
8

Finance

The financial services industry is among those beginning to explore the po-

tential future benefits of quantum computing. Finance has the distinct feature

that more powerful and more accurate simulations can lead to direct compet-

itive advantage, in a way that is harder to identify in other industries. In this

application area, researchers strive to find quantum speedups for use cases of

interest to financial services. A number of use cases have been proposed as

candidates for quantum solutions, such as:

• Derivative pricing (such as options [949, 867], and collateralized debt obli-

gations (CDOs) [981]): Derivatives are financial instruments that are built

upon an underlying asset (or assets) that can depend on the value of the as-

set in potentially complicated ways. In the derivative pricing problem, one

needs to determine a fair price of the financial instrument, which is the price

that would be received by the seller or paid by the purchaser when an asset or

liability is transferred between market participants in an orderly transaction.

Typically, one needs to compute the expected value of the fair purchase price

of underlying assets at some later date when pricing a derivative. A similar

and related problem is known as computing the Greeks [950]. The Greeks

of a financial derivative are quantities that determine the sensitivity of the

derivative to various parameters in the problem. For example, the Greeks of

an option are given by the derivative of the price of the option with respect

to some parameter, for example, ∆ := ∂V/∂X, where V is the price of the

option and X is the price of the underlying asset.

• Credit valuation adjustments (CVAs) [491]: CVA is the problem of deter-

mining the fair price of a derivative, portfolio, or other financial instrument

while taking into account the purchaser’s (potentially poor) credit rating,

and the risk of default. CVA is typically given by the difference between the
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8. Finance 131

default risk-free portfolio and the value of the portfolio taking into account

the possibility of default.

• Value at risk (VaR) [1049]: Many forms of risk analysis can be considered,

with VaR being a common example. VaR measures the total value a financial

instrument (such as a portfolio) might lose over a predefined time interval

within a fixed confidence interval. For example, the VaR of a portfolio might

indicate that, with 95% probability, the portfolio will not lose more than $Y .

A similar technique works as well for the related conditional value at risk

(CVaR) problem.

• Portfolio optimization [865]: The goal of portfolio optimization is to deter-

mine the optimal allocation of funds into a universe of investable assets such

that the resulting portfolio maximizes returns and minimizes risk, while also

respecting other constraints.

While there are are many more use cases and several approaches for gener-

ating quantum speedups, broadly speaking, many use cases stem from one of

two paths to quantum improvements: quantum enhancements to Monte Carlo

methods (for simulating stochastic processes), and constrained optimization.

In the first case, the approach generally involves encoding a relevant, problem-

specific function into a quantum state, and then using quantum amplitude esti-

mation to sample from the distribution quadratically fewer times than classical

Monte Carlo methods [773]. In the second case, a financial use case is reduced

to a constrained optimization problem, and a quantum algorithm for optimiza-

tion is used to solve the problem.

Among the use cases studied in these two areas, option pricing and portfo-

lio optimization often serve as archetypal examples of Monte Carlo and con-

strained optimization problems, respectively, and their associated quantum al-

gorithms have the most follow-up work. Moreover, these two classes of prob-

lems comprise a considerable fraction of the classical compute used in the

financial services industry. For these reasons, we will focus on these two use

cases in this chapter, though the approaches, caveats, and complexities typi-

cally translate to other relevant use cases.

In addition to the use cases described above, other areas of interest to the

financial services industry include post-quantum cryptography, as well as

quantum-secure networking and quantum key distribution. However, many

of these topics or their proposed quantum implementations are outside the

scope of this discussion. Quantum machine learning is yet another popular use

case within quantum approaches to finance, but oftentimes these results are

quantum approaches to standard machine learning problems, which are then

applied to a financial application. As such, we will also not study machine
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132 8. Finance

learning in this finance-specific chapter and instead refer interested readers to

any of the excellent review articles on quantum finance (e.g., [525, 176]) for

more details.

The authors are grateful to Nikitas Stamatopoulos for reviewing this section

of the survey, to Patrick Rebentrost for reviewing Section 8.1, and to Ashley

Montanaro for reviewing Section 8.2.

8.1 Portfolio optimization

Overview

Given a set of possible assets into which one can invest, the problem of port-

folio optimization (PO) involves finding the optimal allocation of funds in

these assets so as to maximize returns while minimizing risk. The Markowitz

model, as it is commonly called, is widely used in the financial industry, owing

to its simplicity and broad applicability. Sophisticated constraints, transaction

cost functions, and modifications to the problem can be used to model real-

istic, modern PO problems. Numerically solving these optimization problems

is a routine part of existing workflows in financial services operations. Several

quantum approaches to solving the PO problem have been proposed, each with

their own advantages and drawbacks.

