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Studying the effect of different in-stream fluvial turbines siting on river morphodynamics
allowed us to witness the onset of a time-averaged, large-scale, alternate distortion of
bed elevations, which could not be exclusively related to the turbine rotor blockage.
The longitudinal profiles of this two-dimensional bathymetric perturbation resemble
those of steady fluvial bars. In this contribution we generalize the problem addressing a
spatially impulsive, asymmetric distribution of drag force in the channel cross-section.
This is experimentally investigated through the deployment of differently sized grids
perpendicular to the flow, and analytically explored as a finite perturbation of an open
channel flow over an erodible sediment layer, as described by a coupled flow–sediment
shallow water equation. The steady solutions of this fluvial morphodynamic problem,
physically represented by alternate bars scaling with the channel width, highlight the
importance of the resonant conditions in defining the spatial extent of the bed deformation.
The equations further suggest that in very shallow flows any asymmetric obstruction
may lead to an upstream propagation of the steady bars, consistent with previous studies
on the effects of channel curvature. In broad terms, this study provides the preliminary
framework to control the onset of river meandering through imposed finite perturbations
of the cross-section. In a more applied sense, it provides a tool to predict non-local
scour–deposition patterns associated with the deployment of energy converters or other
flow obstructions.
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1. Introduction

Alternate migrating bars are large-scale bedforms common in wide, shallow alluvial rivers
with a fairly uniform geometry. They are known to spontaneously form as the result of an
instability of the erodible bed, which tend to amplify natural bed disturbances when the
half-width-to-depth ratio, β, is larger than a critical value βC (Callander 1969; Parker 1976;
Fredsoe 1978; Colombini, Seminara & Tubino 1987; Nelson 1990; Bertagni, Perona &
Camporeale 2018). Linear theories allow for predicting their wavelength, scaling with the
river width, while weakly nonlinear theories allow for predicting their amplitude, scaling
with the river depth.

However, river bars can also be forced by geometrical variations associated with
in-stream obstacles (Struiksma & Crosato 1989; Crosato et al. 2011; Siviglia et al. 2013),
channel width variation (Repetto, Tubino & Paola 2002; Wu, Shao & Chen 2011; Duró,
Crosato & Tassi 2016), channel bifurcation (Bertoldi & Tubino 2007; Redolfi, Zolezzi &
Tubino 2016; Le, Crosato & Uijttewaal 2018; Salter, Voller & Paola 2019) or curvature of
river meanders (Blondeaux & Seminara 1985; Struiksma et al. 1985; Zolezzi et al. 2005).
Forced alternate bars, which are most common in nature, are steady (non-migrating) and
tend to decay in space. A typical configuration of forced bars is the point bar forming
along the inner curve of meandering rivers. Because the forced bar is steady, it imposes a
specific distribution of shear stress along the erodible bed and streambanks, which defines
preferential regions of localized erosion eventually controlling the planform evolution of
meanders (Ikeda, Parker & Sawai 1981; Seminara & Tubino 1992; Parker et al. 2011).

A crucial parameter associated with forced bars (Seminara 2010) is the resonant aspect
ratio βR, originally defined by Blondeaux & Seminara (1985), which controls the direction
of the morphodynamic influence with respect to the external forcing. Zolezzi & Seminara
(2001) showed analytically that steady alternate bars can form upstream or downstream
of a channel curvature discontinuity depending on whether β is larger (super-resonant)
or smaller (sub-resonant) than the resonant value, respectively. Experimental findings and
theoretical considerations (e.g. Struiksma & Crosato 1989; Zolezzi et al. 2005; Crosato
et al. 2011; Siviglia et al. 2013) reveal that any permanent, localized distortion of the
cross-section can potentially trigger the non-local formation of forced bars in a straight
channel. This suggests that the formation of forced bars could be more common than
expected and potentially associated with a broad class of finite, but spatially impulsive,
perturbations. Moreover, it also suggests that some form of control of the spatial evolution
of river bathymetries is possible.

Recent experimental investigations on the interaction between current energy converters
(known as CEC), more commonly known as marine hydrokinetic (MHK) turbines, and
the surrounding river environment, revealed that asymmetric deployments of in-stream
hydrokinetic turbines can trigger large-scale, river bed deformations. Specifically, Musa
et al. (2018b) and Musa, Hill & Guala (2019) showed that asymmetric installation
of hydrokinetic turbines induce an average topography distortion that resembles the
characteristic features of forced, steady, alternate bars. Hydrokinetic turbines harness the
kinetic energy of natural flows such as tides and rivers, to generate renewable energy.
They represent an early stage technology which could be deployed more broadly in natural
or channelized systems, provided we know their feedback effects on the flow and on
both local and non-local erosional–depositional processes. However, as highlighted by
Musa et al. (2019) the relationship between the external forcing (i.e. the turbines) and
the observed morphodynamic effect is far from being clear. Specifically, experiments
suggest that although the shear stress and the blockage ratios are relevant quantities
for the amplification of non-local effects, other parameters must be considered as well.
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Steady alternate bars forced by a localized asymmetric drag

For instance, the aspect ratio β and the corresponding resonant condition βR, controlling
the onset of forced alternate bars, were deemed to be critically important to amplify or
dampen the induced local bathymetric effects.

According to the linear theories (e.g. Struiksma et al. 1985; Zolezzi & Seminara 2001),
the wavelength and the spatial extension of the forced bar pattern should not depend on
the specific nature of the forcing, albeit only on the channel conditions in terms of β as
compared with its resonant value βR, Shields stress and relative roughness. Considering
the experimental results collected on non-local effects induced by MHK turbines (in this
case the forcing or external stressor), two main questions emerged. (i) Can we assume
that the mean bed oscillations observed in Musa et al. (2018b, 2019) are a bar-type
phenomenon? (ii) How do the characteristics of the forcing influence the resulting mean
bed distortion? In order to answer these questions, we hypothesize in this contribution that
the bar forcing effect is induced by the asymmetric drag force exerted by the obstacle
along the cross-section. Our formulation is based on the linearized, two-dimensional
(2-D), depth-averaged shallow water model of Zolezzi & Seminara (2001). The model
is here coupled with a novel internal boundary condition that accounts for the presence of
a localized, asymmetrical drag force, as needed to represent the non-local effect exerted
by hydrokinetic turbines, vegetation patches, and in general by any permeable perturbation
that covers a limited portion of the cross-section.

To bridge the gap between the model assumptions and the experimental results
with hydrokinetic turbines, we performed a second set of experiments where the finite
perturbations are enacted by a porous grid covering a well-defined portion of the
cross-section and consistent with the boundary conditions imposed in the formulation.

The choice of a porous, permeable grid as an obstacle is based on the implementation
and validation of porous disk actuator models for wind turbines, which were able to
capture the essential features of turbine wakes (Sørensen 2011). Another advantage of
a porous grid, asymmetrically installed on one half of the channel, is that it represents
a hydrodynamic perturbation similar to the dual MHK turbines studied in Musa et al.
(2019), but without the depth constrains. This allows us to test a broader range of β-values
and, more interestingly, to move towards resonant conditions. The primary goal is to
reproduce experimentally and theoretically the non-local oscillations in the mean bed that
were observed under intense sediment transport and under an asymmetric distribution
of the drag force (i.e. an asymmetric deployment of turbines or porous grids). The
secondary goal is to explore the parameter space through a validated predictive model
able to quantify non-local scour–deposition processes associated with different finite
perturbations, channel geometry and sediment transport conditions.

In §§ 2 and 3 we describe our theoretical approach, our dimensionless variable space
and the basic equations embedded in the model. Section 4 is focused on the experimental
apparatus, including the measurements of the drag force induced by the grid. Experimental
and numerical results are compared in § 5. Discussion and conclusions follow.

2. Formulation of the problem

To model the effect of the obstacle on the erodible bed, we consider an infinitely
long channel with straight and fixed banks and rectangular cross-section of width 2B∗
(figure 1a), whose bottom is formed by well-sorted, cohesionless particles with median
grain size ds∗, with the star superscript denoting dimensional quantities. The origin of
the Cartesian system of reference (x∗, y∗) is positioned at the right-hand bank, while the
porous grid of width δ∗ is located near the left-hand bank at x∗ = 0.
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Flow
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Figure 1. Geometrical configuration and notation: (a) planimetric view; (b) cross-sectional view (from
upstream), where F∗ indicates the force exerted by the grid on the fluid. The dashed line indicates the internal
boundary that separates the two, semi-infinite domains (channel A and channel B).

We adopt a 2-D, mobile-bed, depth-averaged shallow water model (i.e. Colombini et al.
1987; Crosato et al. 2011; Siviglia et al. 2013), which can be written as a nonlinear
differential system of four equations in the four dependent variables η∗, U∗, V∗, D∗
(bottom elevation, longitudinal and transverse velocity and water depth, respectively, see
figure 1b) in the two independent variables x∗, y∗.

The four dependent variables are made dimensionless as

{U, V} = {U∗, V∗}
U∗

0
, D = D∗

D∗
0
, η = η∗

D∗
0
, (2.1a–c)

where D∗
0 and U∗

0 are the reference values of depth and longitudinal velocity, which are
defined as the uniform flow values that are expected when the channel is undisturbed (i.e.
no obstacle). Similarly, the grain size is made dimensionless as

ds0 = ds∗

D∗
0
. (2.2)

Planimetric coordinates and grid width are scaled with half the channel width B∗ as

x = x∗

B∗ , y = y∗

B∗ , δ = δ∗

B∗ , (2.3a–c)

so that both δ and y range from 0 to 2.
Similarly, the components of the stress vector and the unit bedload vector are made

dimensionless as follows:

{τx, τy} = {τ ∗
x , τ ∗

y }
ρU∗2

0
, {qsx, qsy} = {qs∗

x , qs∗
y}√

gΔds∗3
, (2.4a,b)
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where g, ρ and Δ indicate the gravitational acceleration, the water density and the relative
submerged density of the bed material, respectively.

