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THE ADDITIVE GROUPS OF Z AND Q WITH PREDICATES FOR
BEING SQUARE-FREE

NEER BHARDWAJ AND CHIEU-MINH TRAN

Abstract. We consider the structures (Z; SFZ), (Z;<, SFZ), (Q; SFQ), and (Q;<, SFQ) where Z is
the additive group of integers, SFZ is the set of a ∈ Z such that vp(a) < 2 for every prime p and
corresponding p-adic valuation vp , Q and SFQ are defined likewise for rational numbers, and < denotes
the natural ordering on each of these domains. We prove that the second structure is model-theoretically
wild while the other three structures are model-theoretically tame. Moreover, all these results can be seen
as examples where number-theoretic randomness yields model-theoretic consequences.

§1. Introduction. In [9], Kaplan and Shelah showed under the assumption of
Dickson’s conjecture that if Z is the additive group of integers implicitly assumed to
contain 1 as a distinguished constant and a �→ – a as a distinguished function, and
if Pr is the set of a ∈ Z such that either a or – a is prime, then the theory of (Z; Pr) is
model complete, decidable, and super-simple of U-rank 1. From our current point
of view, the above result can be seen as an example of a more general phenomenon
where we can often capture aspects of randomness inside a structure using first-
order logic and deduce in consequence several model-theoretic properties of that
structure. In (Z; Pr), the conjectural randomness is that of the set of primes with
respect to addition. Dickson’s conjecture is useful here as it reflects this randomness
in a fashion which can be made first-order. The second author’s work in [14] provides
another example with similar themes.

Our viewpoint in particular predicts that there are analogues of Kaplan and
Shelah’s results with Pr replaced by other random subsets of Z. We confirm the
above prediction in this paper without the assumption of any conjecture when Pr is
replaced with the set

SFZ = {a ∈ Z : for all p primes, vp(a) < 2},
where vp is the p-adic valuation associated with the prime p. We have that Z is a
structure in the language L of additive groups augmented by a constant symbol for
1 and a function symbol for a �→ – a. Then (Z; SFZ) is a structure in the language
Lu extending L by a unary predicate symbol for SFZ (as indicated by the additional
subscript “u”). We will introduce a first-order notion of genericity which captures
the partial randomness in the interaction between SFZ and the additive structure
on Z. Using a similar idea as in [9], we obtain:
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THE RUDIN–KEISLER ORDERING OF P-POINTS UNDER b = c

ANDRZEJ STAROSOLSKI

Abstract. M. E. Rudin (1971) proved, under CH, that for each P-point p there exists a P-point q strictly
RK-greater than p. This result was proved under p = c by A. Blass (1973), who also showed that each
RK-increasing�-sequence of P-points is upper bounded by a P-point, and that there is an order embedding
of the real line into the class of P-points with respect to the RK-ordering. In this paper, the results cited
above are proved under the (weaker) assumption that b = c. A. Blass asked in 1973 which ordinals can
be embedded in the set of P-points, and pointed out that such an ordinal cannot be greater than c

+. In
this paper it is proved, under b = c, that for each ordinal α < c

+, there is an order embedding of α into
P-points. It is also proved, under b = c, that there is an embedding of the long line into P-points.

§1. Introduction. In [10], M. E. Rudin proved that, under CH, for each P-point
p there exists a P-point q strictly RK-greater than p. A. Blass showed the same [1]
assuming that p = c;1 moreover, he proved that if p = c, then each RK-increasing
�-sequence of P-points is upper bounded by a P-point, and there exists an order-
embedding of the real line into the class of P-points with respect to the RK-ordering.
Since then, the RK-ordering of P-points has been thoroughly investigated; however,
most of the obtained results were proved underMA�–centr, or stronger assumptions,2

usually with complicated proofs and using sophisticated techniques. We prove the
results mentioned above under b = c. Perhaps more importantly, we present a
method of proof that turns out be effective in the study of P-points under b = c. The
ideas used in the present paper were originally presented in an unpublished paper
[12], where the RK-ordering concerned the ultrafilters in the classes of the so-called
P-hierarchy, the first class of which coincides with that of P-points. The method
is based on the use of contours and quasi-subbases, which enables us to employ
surprisingly concise arguments, in contrast with the approaches of some other papers
on similar topics.
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1Actually, all results from [1] quoted in this paper were stated under MA, but the proofs also work
under p = c, as pointed out by A. Blass in [2]; definitions of p, c and few other cardinal invariants are
recalled on page 3.

2Note that A. Blass asks [1, Question 5]: What can be proved about P-points without using MA?
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