Actual end-to-end problem(s) solved

Consider a set of n investable assets with a fixed total budget. Define wi ∈ R
to be the fraction of the total budget that is invested into asset i. Thus, the

n-dimensional vector w defines a portfolio. Let r be a known n-dimensional

vector denoting the expected return for each of the available assets, that is, the

percentage by which the value of each asset is expected to grow over some de-

fined time period. Let Σ ∈ Rn×n be the covariance matrix governing the random

(and possibly correlated) fluctuations in the asset returns away from their mean

r. In practice, the input parameters Σ and r can be inferred from historical stock

price data, or through more sophisticated analyses. The covariance matrix can

be used to define a portfolio’s “risk” w⊺Σw, which is precisely the variance in

the returns it generates, assuming the underlying model is accurate. Denote the

all-ones vector by 1, and for any pair of vectors u, v let ⟨u, v⟩ denote the stan-

dard inner product between u and v. The goal of the Markowitz formulation of

PO is to find the optimal portfolio (i.e., vector of weights w) that either:
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8.1 Portfolio optimization 133

• maximizes the expected return subject to a fixed risk parameter σ2
0

max
w
⟨w, r⟩

s.t. w⊺Σw = σ2
0

⟨1,w⟩ = 1

(8.1)

• minimizes risk subject to a fixed return parameter r0

min
w

w⊺Σw

s.t. ⟨w, r⟩ = r0

⟨1,w⟩ = 1

(8.2)

• maximizes return and minimizes risk with a tradeoff determined by a pa-

rameter known as the “risk aversion parameter” λ:

max
w
⟨w, r⟩ − λw⊺Σw

s.t. ⟨1,w⟩ = 1
(8.3)

or the alternative for the square root of risk (standard deviation rather than

variance)

max
w
⟨w, r⟩ − q

√
w⊺Σw

s.t. ⟨1,w⟩ = 1,
(8.4)

where q plays the same role as λ.

Typically, it is satisfactory to find a vector that optimizes the objective function

up to additive error ϵ, for some prespecified value of ϵ.

When solving the above Markowitz model formulations of PO, the absence

of inequality constraints leads to simpler optimization problems that can be

solved with efficient classical approaches. For example, the optimization prob-

lem in Eq. (8.2) is a simple quadratic program without complicated constraints,

for which one can derive a closed-form expression for w using Lagrange mul-

tipliers [760]. More general PO problems that include practically relevant con-

straints (such as the simple “long-only” constraint wi ≥ 0, which prohibits

“short” positions in which wi can be less than zero) cannot generically be

solved analytically, and one needs to employ more sophisticated numerical

solvers. Real-world PO problems include a number of possible constraints (see

[781] for a discussion), including, but not limited to:

• Long only—w j ≥ 0 for all j.

• Investment bands—w j ∈ [wmin
j
,wmax

j
].
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134 8. Finance

• Turnover constraints—|∆w j| ≤ U j for some fixed fraction U j, where ∆w j

represents the change in holdings of asset w j from one portfolio to the next.

• Cardinality constraints—minimum, maximum, or exact number of nonzero

assets in the portfolio.

• Sector constraints—specified minimum and/or maximum allocations to

groups of assets (e.g., the energy or healthcare sectors).

• Transaction costs—typically represented as a function of |∆w j|, and often

added as a term in the objective function rather than as a constraint.

• Market impact—the effect on the price of an asset that a market participant

has when buying or selling the asset. Related to liquidity, market impact can

be seen as a type of transaction cost that arises when a transaction causes

the price of the asset to move.

The PO can also be formulated in an “online” manner, where, for example,

asset performance data arrives one day at a time, and one has the opportunity

to update the portfolio at the end of each day [686].

As is often the case with optimization problems, the problem formulation

strongly affects the solution strategy and the problem “hardness.” If the PO

problem is unconstrained and continuous (i.e., each wi is a real number), then

the problem is relatively easy. If convex inequality constraints, such as the

long-only or turnover constraints, are imposed, then the problem is harder but

can still be tackled by relatively efficient methods for convex optimization. By

contrast, if one discretizes the problem (so that w now represents an integer

number of asset shares or lots being traded), or if one applies some of the

constraints above (such as integer-valued constraints like cardinality), then the

problem becomes nonconvex and considerably harder to solve. In general, with

discrete constraints, the problem can be formulated as an instance of an integer

program (IP) (if all variables are discrete) or a mixed-integer program (MIP)

(if some variables are discrete and others are continuous), which are NP-hard

and therefore intractable to solve in polynomial-time (in n) under widely be-

lieved assumptions. Alternatively, given the IP formulation of the problem as a

starting point, one can encode the integer variables in a binary representation,

thereby allowing the problem to be formulated as a quadratic unconstrained bi-

nary optimization (QUBO) instance [881]. These formulations allow quantum

algorithms for combinatorial optimization to be employed; for example, the

MIP formulation can be solved with a branch-and-bound approach [247], and

the QUBO formulation can be solved via Grover-type methods, or heuristically

through (NISQ-friendly) quantum annealing approaches (e.g., [790]).
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8.1 Portfolio optimization 135

Dominant resource cost/complexity

An early approach to solving this optimization problem using a quantum al-

gorithm was presented in [865], in which the Markowitz problem is written

as minimizing risk with fixed return (Eq. (8.2)), and without other compli-

cated constraints. This simple optimization problem boils down to an equality

constrained convex program; it can be solved by introducing Lagrange mul-

tipliers and solving a linear system (represented by a matrix G) involving the

input data r and Σ [865]. The approach of [865] is to use a quantum linear

system solver (QLSS) and prepare the quantum state |w⟩ whose amplitudes

are proportional to the optimal weights wi. The complexity to do so to error ϵ

is Õ(κζ log(1/ϵ)), where κ is the condition number of the matrix G being in-

verted and ζ = ∥G∥F/∥G∥ is the ratio of its Frobenius norm to its spectral norm.