Finally, the drag force exerted on the grid is scaled as

f = f ∗

ρU∗2
0 D∗

0
, (2.5)

where f ∗ = F∗/δ∗ is the drag force per unit width.
The depth-averaged equations that express the conservation of momentum, liquid and

solid mass can be written in dimensionless form as

U
∂U
∂x

+ V
∂U
∂y

+ 1
Fr2

0

∂H
∂x

+ β0
τx

D
= 0, (2.6a)

U
∂V
∂x

+ V
∂V
∂y

+ 1
Fr2

0

∂H
∂y

+ β0
τy

D
= 0, (2.6b)

∂UD
∂x

+ ∂VD
∂y

= 0, (2.6c)

∂qsx

∂x
+ ∂qsy

∂y
= 0, (2.6d)

where the reference Froude number and aspect ratio are given by

Fr0 = U∗
0√

gD∗
0
, β0 = B∗

D∗
0

(2.7a,b)

and H = η + D indicates the dimensionless water surface elevation (WSE) scaled with
D∗

0.
The solution of the system of partial differential equations (2.6a) needs closure relations

for the quantities τx, τy, qsx, qsy. The shear stress vector is assumed to point in the opposite
direction to the velocity vector, and its magnitude is computed by means of the Chézy
formula,

|τ | = U2 + V2

c2 . (2.8)

Variations of the Chézy coefficient c with water depth can be estimated through of the
following logarithmic expression (Keulegan 1938):

c = 6 + 2.5 log
(

D
ks

)
, ks = k∗

s /D∗
0, (2.9a,b)

where k∗
s is a roughness length that also accounts for the presence of bedforms. When

applied to the reference flow, (2.9a,b) reads

c0 = 6 + 2.5 log
(

1
ks

)
. (2.10)

Equation (2.10) provides a simple relation between ks and the reference Chézy parameter
c0 that can be calculated as

c0 = U∗
0/u∗, (2.11)

where the shear velocity u∗ is obtained from experimental measurements in presence of
migrating dunes.
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To quantify the sediment transport rate, we must consider that only a portion of the
shear stress contributes to transport sediments, suggesting the separation of the so-called
(bed)form drag from the skin friction drag (Einstein 1950) the latter being expressed as

|τs| = U2 + V2

c2
s

. (2.12)

The component of the dimensionless Chézy coefficient due to the skin drag, cs can be
calculated as (e.g. Engelund & Fredsoe 1982; Toyama et al. 2007)

cs = 6 + 2.5 log
(

Ds

2.5ds0

)
, (2.13)

where Ds represents the component of the flow depth due to the skin friction alone. The
magnitude of the solid discharge is then expressed as a function of the skin Shields number
θs, namely

|qs|∗ = Φ(θs)

√
gΔds∗3, θs = |τs|∗

ρgΔds∗ = Fr2
0

|τs|
Δds0

. (2.14a,b)

The function Φ(θs) can be estimated by means of the widely used bedload formula of
Meyer-Peter & Muller (1948),

Φ = 8 (θs − θcr)
1.5 , θcr = 0.047, (2.15a,b)

where θcr indicates the critical Shields number for incipient sediment transport. Finally,
the direction of the bedload can be calculated (Ikeda 1982; Baar et al. 2018) as a sum
of two angles: the one formed by the velocity vector (with respect to the x-axis) and the
correction due to the bottom gradient in the transverse direction, namely

tan(γq) =
(

V
U

)
, tan(γg) = − r

β0
√

θs

∂η

∂y
, (2.16a,b)

where r is an empirical parameter ranging from 0.3 to 0.6, with r = 0.5 representing a
typical choice in morphodynamic models.

Once the four closure relations are specified, we can complete the mathematical
formulation by specifying the boundary conditions, which derive from considering
impermeable banks,

qsy(x, 0) = qsy(x, 2) = 0, V(x, 0) = V(x, 2) = 0. (2.17a,b)

For more details about the formulation, see Colombini et al. (1987) and Zolezzi &
Seminara (2001).

3. The perturbation approach

The analytical solution is derived using a linear perturbation approach (e.g. Repetto et al.
2002). For an undisturbed (i.e. f = 0) channel, the solution of the system (2.6a) is simply
a uniform flow, with the bed having a constant longitudinal slope S0, as follows:

η0 = −S0β0x, (3.1)

and with unitary values of dimensionless water depth and longitudinal velocity. This
solution is used as a reference state for expanding the general solution in Taylor series

916 A13-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

12
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.122
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in the parameter f :

{η, U, V, D} = {η0(x), 1, 0, 1}︸ ︷︷ ︸
reference solution

(uniform flow)

+ f {η1, U1, V1, D1} (x, y)︸ ︷︷ ︸
first-order (linear)

approximation

+ O( f 2)︸ ︷︷ ︸
higher-order (nonlinear)

terms

, (3.2)

where the subscripts 0 and 1 indicate the reference solution and the first-order
approximation, respectively.

If we assume that the drag force is relatively small with respect to the momentum
carried by the flow, we can expect that all the perturbations with respect to the reference
solution are also small. This allows us to neglect the higher-order terms in the asymptotic
expansion, so that (3.2) becomes linear in the parameter f . Equation (3.2) can be
substituted in the system (2.6a) and in the closure relations, which in turn can be expanded
in Taylor series. Neglecting the higher-order terms will then give a system of four linear
equations with four unknowns {η1, U1, V1, D1}.

The procedure we adopted to obtain the solution of the linear system for our specific
problem is based on three main steps. First, we split the domain in two separate regions
(see figure 1a): the upstream channel A (x = (−∞, 0]) and the downstream channel B
(x = [0, +∞)). Second, we seek a general solution for the two semi-infinite channels,
which can be obtained by expressing the solution as a linear superposition of 2-D Fourier
modes (see Zolezzi & Seminara 2001). Third, we add the effect of the localized momentum
sink produced by the grid by imposing proper matching conditions at the internal boundary
(i.e. at x = 0). As detailed below, this procedure allows for obtaining a unique solution
expressed as a Fourier series.

3.1. The linear solution for the individual channels A and B
A general solution of the steady, linear problem for a straight channel can be readily
obtained by separating the variables and decomposing the transverse structure of the
solution in Fourier modes (see Zolezzi & Seminara 2001). Specifically, for each transverse
Fourier mode m it is possible to find a solution as a sum of four complex exponentials in
x, namely

{η1, U1, D1} = cos(mπy/2)

4∑
j=1

η̃mj{1, umj, dmj} exp(λmjx) m ≥ 1, (3.3a)

V1 = sin(mπy/2)

4∑
j=1

η̃mjvmj exp(λmjx) m ≥ 1, (3.3b)

where, despite the results being complex numbers, only the real part is physically
significant.

In (3.3), η̃mj are independent parameters, while the coefficients {umj, vmj, dmj} and
the wavenumbers λmj, exclusively depend on the basic reference flow. Specifically, the
wavenumbers λmj can be computed by solving the fourth-order polynomial that represents
the dispersion relation, and the sign of their real part, (λmj)R, is fundamental in defining
the spatial structure of the solution.

This can be explained by noticing that for semi-infinite channels, not all the four
components of the solution (3.3) can be considered to build the general solution. Let us
consider for example the downstream channel B: components having positive eigenvalues
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Figure 2. (a) Real part of the eigenvalues λ1j, representing the spatial growth/damping rate of first Fourier
mode (m = 1) as a function the channel aspect ratio β0, here illustrated in logarithmic scale to highlight the
quasisymmetry with respect to the resonant aspect ratio βR. (b) List of compatible eigenvalues for the upstream
( jA) and the downstream ( jB) channel for different Fourier modes (m), depending on the channel being under
sub-resonant or super-resonant conditions. Adapted from figures 3 and 4 of Redolfi et al. (2016).

(i.e. (λmj)R > 0) are exponentially growing in x, so that they are determined by the
downstream boundary condition (see (6.6) of Zolezzi & Seminara (2001)). If the channel
is sufficiently long, this boundary condition does not affect the bed distortion, and the
contribution of the positive eigenvalue vanishes. Similarly, components of the solution
for channel A that show negative eigenvalues (λmj)R < 0 (i.e. exponentially growing in
the upstream direction) are determined by the upstream conditions, and are therefore
identically vanishing when the channel is infinitely long.

For the modes m > 1 the dispersion relation always gives three positive and one
negative eigenvalue (except for extremely wide and shallow channels, having β0 ≥ 2βR).
Conversely, for the fundamental mode m = 1 the sign of (λmj)R varies with the aspect ratio
as illustrated in figure 2(a): when β0 < βR (sub-resonant conditions) three eigenvalues are
negative (i.e. compatible with the channel B) and one is positive (i.e. compatible with the
channel A), while the opposite occurs when β0 > βR (super-resonant conditions).

Consequently, the list of compatible eigenvalues depends on channel conditions
as summarized in figure 2(b). As first highlighted by Zolezzi & Seminara (2001),
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the distinction between sub-resonant and super-resonant regimes has a great importance.
The eigenvalues j = {2, 3}, being the smallest in terms of absolute value of the real part,
represent a component of the solution that slowly decays in space. Therefore, depending
on whether they fall in the upstream or in the downstream channel defines the dominant
direction of the morphodynamic influence.

For a more comprehensive description of the phenomena, see Zolezzi & Seminara
(2001) and Redolfi et al. (2016).

3.2. The matching conditions at the internal boundary
The solution for the individual, semi-infinite channels of (3.3) is mathematically
underdetermined, as all the coefficients η̃ can assume any arbitrary value. To determine the
coefficients, we need to specify appropriate boundary conditions. In particular, we need to
set four matching conditions at the internal boundary. Each condition is specified along the
entire cross-section at x = 0; therefore, it cannot be simply represented by a scalar value,
but as a function of the transverse coordinate y. However, when expanded in Fourier series,
each function reduces to a scalar condition for each Fourier mode.

