bpn ≤ i − 1 − j)

= (u− 1)
n−i+1∑
j=0

dj
i−1−j∑

l=2(i−1)−n
P(Spn = i − 1, Bpn = l). (A.4)

Then applying the joint density of (Bpn , S
p
n ) as given in (2.4), we see that

P(Spn = i − 1 + j, B
p
n = l + 2j) = P(Spn = i − 1, Bpn = l)

(
p

q

)j
;

therefore, P(Spn = i − 1 + j, B
p
n = l + 2j) = P(Spn = i − 1, Bpn = l) if p = 1

2 , and the
equality becomes ‘>’ if p > 1

2 and ‘<’ if p < 1
2 , which, together with (A.3) and (A.4), implies

our initial claim.

Proof of (4.9). We first note that, since the joint distributions of (Xqn, S
q
n ) and (Spn ,X

p
n ) are

the same, (4.9) is the same as

E[exp(−δSpn ); Spn −B
p
n ≥ i + 1] > E[exp(−δSpn ); Spn ≥ i + 1] for any 0 ≤ n ≤ N. (A.5)

Observe that on the event {Spn − B
p
n ≥ i + 1}, Spn cannot be larger than n − i − 1. So, (A.5)

can be expanded as

n−i−1∑
k=0

k−i−1∑
l=2k−n

e−δk P(Bpn = l, S
p
n = k) >

n∑
k=i+1

k∑
l=2k−n

e−δk P(Bpn = l, S
p
n = k). (A.6)
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Setting k′ = k − i − 1 and l′ = l − 2(i + 1) on the right-hand side of (A.6), we obtain

n−i−1∑
k=0

k−i−1∑
l=2k−n

e−δk P(Bpn = l, S
p
n = k)

>

n−i−1∑
k′=0

k′−i−1∑
l′=2k′−n

e−δk′ P(Bpn = l′ + 2(i + 1), Spn = k′ + i + 1)e−δ(i+1). (A.7)

Then applying the joint density of (Bpn , S
p
n ) as given in (2.4), we see that, if p ≤ 1

2 ,

P(Bpn = l, S
p
n = k) = P(Bpn = l + 2(i + 1), Spn = k + (i + 1))

(
p

q

)−(i+1)

> P(Bpn = l + 2(i + 1), Spn = k + (i + 1))e−δ(i+1),

which proves inequality (A.7) and, hence, inequality (4.9).

Proof of statement (4.12). We first use expression (4.1) to obtain

E[F(n+ 1, Xpn+1) | Fn] − F(n,X
p
n )

= pF(n+ 1, 0)+ qF(n+ 1, 1)− F(n, 0)

= p E[exp(−SpN−n−1)] + q E[exp(δ(1 − S
p
N−n−1)); SpN−n−1 ≥ 1]

+ q E[exp(δ(BpN−n−1 − 1)); SpN−n−1 = 0] − E[exp(−δSpN−n)]. (A.8)

Let us write (A.8) in a more explicit form. Applying the first claim in Lemma 2.2, and then
considering the two possible changes of BqN−n−1 after one step, we have

E[exp(−δSpN−n)] = E[exp(−δXqN−n)]
= pe−δ E[exp(−XqN−n)] + q E[exp(δ(1 −X

q
N−n−1));XqN−n−1 ≥ 1]

+ q P(XqN−n−1 = 0)

= pe−δ E[exp(−SpN−n−1)] + q E[exp(δ(1 − S
p
N−n−1)); SpN−n−1 ≥ 1]

+ q P(SpN−n−1 = 0);
hence, (A.8) becomes

E[F(n+ 1, Xpn+1) | Fn] − F(n, X
p
n )

= p(1 − e−δ)E[exp(−SpN−n−1)] + q E[exp(δ(BpN−n−1 − 1)); SpN−n−1 = 0]
− q P(SN−n−1 = 0)

= p(1 − e−δ)E[exp(−SpN−n−1)] − q E[(1 − exp(δ(BpN−n−1 − 1))); SpN−n−1 = 0].
Define

ψ(n) = ψ1(n)− ψ2(n),

where
ψ1(n) = p(1 − e−δ)E[exp(−Spn )] (A.9)

and
ψ2(n) = q E[(1 − exp(δ(Bpn − 1))); Spn = 0]. (A.10)
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All we need to prove is that ψ1(n) = ψ2(n) if p = 1
2 , and the equality becomes ‘>’ if p > 1

2
and ‘<’ if p < 1

2 . But comparing (A.1) and (A.2) with (A.9) and (A.10), respectively, we see
that

ψ1(n) = p

u
ϕ1(n, 1), ψ2(n) = q

u
ϕ2(n, 1).

Therefore, statement (4.12) follows from the proof of inequality (4.7).
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