The Õ suppresses logarithmic factors, including a factor coming from apply-

ing unitaries that block-encode the matrix G in polylog(n) depth, essentially

equivalent to the assumption that log-depth quantum random access memory

(QRAM) is available. It is a priori unclear what the value of κ and ζ would be

for actual PO instances and whether they depend on n, but the explicit logarith-

mic dependence of this complexity on n is appealing. However, a drawback of

this approach is that it produces the quantum state |w⟩ rather than an estimate

for the optimal portfolio w. Learning the n entries of w to precision ϵ in 2-norm

incurs multiplicative overhead of Õ(n/ϵ) using quantum pure state tomography

[49] for total time complexity Õ(nκζ/ϵ).1

When convex linear inequality constraints, such as long-only or turnover

constraints, are included, the above approach will not work. However, a more

sophisticated method can be applied, which first maps the PO instance to a

convex program (specifically, a second-order cone program (SOCP)) and then

makes use of interior point methods to solve the program. These interior point

methods can be quantized, forming quantum interior point methods (QIPMs)

[612, 68]. The QIPM is an iterative method, where each iteration involves solv-

ing a linear equation with a QLSS and classically reading out the solution with

tomography. Thus, the procedure within each iteration is similar to the proce-

dure above for solving the unconstrained PO problem, but the linear system to

be solved is different (and changes with each iteration). A preliminary study

of the effectiveness of this approach for PO was given by [611], followed by a

1 Reference [865] suggests several possible nonstandard problems that can be solved with |w⟩
without actually learning the entries of w, such as sampling values of i with large |wi |, and
estimating overlaps ⟨w̃,w⟩ with hypothesized portfolios w̃. In general, inner products ⟨u,w⟩ of
arbitrary normalized vectors u with w can be learned to precision ϵ using overlap estimation
[637] (an application of amplitude estimation), incurring multiplicative overhead of O(1/ϵ),
but no explicit linear-in-n dependence. However, the practical utility of such tasks within the
existing workflows of financial institutions is unclear.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.010
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 04 Oct 2025 at 21:55:04, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.010
https://www.cambridge.org/core


136 8. Finance

more extensive study in [328]. The QIPM produces an ϵ-optimal classical es-

timate for w, and has time complexity Õ(n1.5ζκξ−1 log(1/ϵ)), where κ and ζ are

the maximum condition number and Frobenius-to-spectral-norm ratio for the

matrices that must be inverted over the course of the algorithm, respectively,

and ξ is the precision to which tomography must be performed. Note that in

principle ξ can stay constant even as the overall precision estimate ϵ → 0

[328].

With the addition of discrete constraints, PO is instead formulated as a non-

convex MIP. MIPs are typically solved with a branch-and-bound approach (for

a summary in a financial context, see, e.g., [311, Chapter 11]). Key to this ap-

proach is the ability to solve convex relaxations of the MIP (where the discrete

constraints are dropped) in poly(n) time (perhaps via classical or quantum in-

terior point methods for SOCPs, as above). To impose the discrete constraints,

a tree is constructed and explored, where generating the children of a given

node in the tree requires solving one of these relaxations. Thus, the number

of convex relaxations that must be solved is proportional to the tree size T ,

which is generally exponentially large in n. Reference [247] (extending prior

work of [776]) showed that a quantum algorithm can produce the same out-

put while exploring quadratically fewer nodes, solving roughly Õ(
√

T ) convex

relaxations (but doing so coherently, which could introduce overheads), for a

total complexity of Õ(
√

T ) · poly(n). The value of T is instance dependent and

requires empirical estimation: a preliminary numerical analysis of the value of

T for a certain ensemble of PO instances up to n = 56 found that T ∼ 20.14n to

20.20n [247].

The algorithm for online PO of [686], which leverages the multiplicative

weights update method, has time complexity scaling as Õ(
√

n), a potentially

quadratic speedup compared to the analogous classical algorithm. However,

the quantum algorithm has worse dependence on the number of time steps.