The first two conditions are simply defined by the water and sediment continuity. The
third relation is derived assuming the conservation of the transverse momentum (i.e. no
significant transverse force exerted by the grid), which implies no jumps of the transverse
velocity across the grid. The above internal boundary conditions can be summarized as
follows:

UA
1 + DA

1 = UB
1 + DB

1 , (3.4a)

2ΦT [UA
1 − cDDA

1 ] = 2ΦT [UB
1 − cDDB

1 ], (3.4b)

VA
1 = VB

1 , (3.4c)

where each variable is evaluated at x = 0, thus consisting of a function of the transverse
coordinate y only. The coefficients, cD and ΦT measure the sensitivity of the Chézy
coefficient and the sediment transport to variations of depth and Shear stress, and can
be easily calculated from (2.9a,b) and (2.15a,b), which give the following expressions:

cD := D0

C0

∂c
∂D

∣∣∣∣
D=D0

= 2.5
c0

, ΦT := θ0s

Φ0

∂Φ

∂θs

∣∣∣∣
θs=θ0s

= 1.5
θ0s

θ0s − θcr
. (3.5a,b)

By combining terms of (3.4) we obtain a rather simple set of matching conditions,

UA
1 (0, y) = UB

1 (0, y), (3.6a)

DA
1 (0, y) = DB

1 (0, y), (3.6b)

VA
1 (0, y) = VB

1 (0, y), (3.6c)

which shows that water depth and both velocity components are conserved across the
grid. It is worth noticing that the above result is characteristic of an equilibrium mobile
bed solution, resulting from an adaptation of the bed until the upstream and downstream
sediment transport capacities are equal. This is not the case in fixed bed conditions, where
in general the upstream depth and velocity differ from their downstream counterparts (see
appendix A).

As anticipated, we then need to specify a fourth condition, which is the key to
incorporate the effect of the drag force in the present model. In mobile bed conditions

916 A13-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

12
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.122


M. Redolfi, M. Musa and M. Guala

Flow

G
ri

d

D∗A

D∗B

x∗

s∗A

f ∗

s∗B

s∗S

Figure 3. Definition of the control volume (shaded area) used to apply the momentum balance across the grid,
with f ∗, s∗A, s∗B and s∗S indicating the forces (per unit width) exerted by the grid, the upstream and downstream
flow and the bottom step, respectively.

we cannot simply assume that the bottom is flat, but we need to consider the possible
formation of an elevation difference near the grid, which can be modelled as a localized
bottom step. There are essentially two ways to obtain the same expression for this elevation
difference.

The first approach is based on a direct application of the momentum conservation across
the grid (see figure 3). In steady flow conditions, the momentum balance (per unit width)
can be expressed as

s∗A + s∗S = s∗B + f ∗I( y), (3.7)

where s∗ indicates the force per unit width, and I is a 0–1 indicator function which vanishes
outside the grid. Considering the grid positioning illustrated in figure 1, I( y) is simply a
(shifted) Heaviside function, namely

I( y) =
{

1 y > (2 − δ)

0 elsewhere
. (3.8)

Since the upstream and the downstream flow have the same depth and velocity, they
also carry the same momentum (i.e. s∗A = s∗B). Consequently, the momentum balance
(3.7) reduces to

s∗S = f ∗I( y). (3.9)

It is therefore crucial to evaluate s∗S, namely the longitudinal force exerted by the
potential bottom step. This force can be modelled by assuming a hydrostatic distribution
over the step (Fraccarollo & Capart 2002), calculated using the average between the
upstream and the downstream depth as follows:

s∗S = ρg
D∗A + D∗B

2︸ ︷︷ ︸
hydrostatic pressure

(η∗A − η∗B)︸ ︷︷ ︸
step height

. (3.10)

Equating (3.9) and (3.10) and expressing the result in dimensionless form, gives

1
Fr2

0

DA + DB

2
(ηA − ηB) = fI( y), (3.11)

which, by neglecting the higher-order terms in the Taylor expansion (3.2), gives

ηA
1 − ηB

1 = Fr2
0I( y), (3.12)
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which indicates that the bed elevation gap is proportional to the intensity of the forcing
effect f . It is worth noticing that the result of (3.12) would be the same if the hydrostatic
pressure on the step was evaluated using either the upstream or the downstream depth
instead of the mean, which makes this choice irrelevant for the linear analysis.

The second approach is based on the energy balance, which can be written in the
following dimensionless form:

ηA
1 + DA

1 + Fr2
0UA

1 = ηB
1 + DB

1 + Fr2
0UB

1 + Δe/f , (3.13)

where Δe indicates the loss of specific energy. Considering (3.6) the energy balance
becomes

ηA
1 = ηB

1 + Δe/f . (3.14)

As detailed in appendix A, the energy loss induced by the grid can be estimated as

Δe/f = I( y)Fr2
0, (3.15)

which leads to exactly the same result as in (3.12).
Summarizing, the set of four matching conditions given by (3.6) and (3.12) reads

ηA
1 (0, y) = ηB

1 (0, y) + Fr2
0 I( y), (3.16a)

UA
1 (0, y) = UB

1 (0, y) , (3.16b)

VA
1 (0, y) = VB

1 (0, y) , (3.16c)

DA
1 (0, y) = DB

1 (0, y) , (3.16d)

where all the primary variables are conserved except for the bed elevation, which exhibits
a step that is proportional to the drag force per unit width f . It is important to note that the
internal boundary condition represents the main theoretical contribution of this work that
enables the extension of the morphodynamic influence framework of Zolezzi & Seminara
(2001) to generic alterations of the cross-section as a function of its geometrical and drag
properties.

All the terms of (3.16), except for I( y), are represented as a Fourier series in the
transverse direction y. To obtain a separate solution for the individual Fourier modes, we
need to expand also the indicator function, which gives

I( y) =
∞∑

m=0

Âm cos(πy/2), (3.17)

whose coefficients can be calculated as

Âm =

⎧⎪⎨
⎪⎩

δ

2
m = 0

− 2
mπ

sin[mπ(1 − δ)/2] m ≥ 1
. (3.18)

In practice, the series needs to be truncated to a number of Fourier modes N, which
provides the approximated distribution of I( y) that is illustrated in figure 4(a). For the
analysis of the model results and the comparison with laboratory experiments, N = 10
modes were deemed to be sufficient to accurately represent the effect of the drag force
distribution on the channel morphology.
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1.4(a) (b)
Original function

N = 1 expansion
N = 2 expansion
N = 5 expansion
N = 10 expansion
N = 20 expansion

1.2

1.0

0.8

0.6

0.4
δ

0.2

I (
y)

 (
–
)

–0.4

–0.2

0 0.5 1.0

y (–)

1.5 2.0 0 0.5 1.0

δ (–)

1.5 2.0

0

1.0

m = 0
m = 1
m = 2
m = 3
m = 4

0.8

0.6

0.4

0.2

0

–0.2

A m
 (

–
)

–0.8

–0.6

–0.4

Figure 4. Fourier series expansion of the indicator function that specifies the transverse distribution of the drag
force (3.17). (a) Fourier representation depending on the number of modes N (example with grid size δ = 0.6).
(b) Amplitude the Fourier coefficients (3.18) depending on δ: the dotted line indicates the one-dimensional
(1-D) component of the expansion; the dashed lines refer to the odd modes; the solid lines indicate the even
modes, which vanish when the obstruction occupies half of the channel width (i.e. at δ = 1).

3.3. The 1-D component of the solution
The 1-D component of the steady solution gives unperturbed depth, longitudinal velocity
and bed slope, but a difference in bed elevation across the grid. This elevation drop is
simply proportional to the Â0 component of the Fourier expansion (dashed line of figure 4),
namely

ηB
0 = ηA

0 + Â0, (3.19)
and is associated with an equal gap in the free surface elevation.

In subcritical (i.e. Fr0 < 1) conditions, the elevation difference Â0 is expected to develop
as a deposition in the upstream channel, where the flow tends to slow down due to the
presence of the grid. This deposition front gradually propagates in the upstream direction,
until the solution eventually attains uniform-slope conditions.

3.4. The 2-D component of the solution
Expressing the solution in the form of (3.3) for both channel A and channel B, and
substituting into the four matching conditions (3.16) gives a set of relationships for the
coefficients η̃ as follows: ∑

j∈jA
η̃A

mj =
∑
j∈jB

η̃B
mj + Fr2

0Âm

∑
j∈jA

η̃A
mjumj =

∑
j∈jB

η̃B
mjumj

∑
j∈jA

η̃A
mjvmj =

∑
j∈jB

η̃B
mjvmj

∑
j∈jA

η̃A
mjdmj =

∑
j∈jB

η̃B
mjdmj

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀ m > 0, (3.20)

which provides a set of 4m equations for the 4m unknowns η̃A
mj ( j ∈ jA), η̃B

mj ( j ∈ jB).
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DS

d∗
o

d∗
w

h∗

δ∗
US

Figure 5. Experimental set-up for tests with porous grid. Dashed lines represent the streamwise transects
scanned by the submerged sonar: the red line refers to the drag side (DS) (i.e. the half-channel obstructed
by the grid), the blue line refers to the unobstructed side (US); both transects are located at the centre of
the half-channel. The mesh is a stainless steel woven wire cloth, with a total width spanning half-channel δ∗ =
B∗ = 0.45 m and height depending on the specific experiment (see table 1). The wire diameter is d∗

w = 0.002 m
and the size of the opening is d∗

o = 0.01 m (see insert, top left-hand corner). The insert in the upper right-hand
corner shows the mesh attached to the measuring system used for the estimation of the drag coefficient.

The linear system (3.20) can be solved for each Fourier mode m independently,
providing the values of the coefficients η̃. This allows us to uniquely determine the solution
for the four dependent variables expressed by (3.3).

4. Experimental set-up

The experiments were carried out in the Tilting Bed Flume facility at St. Anthony Falls
Laboratory at the University of Minnesota. The open channel flume is 15 m long, 0.9 m
wide and has slope adjustment capability that ranges from −1 % to 6 %. In our runs, the
slope was set to approximately 0.15 %. The water discharge Q∗ is drawn directly from
the adjacent Mississippi River and it is controlled by a calibrated actuating valve. The flow
enters the channel through a 0.1 m long cobble stone wall and two rows of vertical cylinders
of 0.05 m diameter and 0.05 m spacing, to break up large-scale turbulent structures. The
channel is filled with a 0.2 m thick layer of coarse quartz sand with median grain ds∗ =
1.25 mm. A sediment recirculation system ensures continuous sediment supply, which
allows for maintaining the longitudinal bed slope in equilibrium.

A porous grid of width δ∗ = 0.45 m was placed 6.4 m from the inlet, asymmetrically
within the cross-section, and spanning half of the channel width (see figure 5). The height
of the grid varied for different cases; except for G-H05 where the wall was set at mid-depth,
the grid always extended above the water surface (see table 1). The grid is a stainless
steel woven wire cloth, with a wire diameter of d∗

w = 0.002 m and an opening size of
d∗

o = 0.01 m. A mesh specific drag coefficient of cd = 0.33 was estimated towing the
grid at constant speed through quiescent water, and measuring the resulting horizontal
force (see top right-hand insert in figure 5 and the supplementary information in Musa
et al. (2018b)), and was used to estimate the drag force F∗ that is reported in table 1.
The drag coefficient was observed to be Reynolds independent within the measured range
(Reh = 0.5 − 2 × 105, where Reh is referred to the grid height).

Table 1 summarizes the parameters for the laboratory experiments. The data set used
here represent approximately 8–9 hours of measurements at the final stage of experimental
runs, which extended between 17 and 35 hours. The shear velocity u∗ was estimated
using the measured mean water surface slope and then used to evaluate the reference
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Parameter G-D1 G-D2 G-H05 T1

Hydraulics
Q∗ 0.091 0.048 0.091 0.141 m3 s−1

D∗
0 0.19 0.12 0.19 0.26 m

B∗ 0.45 0.45 0.45 0.45 m
β0 2.4 3.9 2.4 1.7
βR 9.9 7.4 10.0 11.5
U∗

0 0.54 0.46 0.54 0.61 m s−1

S0 0.182 0.200 0.189 0.181 %
ds∗ 0.00113 0.00113 0.00113 0.00113 m
u∗ 0.058 0.048 0.059 0.068 m s−1

c0 9.3 9.6 9.2 8.9
θ0 0.184 0.125 0.189 0.251
Fr0 0.40 0.43 0.40 0.38
ReD 1.01 × 105 0.53 × 105 1.01 × 105 1.56 × 105

Reh 1.01 × 105 0.53 × 105 0.59 × 105 —
Rep 153 153 153 153

Porous grid/miniature turbines
d∗

w 0.002 0.002 0.002 — m
d∗

o 0.01 0.01 0.01 — m
ξ 71 71 71 — %
δ∗ 0.45 0.45 0.45 — m
h∗/D∗

0 1 1 0.59 —
d∗

T — — — 0.15 m
F∗ 5.8 2.8 3.0 6.7 N

Table 1. Flow, channel, sediment and grid experimental parameters, including flow, grid and particle Reynolds
numbers, ReD = U∗

0 D∗
0/ν, Reh = U∗

0 h∗/ν and Rep =
√

gΔds∗3/ν, respectively, where U∗
0 = Q∗/(2B∗D∗

0) is
the cross-sectional velocity and ν is the fluid kinematic viscosity. Here β0 = B∗/D∗

0 represents the channel
aspect ratio, with βR indicating its resonant value (Blondeaux & Seminara 1985). The shear velocity u∗ was
estimated using the energy method as u∗ = √

gD∗
0S0, where S0 is the free water surface slope measured in an

undisturbed region. Here θ0 is the Shields parameter, Fr0 is the Froude number, c0 is the total flow resistance
estimated according to (2.11). Here ξ is the opening area percentage (i.e. porosity) of the mesh, F∗ is the drag
force exerted by the grid of width δ∗.

Chézy parameter c0 through (2.11). The range of hydraulic conditions and the sediment
diameter used in the experiments led to the formation of 2-D migrating dunes. Therefore,
the resistance estimated using the measured water slope represents the total resistance,
accounting from both the skin and form drag. In order to calculate the skin fraction,
employed to evaluate the sediment transport in the model, (2.13) was used.

Bed and WSEs were constantly monitored using a sonar Olympus Panametrics
C305-SU submersible transducer and a Massa M5000 ultrasonic sensor, respectively. The
instrumentation was mounted on a programmable automated carriage (data acquisition),
capable of traversing the entire length and span of the flume. The measurements were
precisely synchronized with spatial coordinate locations and repeated in time, resulting in
space–time resolved bed profile z∗

b(x
∗, t∗) and water surface profile z∗

w(x∗, t∗). Specifically,
two longitudinal transects were continuously monitored in time and space during the
experiments as shown in figure 5: one transect in the centre of the US (blue line,
y = 0.5) and the other in the centre of the DS (red line, y = 1.5). The total measuring
time between consecutive passes (i.e. the time resolution of our data), is approximately
62 s. The detrended bed elevation, Δz∗

b(x
∗, t∗) is calculated by removing the average
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bed slope, obtained by linearly fitting the mean of the two time-averaged profiles DS and
US. Migrating dunes were characterized by average height and length of approximately
0.06 and 1.2 m (respectively) for the G-D1 case, and 0.03 and 0.8 m for case G-D2 (see
supplementary material available at https://doi.org/10.1017/jfm.2021.122); dunes observed
during G-H05 had similar characteristics to G-D1 since the two cases were performed in
the same hydraulic conditions. In all the experiments, bedforms did not show significant
spatial patterns, except for a slight tendency to become more prominent in the downstream
part of the flume (see Kleinhans 2005). Comparisons with baseline experiments, with no
obstructions, show that the presence of the grid does not, however, produce any systematic
effects on the dune height, though it may affect their migration velocity. To filter out bed
level fluctuations due to the migration of dunes, the detrended elevation is averaged in
time (for approximately 16 wave periods for G-D1 and 36 wave periods for G-D2) for each
point in space, which gives the net bed surface deformation Δη∗(x∗). This experimental
variable can be compared with the model results, where the bed deformation Δη∗(x, y) is
calculated as the perturbation from the reference, uniform flow solution η∗

0(x
∗).

5. Results

5.1. Experimental validation
Three different finite perturbations were tested experimentally to quantify the model
performance and its limitations. In order to appreciate bed deformation effects within
reasonable continuous run times, we chose a relatively high shear stress and corresponding
transport intensity, with the only downside effect of migrating dunes. Filtering out the
bedforms required temporal averaging at each bed elevation, which was allowed by
continuous spatiotemporal monitoring of the two longitudinal transects. Experiments
G-D1 and G-D2 were performed in similar sediment transport conditions (with fairly 2-D
migrating dunes) but different hydraulic conditions. In both runs the grid extended to the
free surface (h∗/D∗

0 = 1), but the water depth was decreased from 0.19 m (G-D1) to 0.12 m
(G-D2), and consequently the aspect ratio β0 was increased. The same imposed transport
conditions, i.e. θ0, enforced by reducing the discharge but increasing the channel slope,
implied that 2-D dunes were still observed, albeit reduced in size consistently with the
water depth reduction. The purpose of experiments G-D1 and G-D2 was to investigate the
effect of the parameter β0 without changing the sediment transport capacity.

Figure 6(a,b) shows the time-averaged bed elevation longitudinal profiles measured
during the two experiments G-D1 and G-D2 (dashed lines). In both cases, the longitudinal
profiles US and DS reveal a large-scale alternate oscillation of the mean bed consistent
with our previous observations (Musa et al. 2019), and correctly reproduced by the
model (solid lines). Specifically, the bed profile along the DS exhibits a localized scour
downstream of the grid, followed by a local deposition. Adjacent to it, the US line shows
the characteristic erosion-dominated region on the unobstructed side, where the flow is
expected to be slightly accelerated (Musa et al. 2019). Downstream, the two profiles switch
at some characteristic distance from the wall, showing a non-local scour on the DS line
and a non-local deposition along the US line. The main difference between the G-D1 and
G-D2 cases, is the location of the switch point, i.e. the point where the two streamwise
profiles intersect. In experiment G-D2 (figure 6b), the switch occurs farther downstream if
compared with experiments G-D1 (x∗ = 3.7 versus x∗ = 2.3 m, corresponding to x = 8.2
versus x = 5.1). From a morphodynamic prospective, this result indicates that an increase
in aspect ratio β0, leaving other parameters approximately invariant, leads to a longer
wavelength of the mean bed oscillation.
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Figure 6. Comparison between bed elevation Δη∗ profiles of the US (blue) and DS (red) from the modelled
results (solid line) and the experimental time-averaged detrended measurements (dashed line), for (a) G-D1
and (b) G-D2.

In general the model better reproduces the observed profiles for experiment G-D2,
while for experiment G-D1 it underestimates the amplitude of the inverse bed deformation
downstream of the switch point. This can be motivated by the low width-to-depth ratio of
experiment G-D1. In these conditions the 2-D shallow water approach is indeed pushed
near its limits, due to: (i) the potentially stronger effect of the shear layer downstream of the
grid, which is not accounted for by the model; (ii) the increasing influence of the lateral
walls; (iii) the relatively higher importance of three-dimensional (3-D), non-hydrostatic
effects. For example, the elevation drop downstream of the grid observed in the experiment
G-D1 is almost doubled with respect to the case G-D2. This suggests that the scour depth
scales with the water depth, as typical of phenomena of local scour. Being associated with
turbulence and 3-D vortex structures (e.g. Melville & Raudkivi 1977), this kind of erosion
process cannot be reproduced within our depth-averaged scheme.