The assessment of the number of qubits used by these algorithms requires

a nuanced discussion of loading classical data. A key feature of all of the ap-

proaches above is that they require (repeatedly) accessing the classical data

representing the historical stock information (i.e., the returns r and the co-

variance matrix Σ) in the quantum algorithm. The size of this data is typi-

cally O(n2). Loading can be performed using block-encoding dense matrices

of classical data and QRAM, which achieves O(log(n)) depth (time), at the

expense of O(n2) space. Here, several caveats are inherited from the QRAM

primitive. Moreover, for practical values of n, this O(n2) space cost could be

prohibitively large, although it is possible this space cost could manifest as a

dedicated QRAM hardware element of the device, rather than as part of the

main processor. If log-depth QRAM of sufficient size is not desired or not
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8.1 Portfolio optimization 137

available, the data could instead be loaded with only O(log(n)) space and in

O(n2) time, but this overhead in time would likely preclude the possibility of

quantum speedup at least in the first two cases, where the formulation is convex

and classical poly(n)-time algorithms exist.

Existing resource estimates

A detailed, end-to-end resource analysis of the PO problem using QIPMs was

performed in [328]. The authors followed the approach of [611] and performed

a careful accounting of all quantum resources, including constant prefactors.

The authors found that one needs 800n2 logical qubits, a T -depth of

(2 × 108)κζn1.5ξ−2 log2(n) log2(ϵ−1) log2(κζn14/27ξ−1),

and a T -count of

(7 × 1011)κζn3.5ξ−2 log2(n) log2(ϵ−1) log2(κζξ−1),

where κ is the maximum condition number encountered in the algorithm, ζ

is the maximum Frobenius-to-spectral-norm ratio, and ξ is the minimum to-

mographic precision required. The ξ−2 dependence can asymptotically be im-

proved to ξ−1 at the expense of a more sophisticated protocol for tomography

[49]. Furthermore, these estimates used explicit bounds on the complexity of

the QLSS from [313] which have since been improved upon in [572, 327]. Us-

ing the updated bounds from [327] would immediately reduce the T -count and

T -depth estimates by at least three orders of magnitude. Note also that this cal-

culation incorporated optimized circuits for block-encoding dense matrices of

classical data with O(log(n)) T -depth but O(n2) T -count [296], leading to the

large discrepancy between those two quantities. The authors performed numer-

ical simulations of PO instances to determine the instance-specific quantities.

Using numerically determined values for κζ and ξ, and using realistic values of

ϵ = 10−7 and n = 100, these resource counts imply that one would need 8×106

logical qubits, 2× 1024 T -depth, and 8× 1029 T -count. These logical estimates

for the number of non-Clifford gates could in principle be turned into esti-

mates for the number of physical qubits and runtime on actual hardware, using

the methods discussed in the section on fault-tolerant quantum computation.

However, the authors of [328] did not do so, in part because the logical costs

were sufficiently high that the qualitative conclusion about the practicality of

the algorithm was already clear.

Caveats

The quantum algorithms for PO discussed above inherit many of the caveats

of their underlying primitives, namely, QLSS, tomography, and classical data
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138 8. Finance

loading. One salient caveat is that the QLSS-based approaches depend on a

number of instance-specific parameters κ, ζ, ξ, which are difficult to predict

without running numerical simulations. The asymptotic speedup is subject to

assumptions about the scaling of these parameters. Additionally, for a speedup

to be possible, log-depth QRAM must be available on large datasets, which,

while theoretically possible, presents practical challenges.

The branch-and-bound approach does not require log-depth QRAM to

achieve its nearly quadratic speedup since the runtime will be dominated by

the exponential tree-size factor (although it would help to have fast QRAM to

reduce by poly(n) factors the time needed to solve the convex relaxations at

each step). However, a caveat to that approach is that to obtain the quadratic

speedup, the convex relaxations of the MIP (which would be SOCPs), would

need to be solved coherently. In principle, this is always possible, but it

would likely require a substantial amount of coherent classical arithmetic and

additional poly(n) overheads in time and space.

Comparable classical complexity and challenging instance sizes

Convex formulations of the PO problem are typically solved classically via

mapping to SOCPs. Optimized software packages can solve these SOCPs ef-

ficiently, and many are based on interior point methods. These interior point

methods have theoretical runtime complexity of roughly Õ(nω+0.5 log(1/ϵ)),

where ω ≈ 2.373 is the matrix multiplication exponent, although for practical

instance sizes, the effective value of ω is typically closer to 3. Note that the

example PO problem with 100 assets solved in [328] and described above can

typically be solved within seconds on a laptop using traditional classical meth-

ods. Problem sizes found in the financial services industry can include as many

as tens of thousands of assets.

In the IP or MIP formulation of PO, classical solutions will have complexity

exponential in n. As a point of reference, the numerical experiments reported

in [247] classically solved hundreds of PO instances up to size n = 56 (and

likely could have gone significantly higher).

Speedup

Recall that the QIPMs used to solve the SOCP for constrained PO are virtu-

ally identical to their classical counterpart; they differ by their use of a quantum

subroutine to solve linear systems. Thus, any speedup obtained by the quantum

approach to solving the SOCP will necessarily come from speedups from the

QLSS plus tomography approach to solving a linear system. The approach for

unconstrained PO was also based on the same primitives. The performance of

the quantum method is often compared against classical Gaussian elimination.
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8.1 Portfolio optimization 139

However, since the quantum approach necessarily produces an approximate

solver (due to tomography), another valid comparison to make is against ap-

proximate classical solvers, such as the conjugate gradient method [527] or

the randomized Kaczmarz method [959]. In the case of the randomized Kacz-

marz method, the classical complexity for solving an L × L linear system to

precision ξ scales as O(Lκ2ζ2 log(ξ−1)) (where κ is the condition number and

ζ the Frobenius-to-spectral-norm ratio) compared to O(L3) for Gaussian elim-

ination (asymptotically O(Lω)). Thus, the quantum method provides the great-

est speedup when κζ ∝ L and ξ = O(1), in which case the QIPM for con-

strained PO runtime scales as Õ(n2.5), whereas the classical runtime scales as

Õ(n3.5), where n is the number of stocks in the portfolio (see [328, Table XI]

for a more complete discussion). For unconstrained PO, which only requires

solving one linear system, the comparison would be Õ(n2) vs. Õ(n3). In ei-

ther case, the speedup is subquadratic. Moreover, the numerical simulations

in [328] were not consistent with these optimistic assumptions on κζ and ξ,

suggesting, rather, that the QIPM would have minimal if any speedup over

classical IPMs, albeit based on small instance sizes up to n = 120.

The speedup for the branch-and-bound approach to the MIP formulation of

PO is quadratic (up to log factors), although, as mentioned, in contrast to the

convex formulations, both the quantum and classical algorithms generally have

runtime exponential in n.

NISQ implementations

Several alternative approaches to PO using quantum solutions have been pro-

posed.

• Hybrid-HHL [1062]. This work generalizes the algorithm of [865], de-

scribed above, by employing midcircuit measurements and conditional

logic to obtain a NISQ version of the QLSS that readily solves the PO

problem.

• Variational approaches based on the quantum approximate optimization

algorithm (QAOA) [184, 524, 85] . These approaches typically use the

quadratic objective function from Eq. (8.3), but instead consider wi ∈ {0, 1}
as binary variables indicating whether or not an asset is part of the portfolio

(a substantial deviation from the normal formulation). Constraints are dealt

with by adding penalties to the objective function. Alternatively, constraints

can be enforced by choosing clever versions of the ansatz [802] or by

making measurements to project into the feasible space [524].

• Quantum annealing approaches: [881, 825, 824, 452, 790]. As in the previ-

ous case, these approaches require the problem to be formulated as a binary
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140 8. Finance

optimization problem. However, in this case, they typically start with the IP

formulation and encode integers in binary through one of several possible

encodings [881] (thus, the number of binary variables will be greater than

n). Constraints in the PO problem can also be included in the objective func-

tion using a variety of tricks, resulting in the desired QUBO, which can then

be solved using a quantum annealer.

Outlook

The QIPM approach (and QLSS-based techniques more generally) for con-

tinuous formulations of PO have the potential to offer polynomial (but sub-

quadratic) speedups for the PO problem. However, these speedups are subject

to conjectures about the scaling of certain instance-specific parameters and

preliminary empirical estimates are not suggestive of a maximal speedup. In

any regard, the resource estimates of [328] illustrate that the non-Clifford re-

sources required to implement the QIPM for this use case are prohibitive, even

at problem sizes that are trivial to solve with classical computers. An asymp-

totic quantum advantage for this problem could exist for sufficiently large sets

of assets, but without drastic improvements to the quantum algorithm and the

underlying primitives (e.g., QRAM, QLSS), it is unlikely this approach will

be fruitful. Even if such improvements are made, the algorithm only provides

a polynomial speedup that is subquadratic, at best, greatly limiting the upside

potential of this approach.

The branch-and-bound approach for discrete formulations has the possibility

of a larger quadratic speedup, but, as has been observed (see, e.g., [223, 79])

in the context of Grover-like quadratic speedups in combinatorial optimiza-

tion, it is unclear whether the quadratic speedup is sufficient to overcome the

inherently slower quantum clock speeds and overheads due to fault-tolerant

quantum computation for practical instance sizes.

8.2 Monte Carlo methods: Option pricing

Overview

Many financial instruments require an estimate of the average of some func-

tion of a stochastic variable within a window of time. To compute this average,

one can use Monte Carlo methods to perform many simulations of the stochas-

tic process over the time window, evaluate the function (which can potentially

depend on the path taken by the stochastic variable during the entire window),

and numerically estimate the average. While the setup and details of the prob-

lems may vary from one use case to another, the underlying methods are often
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8.2 Monte Carlo methods: Option pricing 141

quite similar. As an archetypal example of this problem, we will focus on the

problem of pricing derivatives, such as options, but we remark that many of

these results can be carried over to other use cases, such as computing the

Greeks, credit valuation adjustments, and value at risk.

Derivatives are financial instruments that, roughly speaking, allow the par-

ties involved to benefit when an asset (such as a stock) increases or decreases

in value, but without having to hold the asset itself. One type of derivative—

called an “option”—is a contract that permits the holder to either purchase

(“call option”) or sell (“put option”) an underlying asset at a fixed, predeter-

mined price (the “strike price”) at or prior to some predetermined time in the

future (“the exercise window”). The seller of the option is obligated to either

sell or buy the asset, should the holder choose to exercise the option.