The 3-D structure of the flow downstream of the grid can also be deduced from the
profiles of WSE. Measured profiles for the experiments G-D1 reported in figure 7(b) reveal
the presence of steady surface waves on the unobstructed side, and a sudden drop of the
WSE immediately after the grid, followed by a rapid, though partial, recovery. Comparison
with the modelled water surface profiles illustrated in figure 7(a) shows that the transverse
deformation of the water surface downstream of the grid is rather modest (i.e. of the order
of few millimetres), in both model and experiment, and tends to be opposite with respect
to the bed deformation (i.e. the WSE is lower at the DS). Figure 7(a) also shows a clear
difference in the average elevation of the upstream and the downstream parts. Noteworthy,
the mean elevation gap ΔH∗, obtained by averaging the two profiles and comparing the
two linear trends, is very similar to the modelled value. This is also confirmed by the same
analysis performed on the experiment G-D2, which gives ΔH∗ = 0.0027 m for both the
measurements and the model. This suggests that the inner boundary condition we adopted
is correctly predicting the energy drop across the grid, and the associated differences in bed
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Figure 7. Modelled (a) and measured (b) longitudinal profiles of WSE along the drag side and the unobstructed
side for the experiment G-D1. The dashed lines indicate the linear trend, obtained by averaging the US and DS
profiles and performing a separate interpolation for the upstream and downstream sections. The mean elevation
gap ΔH∗ is computed by comparing the upstream and downstream linear trends at the location of the grid
(x∗ = 0).

and WSEs. It is worth highlighting that linear profiles of the WSE are characteristics of the
mobile bed solution at equilibrium. In the case of a non-erodible bed, the water surface is
expected to generate upstream backwater profiles, as in the example shown in appendix A.

Finally, cross-sectional profiles of the streamwise velocity were compared between
model and measurements for G-D1 at different x-locations (see figure 8), unveiling the
ability of the model to capture both the magnitude of the variations and the shape of
the profile. Note, however, that when moving downstream from the grid, the measured
transverse gradient near the channel centreline (y = 1) tends to decay more rapidly than
expected. This suggests that the lateral exchange of longitudinal momentum, which is
not considered in the model, may actually play an important role, especially at low
width-to-depth ratios. It is also worth noting that the velocity does not switch with the
bed, but a deficit on the drag side is maintained at least until x = 5.9. This is correctly
captured by the model, and can be explained by considering that a phase lag exists between
the bed deformation and the velocity (see Tubino, Repetto & Zolezzi 1999). The velocity
is expected to invert farther downstream, unless the damping rate is high enough that the
reversal is practically invisible.

Overall, the above results suggest that: (i) our internal boundary condition is correctly
formulated; (ii) our low-dimensional model is able to capture the phenomenology of the
temporally invariant bed distortion, despite the presence of relatively high migrating dunes
and the low-β conditions, for which the 2-D shallow water approach is probably pushed
near its limits.

5.2. Non-homogeneous drag distribution: mid-depth porous grid and hydrokinetic
turbines

According to linear theories for steady bars (e.g. Struiksma et al. 1985; Zolezzi &
Seminara 2001), the oscillation wavelength should depend only on the basic flow
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Figure 8. Measured (thick line) and modelled (thin line) cross-sectional profiles of dimensionless streamwise
velocity at different distances x = x∗/B∗ from the grid, for experiment G-D1.

parameters, and not on the specific nature and intensity of the forcing. To test the validity
of this assumption and to quantify whether the model is able to capture the effects
induced by MHK turbines observed in Musa et al. (2019), we consider the case of a
non-homogeneous drag distribution in the cross-section. The simplest choice is a grid
extending to half-depth, and thus characterized by a 50 % reduced area and overall drag
force.

The G-H05 experiment is in the same hydraulic conditions of G-D1, though with the
porous grid set at h∗ = 0.11 m corresponding to h∗/D∗

0 = 0.59, as opposed to h∗ = 0.19 m
(h∗/D∗

0 = 1) for G-D1 (see table 1). The difference between these two cases is only in the
obstacle characteristics: same lateral obstruction δ∗, same transport conditions θ0, same
β0 but a reduced drag force exerted on the flow. Note that our model is not able to capture
the vertical details of the motion around the grid, therefore the depth-averaged solution is
the same as for the case of an equivalent virtual grid extending to the free surface, but with
a reduced drag coefficient (e.g. larger mesh size) to match the total drag force imposed on
the cross-section.

Results are shown in figure 9(a). The theory predicts with reasonable agreement the
switch point, thus the wavelength, in agreement with the G-D1 case characterized by
the same β0, but fails to predict the oscillation amplitude. The theoretical mean bed
profiles in the proximity of the grid correctly reflect the reduced drag force of case
G-H05, as compared with G-D1. We speculate that the 3-D effects associated with flow
separation and shear layers developing at the upper edge of the grid, not accounted in
the depth-averaged equation of the model, are responsible for the discrepancy. The local
erosion and deposition effects induced in the proximity of the grid seem to be governed
by a near wall drag force, as compared with the more diluted drag force distributed in
the vertically homogeneous cross-section imposed by the 2-D approximation. In terms of
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Figure 9. Comparison between bed elevation Δη∗ profiles of the US (blue) and DS (red) from the modelled
results (solid line) and the experimental time-averaged detrended measurements (dashed line), for (a) G-H05
and (b) hydrokinetic dual-turbines asymmetric installation from Musa et al. (2019). Hydraulic and geometrical
conditions are summarized in table 1 (experiment T1). The force per unit width f is normalized as expressed
by (2.5) considering δ∗ = 0.45 m (extending up to the tip of the inner turbine).

forced bar wavelength, however, we suggest that the model can be adequately extended
to non-homogeneous drag distributions and can thus be tested to reproduce the non-local
geomorphic effects observed during the asymmetric deployment of MHK turbines in a
specific cross-section.

In figure 9(b) we include the mean bed spatial evolution of the dual-turbine installation
reported in Musa et al. (2019). The two turbines are spanwise aligned and deployed so that
the distance between the blade tip and the lateral wall, as well as the distance between
the blade tips of the two turbines, are confined to one rotor radius. As opposed to the
turbine vane and staggered array installation of Musa et al. (2018b), the dual turbine set-up
allows us to impose a drag force at a well-defined cross-section, consistently with the
grid experiments. The drag force is consistent with the thrust experienced by the turbine
models, which was measured using a towing tank system (see top left-hand corner insert
in figure 5 and Musa et al. (2018b) for further details). We recall that the drag (or thrust)
exerted by a turbine is proportional to the tip-speed ratio, defined as the ratio between
the blade tip tangential velocity and the incoming flow velocity at hub height (Bahaj
et al. 2007). Consistent with the previous approach, we distribute the combined drag
force of the two rotors into an area extending from the lateral wall to the blade tip of
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the turbine closest to the channel centreline (i.e. δ∗ = 0.45 m). The comparison between
the experiments and the theory shows that, despite the very low values of the aspect ratio
(β0 = 1.7), the wavelength is reasonably captured and the amplitude is at least of the
same order of magnitude. However, the whole bed distortion is shifted downstream, as
compared with the porous grid case. We do not have a rigorous explanation for this, rather
a speculative argument based on specific turbine wake evolution. Typically turbine wake
meandering occurs at 3–5 diameters downstream of the rotor, corresponding to a wake
expansion resulting from the breakup of the tip vortex structure (e.g. Hong et al. 2014;
Dasari et al. 2019) and possible interaction with the hub vortex (see e.g. Howard et al.
2015). When wake meandering occurs in turbine arrays the wakes interact, merging or
oscillating coherently (Chawdhary et al. 2017), providing a more uniform velocity deficit
region, consistent with the depth-averaged model assumption. If we consider a five rotor
diameter spatial lag in the drag force localization, representative of the near-wake to
far-wake transition, the theoretical prediction and the experimental results have a much
better agreement with the other porous grid cases, which are characterized by a spatially
uniform velocity deficit immediately downstream of the grid. Another related possible
explanation for the spatial lag observed in both experiments is the vertical location of
the obstruction. The two turbine rotors were installed at mid-depth, leaving a gap of
approximately a half-rotor diameter between the blade lower tip and the sediment bed
(to limit the scour depth at the foundation); oppositely, the grid was partially buried in
the sand, with no gap between the obstruction and the sediments (see inserts in figure 9).
As suggested by Musa, Heisel & Guala (2018a), the accelerated flow occurring within the
gap between turbine rotor and sediments, locally increases the shear stress and generates
a characteristic localized scour. Such local erosion is spatially larger than regular bridge
pier scour (Hill et al. 2014) and, in this case, larger than the one created by the grid. We
argue that both mechanisms (wake merging and increased gap velocity) contribute to the
downstream displacement, thus spatially lagging the morphodynamic influence. In all the
experiments so far reported, the maximum amplitude observed was located approximately
0.5–1 m farther from the obstruction as compared with theoretical prediction, which is
due to the fact that the theory does not reproduce flow separation and shear layers, and
therefore tends to predict more contiguous geomorphic effects. This limitation is likely to
be exacerbated when the obstacle is formed by MHK turbines with potentially interacting
wakes and enhanced foundation scour.