How, then, should one decide on a price for the option (i.e., the amount the

holder must pay for the contract, not the strike price)? The well-known Black–

Scholes (or Black–Scholes–Merton) model provides one approach to pricing

options, making a few assumptions about the underlying assets and the rules

of the contract. More complicated options can be considered that include, for

example, multiple assets in the contract (e.g., basket options), multiple possible

exercise windows (e.g., Bermudan or American options), etc.

Typically, options are priced by running Monte Carlo sampling on the value

of the underlying asset(s) and determining the expected profit or loss from a

given position, which can be translated into a price that the purchaser must

pay. Options with a larger potential downside for the seller should cost a larger

amount to purchase. For more information on options and Monte Carlo meth-

ods in the context of computational finance, see [554, 435].

Actual end-to-end problem(s) solved

The task is to price an option based on an underlying asset. The price of the as-

set is a random variable X that follows a known (or assumed) stochastic process

that models the market for the underlying asset. The option has a known payoff

function f (X) (e.g., the difference between the price of the asset at each time

step minus the strike price over the trajectory, or zero, whichever is larger).

For options that depend on more than one underlying asset or on asset prices

at multiple distinct points in time, the random variable X would represent a

vector of data containing all information needed to compute the payoff. Given

these inputs, the end-to-end problem is to compute an estimate of the expected

payoff EX( f (X)) that lies within a certain error tolerance ϵ with high probabil-

ity. This quantity is then used to determine the fair price of the option, which

we take to be the expected value of the derivative at the contract’s expiration

date, discounted to the pricing date.
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142 8. Finance

Using the assumed stochastic model for the price of the asset, one can de-

velop a stochastic differential equation for the average payoff of the option. In

limited cases, one can compute the average payoff analytically, as in the case of

the famous Black–Scholes formula for the price of European call options, for

which the 1997 Nobel Prize in Economics was awarded. The Black–Scholes

differential equation for the price of an asset at time t can be derived by assum-

ing the price of the underlying stock follows a geometric Brownian motion

dXt = Xtαdt + XtσdWt ,

where Xt is the price of the underlying asset at time t, α is a parameter known

as the “drift” of the asset, σ is the volatility (the standard deviation of the

underlying returns), and dWt is an increment of an accompanying Brownian

motion Wt. Using Itô’s lemma, one can derive a differential equation for the

price of the option at time t and, in limited cases (with several assumptions),

one can solve the differential equation analytically. In practice, however, dif-

ferent types of contract have more complex definitions and fewer assumptions

and, as a consequence, the differential equation cannot be solved analytically.

Quantum approaches to numerically solving the stochastic differential equa-

tion have been proposed, including finite difference methods [767], Hamilto-

nian simulation [441], and quantum random walks [692]. For more detail on

quantum approaches to solving differential equations, see Chapter 7 on solv-

ing differential equations. In many real-world derivative pricing use cases, the

underlying differential equation becomes intractable. Thus, the most common

classical method of computing the average payoff of an option is not through

solving the stochastic differential equation, but rather through Monte Carlo

sampling the random process X directly. To do so, one generates a large num-

ber of price trajectories over the chosen time range, and the average payoff is

computed numerically. In what follows, we will focus on quantum approaches

to Monte Carlo estimation—also known as quantum-accelerated2 Monte Carlo

methods—which was pioneered in [773] and subsequently applied to several

problems in finance (e.g., [867, 1049, 949, 596, 950, 491]). However, we re-

mark that other approaches to solving this problem that do not make use of

Monte Carlo methods have also been proposed (e.g., [868]), and that this is an

area of active research.

To compute different quantities, such as value at risk or credit valuation

adjustments, similar approaches are often employed: simulate the underlying

stochastic evolution several times and estimate the desired quantity numeri-

2 Not to be confused with quantum Monte Carlo methods, which are classical algorithms for
simulating certain quantum systems.
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8.2 Monte Carlo methods: Option pricing 143

cally. The function to be computed may be quite different, but the approach is

often the same.

Dominant resource cost/complexity

In [867, 949], the quantum speedup of Monte Carlo estimation from [773] is

applied to solve the option pricing problem. We briefly explain the method and

its dominant cost. First of all, this requires discretizing the set of values the

random variable X can take, which we index by the label x. Let N denote the

number of values and n = ⌈log2(N)⌉ denote the number of qubits needed to

hold the state |x⟩. The first step is to load the probabilities for the future prices

of the asset into the amplitudes of a quantum state, that is, the state
∑

x

√
px|x⟩ ,

where px is the probability that x is observed in the corresponding classical

Monte Carlo simulation.

Second, a subroutine is employed that computes information about the pay-

off function into an ancilla register using coherent arithmetic. More precisely,

the angle θx is computed (rounded to some finite number of bits of precision),

where sin(θx) =
√

f (x). (For simplicity, here we assume 0 ≤ f (x) ≤ 1 for all

x, but we revisit this point later.) This yields
∑

x

√
px|x⟩|θx⟩ .

Third, the amplitude
√

f (x) is loaded into the amplitude of an ancilla register

by applying the map |θ⟩|0⟩ 7→ |θ⟩(sin(θ)|0⟩ + cos(θ)|1⟩). This gives

∑

x

√
px f (x)|x⟩|θx⟩

|0⟩ +

∑

x

√
px(1 − f (x))|x⟩|θx⟩

|1⟩ .

The probability of measuring the final ancilla in |0⟩ is precisely EX( f (X)).

Thus, the final step is to apply quantum amplitude estimation, which requires

O(ϵ−1) calls to the unitary that produces the state above to obtain an estimate

to error ϵ.

If 0 ≤ f (x) ≤ 1 does not hold, the above approach needs to be modified, for

example, by shifting and rescaling f over a sequence of intervals of increasing

length, as discussed in [773, 867]. Roughly speaking, to make sure that f (x)

falls within the interval [0, 1], at least for a large fraction of the randomly cho-

sen values of x, we should expect the function f will need to be scaled down by

a factor on the order of the standard deviation σ =
√
EX( f (X)2) − (EX f (x))2.

Thus, to achieve error ϵ, quantum amplitude estimation must be performed to

precision ϵ/σ instead of ϵ.
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144 8. Finance

There are three components to the algorithm that each contribute to the re-

source cost:

• Loading the distribution with amplitudes
√

px. The gate complexity of this

step is roughly the same as the time complexity of classically drawing a

Monte Carlo sample, although for certain distributions it could be faster

(e.g., a quadratic quantum speedup can be obtained if px is the stationary

distribution of a Markov process [974]). Alternatively, if a functional form

for px is known, the methods of [754] could be used to approximately pre-

pare the state—note that the Grover–Rudolph approach to state preparation

[463] is incompatible with a quantum speedup in the context of Monte Carlo

estimation [521]. Finally, [949] proposes using a quantum generative ad-

versarial network (qGAN), a variational quantum algorithm, which could

reduce the resources but requires a training phase.

• Coherent arithmetic to compute the rotation angle θx. This depends on the

complexity of the function f , but can generally be accomplished in compa-

rable gate complexity as classical arithmetic, that is, poly(n). In [948], it was

shown how the payoff can instead be put directly into the amplitude, without

ever computing θx, using quantum signal processing methods [754].

• Quantum amplitude estimation to precision ϵ/σ, which requiresO(σ/ϵ) rep-

etitions of the above two costs to achieve an ϵ-estimate on the quantity

EX f (X).

Overall, from [642, Theorem 1.1] the complexity is

σ

ϵ
· poly(n) , (8.5)

with the poly(n) factor generally on the same order as the time required to draw

and process a single classical Monte Carlo sample. This complexity does not

require one to have an upper bound on σ, and it improves over the original

work of [773] (which in turn is based on the algorithm of [515] for the uniform

distribution) and follow-up work [490] by removing additional log(σ/ε) fac-

tors originating from the need to rescale the (potentially unbounded) random

variable, to account for the contribution of its tails. In fact, the method can

also work even for random variables with infinite variance [156]. However, in

practice, the more advanced techniques and analyses of [642, 156] may not

be necessary, as the underlying assets are typically modeled with distributions

such as Gaussians where the tails are well behaved and the variance of the

relevant random variable is controlled.

The general approach to Monte Carlo estimation sketched above has been

extended and optimized in various ways; see, for example, [768, 309, 522,
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8.2 Monte Carlo methods: Option pricing 145

361, 14]. For instance, in [361], the authors study a quantum algorithm for the

optimal stopping problem by developing a quantum version of least-squares

Monte Carlo. The algorithm finds a quadratic speedup over related classical

methods, thereby demonstrating that American-style options—which are more

complex than European-style options because they allow the holder to exercise

the option and buy/sell the underlying asset at any point in the exercise win-

dow, rather than just the end—also maintain a quadratic speedup over classical

Monte Carlo.

Existing resource estimates

Detailed resource estimations for benchmark option pricing problems (known

as autocallable and target accrual redemption forward, or TARF) were studied

in [246]. The authors studied real-world use cases and problem sizes that are

simple enough to analyze, yet complex enough to capture desirable features

(such as path dependence and multiple underlyings), making them relevant

to current financial institutions. For a basket autocallable with 3 underlying

assets, 5 payment days, and a knock-in put option with 20 barrier dates, the

authors found that one would need about 8000 logical qubits, a T -depth of

5.4 × 107, and a T -count of about 1.2 × 1010, using the most efficient methods

they studied. For a TARF with 1 underlying and 26 payment dates, one needs

about 1.2 × 104 logical qubits, a T -depth of about 8.2 × 107, and a T -count

of about 9.8 × 109. A follow-up analysis [948] involving a quantum signal

processing approach subsequently reduced these estimates to 4.7× 103 logical

qubits, 4.5 × 107 T -depth, and 2.4 × 109 T -count. For comparison, classical

Monte Carlo methods are roughly estimated to require 1–10 seconds for 4×104

samples to achieve the same accuracy on these examples.