The overall comparisons reported in figures 6 and 9 suggest the following ability and
limitations of our theoretical approach. (i) Under sub-resonant conditions, the amplitude of
the geomorphic oscillation depends on the forcing, as predicted, while the wavelength is
defined by the β0 proximity to the resonant aspect ratio βR. (ii) The best performance
of the theoretical model is achieved when the finite perturbation can be rigorously
modelled as a depth averaged 2-D drag force, implying that any 3-D effects associated
with non-homogeneous distribution of the drag force will not be captured, thus inducing
discrepancies between predicted and observed mean bed elevation trends. (iii) The spatial
decay of the mean bed distortion is overestimated by the theory, especially in the range
of low, sub-resonant β0 explored experimentally so far. (iv) The occurrence of migrating
bedforms does not compromise the modelling predictions, providing bedform resistance
is accounted for in the model, and the bedforms are filtered out in the experiment. We
infer that the model capabilities are satisfactory enough to allow us to explore more
systematically the morphodynamic changes driven by a wide range of obstruction and
channel geometries, characterized by different combinations of dimensionless parameters
not tested experimentally. In the following we perform simulations aimed at isolating
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Figure 10. Effect of the dimensionless drag force, f , on the bed elevation at the cross-section of maximum
relief (x = xmax = 1.73, see figure 11). The dashed line refers to an unobstructed channel ( f = 0), where no
average bed deformation is expected. Parameters as in experiment G-D2.

the geomorphic response under varying obstruction spanwise extent and characteristics,
channel aspect ratio β0, Froude and Shields numbers.

5.3. Effect of the intensity and spatial distribution of the drag force
Under given flow and transport conditions, our analytical solution is proportional to the
dimensionless parameter f , which is exactly half of the obstacle drag coefficient and thus
reflects a variation in the perturbation induced drag with no change in the blockage area
(e.g. a grid with a finer mesh, or an MHK turbine with a different tip-speed ratio). The
resulting transverse profile of the bed elevation at the cross-section of maximum relief,
evaluated at varying cross-sections and identified as the largest peak-to-trough elevation
difference, linearly increases with the drag force as represented in figure 10. Formally, this
linear relation is valid in the limit of small perturbation; conversely, when Δη becomes
of the order of the water depth, nonlinear terms are expected to significantly affect the
relation between the drag force and the magnitude of the scour/deposition, and a more
sophisticated model would be required to capture the magnitude of the bed deformation.

The effect of the obstruction width is more complex, as δ affects not only the
‘intensity’ of the morphological effect but also the spectral composition of the solution.
To analyse this effect we start by considering the solution for the experiment G-D2,
here used as a reference case. From the fully 2-D representation of the modelled bed
elevation represented in figure 11, we can observe that when the grid occupies half of the
cross-section (δ = 1) the linear solution is perfectly antisymmetrical with respect to y = 1,
with no scour and deposition along the channel centreline.

This is generally not the case, as the shape of the solution can be more rich, especially
near the grid. The general properties of the solution for varying δ can be appreciated by
looking at the amplitude of the Fourier modes illustrated in figure 4(b), which reveals a
few important effects.

(a) First, the amplitude of the mode m = 0 tends to linearly increase with δ. This implies
that the 1-D component of the solution, which gives an increase of the bed elevation

916 A13-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

12
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.122


M. Redolfi, M. Musa and M. Guala

2

y (–) 1

–4 –2

–0.1

�η

0 0.1

0 2 4

x 
=

 1

x 
=

 1
5

x 
=

 x
m

ax

6 8

x (–)
10 12 14 16

0

Figure 11. Contour maps of the modelled bed elevation Δη for the experiment G-D2. The dashed lines indicate
the cross-sections used to analyse the effect of parameters: xmax indicates the section of maximum relief; x = 1
and x = 15 define the ‘near’ and the ‘far’ sections, chosen as representative of local and non-local effects,
respectively. Contour interval is 0.05 and the axes are not to scale.

upstream of the obstruction (see (3.19)), simply depends on the total drag force (F =
f · δ), independent of how this force is distributed along the cross-section.

(b) Second, when δ /= 1 the solution contains both even and odd modes. This implies
that in general the solution is not antisymmetric as in figure 11, but is characterized
by a more complex transverse structure, as illustrated by the example of figure 12(a).
However, the effect of this rich spectral composition is mainly local: since the modes
m > 1 tend to rapidly decay in space, the fundamental mode m = 1 tends to prevail
when increasing x; consequently, the cross-sectional profile at a relatively distant
location is always nearly sinusoidal (figure 12b). The amplitude of this sinusoid is
given by the m = 1 component of the Fourier expansion. Therefore, variations with
δ of the maximum erosion and deposition at x = 15 (figure 13) simply follow the
trend of the Â1 coefficient illustrated in figure 4(b). Oppositely, near the grid (x = 1)
the solution results from the composition of many Fourier modes, which gives a
maximum scour and deposition when δ = 1.4 and δ = 0.6, respectively (figure 13).

(c) Third, the variation of all the modes m > 1 with δ illustrated in figure 4(b) is either
symmetric (odd modes) or antisymmetric (even modes) with respect to δ = 1. This
implies that the 2-D components of the solution in the cases having obstruction
width δ and 2 − δ, respectively, are analogous, except for being flipped around
the channel axis and having deposition and scour inverted. This is observed when
comparing the solution for δ = 0.2 and for δ = 1.8 in the example of figure 12.
For the same reason, the result of figure 13(b) can be simply obtained by flipping
the curves in figure 13(a) with respect to δ = 1 and reversing the sign of Δη.
However, it is worth noting that wide obstruction approaching the full cross-section
would physically induce high velocity gradient and strong shear layers that cannot
be properly resolved in this model. In this regard, the quasisymmetric behaviour of
the bed for δ = 0.2 and 1.8 has to be taken with caution.

Overall, figure 13 shows that non-local effects are maximized when δ = 1 (i.e. grid
covering half the channel width), while when δ = 2 (i.e. grid occupying the entire
cross-section) the 2-D component of the solution clearly vanishes. This reveals that the
ability of the obstruction to generate forced bars depends on the degree of asymmetry of
the drag force, rather than on its total amount. It is worth noting that if the drag force was
distributed symmetrically (e.g. two turbines at the two sides of the channel), no alternate
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Figure 12. Effect of the obstruction size on the bed elevation along two representative cross-sections (see
figure 11): (a) ‘near’ section (x = 1); (b) ‘far’ section (x = 15). The dashed line provides an example with the
obstruction occupying more than half the channel width (δ = 1.8). Parameters as in experiment G-D2, except
for the aspect ratio (β0 = 6).
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Figure 13. Effect of the obstruction size on (a) the minimum and (b) the maximum bed elevation along the two
representative cross-sections located at x = 1 (‘near’ section) and at x = 15 (‘far’ section, see figure 11). The
vertical dotted lines indicate an obstruction that occupies half the channel width. Parameters as in experiment
G-D2, except for the aspect ratio (β0 = 6).

bars would be generated, but a pattern of rapidly damping steady central bars (see Duró
et al. 2016) would be expected to develop near the obstruction.

5.4. Effect of the reference flow parameters
The characteristics of the reference uniform flow are uniquely defined through three
dimensionless parameters. In this section, we investigate the effect of varying reference
flow conditions by adopting the aspect ratio β0, the skin friction Shields number θ0s and
the Froude number Fr0 as independent parameters.
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Figure 14. Effect of the channel aspect ratio on the longitudinal bed elevation profiles on the drag side
(calculated near the bank, i.e. at y = 2). The parameter ε = (β0 − βR)/βR measures the distance from the
resonant point (βR = 7.42). The other parameters are kept the same as in experiment G-D2.

5.4.1. Effect of the channel aspect ratio
We first analyse the effect of the aspect ratio β0, which is notoriously the main controlling
parameter for the formation of bars in mobile-bed channels (e.g. Colombini et al. 1987).
Physically, exploring the β0 parameter under invariant sediment transport conditions and
hydraulic forcing consists in varying the width of the channel while maintaining the same
depth. As illustrated in figure 14, the resulting bed level profiles highly depend on β0.
Specifically, the solution is highly influenced by the distance from resonant conditions,
which can be measured though the following parameter:

ε = β0 − βR

βR
, (5.1)

where the resonant aspect ratio βR depends on Shields number and Chézy coefficient as
reported in Redolfi, Zolezzi & Tubino (2019). When ε approaches zero, a quasiperiodic
bed oscillation tends to form in the downstream channel, while for increasingly negative
values of ε the solution is highly damped in space, so that the influence of the obstruction
is more local.

The damping rate of the solution can be quantified though the complex eigenvalues λmj
(see (3.3)), whose real part defines the spatial growth (or decay) of each component of the
solution:

exp[(λmj)Rx]. (5.2)

Considering that the spatial structure of the overall solution is mainly controlled by the
eigenvalue having the smaller growth/decay in space (λ12), we can define our damping
rate as −(λ12)R. The significance of this damping rate is clear when considering that
its inverse represent the length scale of the spatial influence exerted by the obstruction.
Specifically, we conventionally defined an adaptation length, L, as the distance at which
the amplitude of the envelope illustrated in figure 15(a) (dashed line) reduces by a factor
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Figure 15. Effect of the channel aspect ratio β0 on the bed distortion parameters illustrated in panel (a),
where adaptation length is conventionally defined as the distance L at which the envelope of the bed elevation
local maxima (dashed line) reduces by a factor exp(−2) � 0.14 (in this example from 0.2 to approximately
0.028); (b) damping rate and adaptation length; (c) maximum deposition; (d) position of the switch point. The
parameter ε = (β0 − βR)/βR, which measures the distance from the resonant point, is also reported. The other
parameters are kept the same as in experiment G-D2.

exp(−2), namely
Δη(x + L)

Δη(x)
= exp(−2) � 0.14, (5.3)

which, considering (5.2), gives L = −2/(λ12)R.
The results reported in figure 15(b) reveal that for the lowest values of β0 the adaptation

length is nearly 20, which indicates that the amplitude of the alternate bars sharply decays
in a single wavelength (see first line of figure 14). Conversely, near the resonant conditions
the damping rate tends to vanish, allowing for a much longer downstream influence. Note
that when approaching resonant conditions, the reduced damping rate is also responsible
for some local effects, such as the evolution of the maximum elevation and the position of
the switch point, as illustrated in figures 15(c) and 15(d), respectively.

5.4.2. Effect of the Shields number
The bedload transport rate directly depends on the skin friction Shields number θ0s.
Therefore, to analyse the effect of different transport conditions, independently on all the
other flow parameters, we varied θ0s by fixing the aspect ratio β0, the Froude number Fr0
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Figure 16. Longitudinal bed elevation profiles on the drag side (calculated near the bank, i.e. at y = 2),
depending on: (a) the skin Shields number θ0s; (b) the Froude number Fr0. The other parameters are kept
the same as in experiment G-D2.

and the Chézy coefficient c0. This physically corresponds to an ideal experiment where
only the sediment density (i.e. the parameter Δ) is varied, keeping invariant conditions in
terms of channel width, water depth and velocity.

The effect of θ0s on the equilibrium bed elevation profiles is reported in figure 16(a).
The associated variations of damping rate, maximum elevation and switch point can be
explained in terms of distance from the resonant point. When increasing the transport rate,
the resonant aspect ratio βR significantly increases, and therefore the parameter ε becomes
increasingly negative, i.e. farther from resonant conditions. Consequently, the θ0s effect is
qualitatively opposite, though weaker, than the effect of β0 illustrated in figure 15. More
specifically, an increase of the Shields number affects the solution in two distinct ways: (i)
it decreases the deflection of the sediment flux as predicted by (2.16b); and (ii) it reduces
the coefficient ΦT of (3.5b), which measures the degree of nonlinearity of the sediment
rating curve. These two ingredients have an opposite effect on the resonant aspect ratio βR,
but the second clearly dominates (see Redolfi et al. 2019). This explains why the profiles
in figure 16(a) show a much higher variation at lower values of the Shields number, which
is a consequence of the coefficient ΦT rapidly varying when θ0s approaches the critical
conditions for incipient sediment transport, according to (3.5b). Noteworthy, this would
not be the case when adopting the Engelund & Hansen (1967) sediment transport predictor
(commonly used when modelling sand bed rivers), because this would give a constant
ΦT = 2.5.

This comparison sheds some light on the experimental observations of Musa et al.
(2019), suggesting that the magnitude of the alternate scour–deposition pattern observed
when changing the transport rate in the turbine vane-like configuration essentially depends
on the proximity to the resonant conditions.

5.4.3. Effect of the Froude number
Finally, to test the role of the Froude number alone, we varied Fr0 by fixing aspect ratio,
transport rate and flow friction (i.e. the parameters β0 and θ0s and c0). This corresponds to
an ideal experiment where the channel slope is varied while simultaneously adjusting the
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discharge to maintain the same water depth (i.e. unaltered β0). For example, a steeper slope
would result in an increased flow velocity and thus in a higher Froude number. Moreover,
to keep the same skin friction Shields number θ0s and the same Chézy coefficient c0, a
heavier bed material (i.e. a higher value of the parameter Δ) would be needed.

As illustrated in figure 16(b), the variations of the Froude number have a small effect on
the model solution. In particular, they have vanishing effect on the bed level profiles far
from the grid (i.e. on the eigenvalues λ12 and λ13), while a visible effect can be noticed
near the obstruction. This is in line with experimental studies that showed no substantial
changes in the dynamics of free migrating bars even when the Froude number exceeds
critical conditions (e.g. Ikeda 1984; Redolfi et al. 2020), also consistently with the result
of linear and weakly nonlinear theories (e.g. Colombini et al. 1987).

It is worth noting that, since the density of natural sediments is relatively constant,
Froude and Shields numbers are related together, and cannot be independently fixed. This
is the main reason why the outcomes of the theoretical works are typically reported
as a function of the Shields stress only. However, we found it important to study the
contribution of the two parameters separately, also considering that it is not easy to define
a general relation between c0, θ0s and Fr0 for the case of dune-covered bed. This allows
us to clearly highlight that the Shields number is the relevant parameter, while the Froude
number plays a secondary role. This seems a peculiar characteristic of both forced and
free migrating bars, which distinguish them from both oblique, 3-D dunes and classic 2-D
dunes Colombini & Stocchino (2012).

6. Discussion

Expanding on the effects of the model parameters to explore realistic conditions in which
a partially obstructed river may evolve has profound implications on both fundamental
and applied sciences. Our analytical solutions, even within the limitation of the 2-D
model, provides a first-order prediction of the response of an erodible channel to a
prescribed finite perturbation, opening the possibility to attempt a passive control strategy
to rivers. In the following we (i) discuss on the most sensitive parameters to trigger a
desired fluvial bathymetry; (ii) highlight non-trivial configurations offered by the model
in specific domains of the parameter space; and (iii) present engineering guidelines to limit
bathymetric distortions when energy converters or hydraulic structures are deployed in the
river cross-section.

6.1. Key controls on the solution
The parameters that displayed the largest effect on the bathymetric distortion are inherently
related to the distribution and intensity of the drag force, and on the channel intrinsic
stability, or in other words, on its tendency to amplify or dampen spatially impulsive
variations of the cross-section. The presence of an asymmetric obstruction determines
a local deficit of the downstream velocity, thus inducing an acceleration of the flow on
the unobstructed side. We could argue that this drag-induced local flow distortion can
be amplified/dampened by the erosional depositional processes occurring in the channel.
The spatial extent of the drag force asymmetry is incorporated by the parameter δ. It
is important to note that near the partial flow obstruction, various modes of the linear
solutions are triggered, and not yet dampened, and thus contribute to weakly control the
location of the switch point and the maximum effects induced by δ, mostly confined in the
vicinity of the obstacle. However, it is clear that in the far region the fundamental alternate
mode is dominant and therefore a half-cross-section-wide obstruction (δ = 1, δ∗ = B∗)
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Figure 17. Two-dimensional, depth-averaged velocity field (arrows) and dimensionless bed elevation (colour
map), showing the remarkably different effect of an asymmetric grid placed at x = 0, depending on the
channel falling under (a) sub-resonant conditions (β0 = 6) or (b) super-resonant conditions (β0 = 9). The other
parameters are kept the same as in experiment G-D2, and are associated with a resonant aspect ratio βR = 7.42.
The axes are not to scale.

maximizes the bed deformation (for a given drag force). Whether this deformation is going
to propagate far from the triggering perturbation, crucially depends on the aspect ratio β0
and, more precisely by how close is the channel configuration β0 to the resonant conditions
βR (see Mosselman, Tubino & Zolezzi 2006). The concept of geomorphic flow control can
now be introduced (e.g. Lanzoni et al. 2006; Van Dijk, Van De Lageweg & Kleinhans 2012;
Schuurman et al. 2016): Do we want to minimize the bathymetric effects resulting from
the installation of a set of bridge piers or energy converters on one side of the channel?
Or, do we want to renaturalize a stream, promoting morphological and hydraulic diversity
by introducing a perturbation in the river cross-section? Such long-term goals could be
achieved by calculating βR, assessing the uniform undisturbed flow conditions defining
β0, and testing the model solution under different obstruction strategies.

6.2. Sub-resonant and super-resonant regimes
The value of the channel aspect ratio with respect to the resonant threshold does not
only control wavelength and damping rate of steady bars, but also the possibility of
their occurring upstream of the obstacle. Specifically the direction of the morphodynamic
influence exerted by the grid depends on the sign of β0 − βR, as illustrated in figure 2.
For relatively shallow channels falling under super-resonant conditions (β0 > βR) the
obstruction exerts a distortion of the bathymetry that will propagate far upstream,
manifesting itself as a pattern of steady alternate bars (figure 17b). This is quite a
counter-intuitive solution, especially when considering super-resonant conditions can be
often encountered in relatively steep, gravel-bed rivers (Zolezzi, Luchi & Tubino 2009).

Upstream influence under super-resonant conditions has been theoretically predicted
and experimentally observed for different sources of perturbation, including changes
in channel curvature (Zolezzi & Seminara 2001; Zolezzi et al. 2005) and channel
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bifurcations (Bertoldi & Tubino 2007; Redolfi et al. 2016, 2019). Moreover, this interesting
phenomenon has been numerically reproduced by considering a solid obstruction of the
cross-section (Siviglia et al. 2013).

This work enables the theoretical prediction of the possible upstream influence exerted
by any in-stream structure that tends to slow down the current, and allows for estimating
how the upstream bed distortion depends on channel conditions and spatial distribution
of the drag force. Under super-resonant conditions, gradients of velocity, bed and WSE
near the obstruction are very similar to the sub-resonant conditions, but the channel
‘adjusts itself’ to accommodate these gradients far upstream of the discontinuity, as show
in figure 17(b).

When comparing the maps of figures 17(a) and 17(b), it is also worth noting that the
equilibrium bed topography is similar, but flipped with respect to the cross-section at
x = 0. This is related to the quasisymmetrical variation of the eigenvalues in β0 with
respect to the resonant threshold βR (see figure 2a), which makes the linear solution in
super-conditions similar to that obtained in sub-resonant conditions, provided that the
perspective is changed from an upstream to a downstream point of view.

Under super-resonant conditions the model gives no steady bars in the downstream
region. As pointed out by Zolezzi & Seminara (2001) this is a limitation of the linear
approach, utilized here as well, which excludes solutions that are exponentially growing in
the downstream direction. When considering nonlinear correction (Seminara & Tubino
1992) this spatial growth is not exponential, but is limited to a finite amplitude that
increases with ε. Consequently, when β0 exceeds βR steady bars are actually expected
to form both upstream and downstream of the perturbation (e.g. Zolezzi et al. 2005;
Siviglia et al. 2013). Specifically, in the downstream direction we can expect the formation
of the so-called ‘hybrid bars’ (Duró et al. 2016; Crosato & Mosselman 2020), whose
amplitude is not proportional to the drag force but is controlled by channel conditions.
Channel conditions for which resonance occurs can be determined from the plots reported
by Seminara & Tubino (1992), using of the code made available by Redolfi et al. (2019) or
by means of the simplified relation proposed by Camporeale et al. (2007).