Similar analyses were performed in [950] for the computation of the Greeks,

which are quantities that measure the sensitivity of a derivative to various

parameters. To compute the Greeks of an option, one needs to compute the

derivative of the payoff function with respect to, for example, the price of the

underlying. To to do this on a quantum computer, one needs to be able to esti-

mate both the expectation of the payoff function and have a way of computing

gradients. The authors apply several quantum methods of computing gradi-

ents in order to calculate the Greeks, in addition to the quantum approaches

to Monte Carlo methods used. Using a quantum gradient method to compute

Greeks of an option, the authors estimate that one would need about 1.2 × 104

logical qubits and a T -depth of around 108.
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Caveats

There are many types of options and derivatives that may not be accurately

captured by these simple models. Some payoff functions are path dependent,

and hence one cannot simply use the asset value at some fixed time to compute

the cost, but rather the cost depends on the trajectory the random variable takes

in each Monte Carlo sample.

Moreover, classical approaches to Monte Carlo sampling often allow for

massive parallelization, as each simulation of the underlying asset can be done

independently. By contrast, quantum algorithms for this problem require a se-

rial approach, as the subroutines in the quantum algorithm must be run one af-

ter another without measurement and restart if the quadratic advantage is to be

realized. When the slower clock speed found in quantum devices is also taken

into account, the requirements for a quantum speedup over classical methods

become more stringent, as much larger problem sizes are required to achieve

practical advantage. For further reading, see [176, Section 2.3], for example.

It is worth noting that in certain cases the number of classical samples

needed to achieve error ϵ can be reduced from the naive O(σ2/ϵ2), cutting

into the quadratic quantum speedup. In particular, quasi–Monte Carlo meth-

ods, which sample possible trajectories of the underlying assets nonrandomly,

can achieve a nearly quadratic speedup compared to traditional classical Monte

Carlo methods, but gain an exponential dependence on the number of underly-

ing assets (“curse of dimensionality”) which limits their use; see [435, Chap-

ter 5]. The number of samples can also potentially be reduced classically via

multilevel Monte Carlo methods [426], although a quantum algorithm for mul-

tilevel Monte Carlo also exists [33]. In general, when and how these various

methods work is delicate and must be evaluated on a case-by-case basis.

Comparable classical complexity and challenging instance sizes

Classical approaches to option pricing comprise some of the largest compu-

tational costs incurred by financial institutions. In the traditional approach to

solving the option pricing problem, Monte Carlo sampling is required to sim-

ulate the evolution of the underlying asset over the time horizon of the option,

and it can be slow to converge. In particular, denote the expectation value of

f (X) by V := EX( f (X)), and the variance of f (X) by σ2. Classical Monte Carlo

methods compute an estimate V̂ for V formed by averaging f (X) for M inde-

pendent samples of X. By Chebyshev’s inequality,

Pr(|V − V̂ | ≥ ϵ) ≤ σ2

Mϵ2
.
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Thus, classically one needs M ∼ O(σ2/ϵ2) samples to find an estimate V̂ within

a 99% confidence interval [773].

In typical industrial scenarios, options can be priced to sufficient operational

precision after roughly a few seconds of runtime, sampling as many as tens of

thousands of Monte Carlo trajectories.

Alternatively, a tensor network–based classical approach to option pricing

was proposed by [602] that could lead to significant advantages over traditional

classical methods in some cases.

Speedup

The classical algorithm requires M = O(σ2/ϵ2) samples whereas the quan-

tum algorithm requires only Õ(
√

M) = Õ(σ/ϵ) samples. The gate cost of a

sample is roughly the same classically and quantumly, and thus the speedup is

(nearly) quadratic, inherited from the quadratic speedup of quantum amplitude

estimation.

Outlook

In [246], the authors place an upper bound on the resources required for pric-

ing options on quantum computers, and they provide a goalpost for quantum

hardware development to be able to outperform classical Monte Carlo meth-

ods. In particular, the authors estimate that a quantum device would need to be

able to execute about 107 layers of T gates per second. Moreover, the code dis-

tance for fault-tolerant implementation would need to be chosen large enough

to support 1010 total error-free logical operations. These requirements translate

to a logical clock rate of about 50 MHz that would be needed in order to com-

pete with current classical Monte Carlo methods. This clock speed is orders of

magnitude faster than what is foreseeably possible given the current status of

physical hardware and currently known methods for performing logical gates

in the surface code.

While the resource requirements for pricing of derivatives are quite strin-

gent, this is nevertheless an area of active research. For example, a new “ana-

log” quantum representation of stochastic processes was developed in [177]

that can compute ϵ-accurate estimates of time averages (over T time steps)

of certain functions of stochastic processes in time polylog(T ) · ϵ−c, where

3/2 < c < 2, an exponential speedup over classical methods in the parameter

T . The analog nature of their method leads to additional caveats, and finding

concrete applications of this method remains an interesting open question.
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