Finally, it is worth noting that when the aspect ratio exceeds the threshold value βC <

βR, free migrating bars are also expected to develop, (Callander 1969; Colombini et al.
1987), especially if the channel is relatively long (Federici & Seminara 2003; Redolfi et al.
2020). In this case, the bed topography is expected to result from a competition between
the free bars that would arise even if the channel were straight and free of obstacles, and
the forced repose generated by in-stream structures. The result of this competition should
depend on the intensity of the forcing effect. Specifically, if the forcing effect is sufficiently
strong, free migrating bars tend to be suppressed (see Tubino & Seminara 1990; Whiting &
Dietrich 1993), so that the bed configuration is expected to be dominated by non-migrating
steady (or hybrid) bars (e.g. Repetto et al. 2002; Duró et al. 2016).

6.3. Implications for the design of submerged structures
We may generalize our results within a preliminary conceptual framework for geomorphic
flow control, where the key parameters controlling the bathymetric response of erodible
channels to a class of finite perturbations are introduced. It is promising to note that the
model is able to reproduce the bathymetric perturbation even when the drag force is not
homogeneously distributed within the obstructed cross-section. For example, in the case of
MHK turbines or a permeable grid extending to the mid-depth, the model still captures the
salient features of the mean bed distortion, though with a slight, a priori unknown, spatial
lag. Under these limitations, a conservative siting guideline for MHK turbines or other
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submerged structures would consist in avoiding asymmetric deployments, with respect
to the channel centreline, or at least to limit the spanwise extent of the deployment (see
for example the turbine array investigated in Musa et al. (2018b)). We stress the model
assumes undisturbed uniform flow, prior to the drag force discontinuity, and streamwise
localization of the perturbation. Note that, the latter hypothesis could be relaxed by
considering a distributed drag force, which would allow for adequately resolving the effect
of a 2-D array of roughness elements, MHK turbines or canopies (Raupach & Thom 1981;
Ghisalberti 2009; Nepf 2012). The coupled distortion of the mean bed and mean flow, as
evinced in figure 17, further suggests the potential to partially steer the sediment flux in a
river, as recently proposed by Musa et al. (2020) in light of codevelopment opportunities
for MHK energy production and river management. Predicting accumulation of sediment
at specific spots, or mass flux directionality would easy sediment collection or diversion
to secondary hydraulic structures. A direct application could involve the optimization of
sediment bypass for hydropower dams ensuring the continuity of sediment flux across
the dam, avoiding erosion in the downstream reach and deposition in the upstream basin.
Finally, attention should be paid when introducing submerged structures in channels where
the resonant width-to-depth ratio is exceeded within expected flow discharge variability,
as a significant, non-local bed deformation may emerge in the upstream reach.

7. Conclusions

In this work we investigate theoretically and experimentally the effects of spatially
impulsive, asymmetric drag force distributions in an open channel flow with erodible bed.
The main result is the generation of forced bars, consisting in alternate, large-scale, steady,
scour–deposition patterns scaling with the channel width, and representing a mean bed
distortion. Experiments were performed introducing a 2-D permeable grid perpendicular
to the flow, as a finite drag perturbation, and measuring spatiotemporally resolved bed
elevations along streamwise transects, necessary to filter out migrating bedforms from the
steady bed deformation. The comparison between experiments and the provided analytical
solutions led to the following conclusions.

(a) Despite the rather complex, 3-D turbulent flow and the presence of migrating
dunes, the essential characteristics of the non-local bed deformation forced by the
obstruction can be captured by coupling a relatively simple, depth-averaged shallow
water model with our novel formulation of the internal boundary condition, which
incorporates the effect of the localized, asymmetric drag force. The mathematical
model can be effectively solved analytically, providing a linear solution, when the
drag force is relatively small with respect to the total momentum carried by the flow.
Compared with alternative numerical methods, the analytical approach has two key
advantages: (i) it allows for highlighting the fundamental mechanisms that control
the morphodynamic response to the flow disturbance; and (ii) it offers a simple
and computationally inexpensive solution for exploring the effects of the controlling
parameters.

(b) The resulting bed deformation does not only depend on the magnitude of the drag
force but also on the degree of asymmetry of the disturbance within the channel
cross-section. When the obstacles occupies half of the channel width, non-local
effects are maximized, and the solution becomes perfectly antisymmetric with
respect to the centre of the channel. Conversely, if the drag force is uniformly
distributed along the cross-section no steady bars can be generated.
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(c) The analysis confirms the fundamental role played by the channel width-to-depth
aspect ratio. Specifically, the forced bar solution, and the direction and extent
of its propagation, is mainly controlled by the difference between the aspect
ratio β and the resonant aspect ratio, βR, where the latter also depends on the
Shields parameter and roughness coefficient. Eventually, under super-resonant
conditions we expect the formation of steady bars also in the upstream direction,
as predicted by Zolezzi & Seminara (2001) for the case of a curved channel. In this
perspective, we acknowledge that more experiments would be needed to support
our model in a wider range of β values, including near-resonant and super-resonant
configurations.

(d) The analysis highlights a remarkably small effect of the Froude number on the
non-local bathymetry, provided friction and transport conditions are kept constant.
This finding could inspire future numerical simulations and laboratory experiments,
including critical and super-critical conditions, to assess the role of the free surface
deformation in the dynamics of both migrating and forced bars.

From the experimental perspective, the use of a permeable grid as a local disturbance
represents a well-controlled benchmark case for studying the formation and evolution of
forced bars in general, including their growth rate, their adaptation to varying flow, and
their interaction with migrating bars and other kind of bedforms. Compared with settings
where a solid obstruction (e.g. a transverse plate (Crosato et al. 2011; Siviglia et al. 2013))
is placed, the grid allows for an independent setting of the obstruction size and drag
properties (e.g. through the mesh size and porosity). Compared with the case of curved
channels (e.g. Struiksma et al. 1985; Zolezzi et al. 2005), the grid allows for a simpler
experimental setting and ensures a robust bathymetric response.

Overall, our specific approach extends the previous (Zolezzi & Seminara 2001) work
along three main directions: (i) the formulation of a novel, internal boundary condition
needed to model the effect of the localized, asymmetric drag force; (ii) the validation of
the model in conditions where dunes are present; (iii) the analysis of the effect of the
individual dimensionless parameters that control the bed deformation.

The implication of this research are multifold: it provides a predictive simplified model
to study the effects of renewable energy converters, such as in-stream hydrokinetic
turbines, on the morphodynamic equilibrium of a fluvial bed and it allows a more formal
and mechanistic interpretation of previous experimental observations on asymmetric
MHK turbine siting (Musa et al. 2018b, 2019); it also provides a preliminary framework
for passive geomorphic control of river bathymetries by establishing a robust response of
open channel flows on erodible surfaces to a finite perturbation induced by a generalized
and tunable actuator, such as cross-stream hydraulic structures, vegetation patches, or any
spatially impulsive obstruction described in terms of geometric and drag characteristics.
We further infer that the theoretical framework relating forced bars to meandering onset
can be extended to the configuration investigated here in order to examine how to trigger
and manipulate the planform evolution of fluvial systems, e.g. for renaturalization or
restoration purposes.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.122,
while a Matlab code for computing and plotting the linear solution is made available at https://bitbucket.org/
Marco_Redolfi/loc_drag_force_bars.
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Appendix A. The energy loss associated with the drag force in a 1-D flow

In this section, we will provide an estimate of the head loss due to the presence of a porous
grid in a fixed bed channel (figure 18). For the sake of simplicity, we consider a grid that
covers the entire cross-section (i.e. δ = 2), which allows us to study the problem using
classic approaches for 1-D flows.

The variation of depth is associated with an energy drop than can be quantified by first
considering that the specific (i.e. in metres) energy can be expressed as

e∗ = D∗ + U∗2

2g
, (A1)

or equivalently in the following dimensionless form:

e = e∗

D∗
0

= D + Fr2
0

2
U2 = D + Fr2

0
2

1
D2 , (A2)

where we also considered the dimensionless continuity equation (UD = 1). This allows
for calculating the specific energy loss by applying an energy balance across the grid,

Δe = eA − eB = DA − DB + Fr2
0

2

[
1

(DA)2 − 1
(DB)2

]
, (A3)

which, assuming a small perturbation with respect to the uniform flow, simply reads

Δe/f = (DA
1 − DB

1 )(1 − Fr2
0), (A4)

where the water depth perturbation D1 is defined as in (3.2).
To compute the difference between the upstream and the downstream water depth, we

then apply the momentum balance to the control volume illustrated in figure 18,

s∗A = s∗B + f ∗, (A5)

where s∗ represents the force (per unit width) exerted by a 1-D flow, which can be
calculated as

s∗ = ρg
D∗2

2
+ ρU∗2D∗. (A6)

Substituting (A6) into the momentum balance (A5), and expressing the variables in
dimensionless form gives

1
2Fr2

0
(DA)2 + 1

DA = 1
2Fr2

0
(DB)2 + 1

DB + f , (A7)

which for subcritical flows (Fr0 < 1) predicts a superelevation of the upstream water depth
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Flow
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Figure 18. Expected effect of the grid in a subcritical (Fr0 < 1) flow in fixed bed conditions: the energy
dissipation induces an upstream increase of the water depth and the associated formation of a M1-type profile
of the water surface. The relation between the energy drop and the drag force per unit width ( f ∗) is derived
by applying a momentum balance on the control volume represented by the shaded area, with s∗ indicating the
forces (per unit width) exerted on the boundary by the upstream and downstream flow.

as illustrated in figure 18. When considering a small variation with respect to the uniform
flow equation (A7) can be linearized, and the momentum balance reads

DA
1 − DB

1 = Fr2
0

1 − Fr2
0
, (A8)

which, if combined with (A8) gives the final relation between the drag force and the energy
drop:

Δe/f = Fr2
0. (A9)
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