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Abstract. The Photometric-Magnetic Dynamical model handles the evolution of an individual
sunspot as an autonomous nonlinear, though integrable, dynamical system. The model considers
the simultaneous interplay of two different interacted factors: The photometric and magnetic
factors, respectively, characterizing the evolution of the sunspot visible area A on the photo-
sphere, and the simultaneous evolution of the sunspot magnetic field strength B. All the possible
sunspots are gathered in a specific region of the phase space (A, B). The separatrix of this phase
space region determines the upper limit of the values of sunspot area and magnetic strength.
Consequently, an upper limit of the magnetic flux in an active region is also determined, found to
be ~ 7.23 x 10*® Mx. This value is phenomenologically equal to the magnetic flux concentrated
in the totality of the granules of the quite Sun. Hence, the magnetic flux concentrated in an
active region cannot exceed the one concentrated in the whole photosphere.
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1. Introduction

During the last sixty years, the phenomenon of the decay phase of sunspots has been a
highly controversial issue within the heliophysical community. This involves establishing
the exact mathematical expression of the area decay rate of the sunspots. The particular
mathematical formula of the decay rate, also called a decay law, is a key point for
understanding the specific underlying physical mechanism of sunspot dissolution.

Previous theoretical models, made for describing the sunspot evolution, had the com-
mon characteristic of originating in Magnetohydrodynamical equations, constructed after
suitable simplifications and modifications. However, each one focuses only on the decay
phase of sunspots, resulting to a specific decay law, which indeed, is supported by parts
of the observational data.

In such a way, since today three decay laws have prevailed: (i) The linear decay law,
A = —w, where the area decay rate is negative constant (w > 0). (ii) The parabolic
decay law, Ax —VA4, exhibiting a slower decay rate than the linear law, because of the
positive constant second derivative of area with respect to time, 4 > 0. Finally, (iii) the
exponential decay law, A x —A, characterized by a faster decay rate than the linear law
(Livadiotis & Moussas (2007), c.f. Introduction). (The dot denotes the derivative with
respect to time t.)

On the other hand, the Photometric-Magnetic Dynamical (PhMD) model, introduced
by Livadiotis & Moussas (2007), has its own origin, constructed considering several

101

https://doi.org/10.1017/51743921309029159 Published online by Cambridge University Press


https://doi.org/10.1017/S1743921309029159

102 G. Livadiotis & X. Moussas

meaningful physical terms. It considers the simultaneous interplay of two different in-
teracted factors: The photometric one, characterizing the evolution of the sunspot visible
area A on the photosphere; the magnetic factor, characterizing the simultaneous evolu-
tion of the sunspot magnetic field strength B.

In relevance to the previous models, we mention that the PhMD model first of all,
describes the whole sunspot lifetime, either the growth or decay phases. It reproduces all
the three decay laws: Each decay law is applicable at a different time of the decay phase.
Moreover, it predicts the characteristic numerical features of each decay law, as found
from the observational data.

In addition, the PhMD model, among others, predicts (i) the distribution of the max-
imum sunspot areas, (ii) an estimation of the granules mean dimensions, (iii) an upper
limit for the maximum values of sunspot area and magnetic strength, and (iv) an upper
limit for the maximum value of magnetic flux concentrated in an active region. Here
we will discuss the issue of upper limits. We stress that the model is an integrable two-
dimensional dynamical system. However, its non-integrable version, that is the perturbed
photometric magnetic dynamical model has also been investigated (Livadiotis & Moussas
2008).

2. Construction of the model

The model is formulated by a two-dimensional dynamical system, whereby the two
time-dependent functions are the photospheric sunspot area A(t), and its magnetic field
strength B(t), characterizing the sunspot as a whole.

A= —al(A— AG) —|—a2(32 —BGQ)
B=—bA+byy—bsVA+by(B—Bg) . (2.1)

As we can see, there are five different additive physical terms, explained below:

The first term, ay(B? — Bg?), yields the creation mechanism of the sunspot. This
involves magnetic flux fragments such as those of pores or of other elementary magnetic
microstructures, erupting from below the photosphere due to the magnetic buoyancy,
while their accumulated smaller flux tubes coalesce into a main core of a larger flux tube.
The magnetic buoyancy is a component being proportional to B?, thus the same holds
for the first term, being mentioned.

The next two terms, —bj1 A + bia, —bisV/A, constitute what we call “collar flow”
(Fig. 1a), that is the exchange of inflow and outflow of magnetic flux, respectively (Solanki
2003). Thus, magnetic flux can inflow either through the entire sunspot projected area
A, emerging from the solar interior, or through locally specified regions with sufficiently
smaller dimensions compared to those of sunspot. On the other hand, magnetic flux can
outflow sideways through the area of sunspots, that is a component proportional to the
square root of A.

The other two components, —aj (A — Ag), +bs(B — Bg), constitute the negative and
positive feedbacks, respectively, characterizing the resistance to the area increasing due
to the creation mechanism and the magnetic strength decreasing due to the magnetic
outflow.

Therefore, the inflow and outflow are combined in order to form the collar flow, which
together with the feedbacks, help to stabilized the sunspot. We underline that the model
considers that a sunspot does not only maintain its existence, but also evolves during its
whole lifetime, by interacting with the simultaneously evolved magnetic field.
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Ao>Ac (b)

Ao=Ac

Figure 1. (a) The inflow and outflow, combined, form the well known collar flow, that together
with the feedbacks, helps to stabilize the sunspot. The PhMD model considers that a sunspot
does not only maintain its existence, but also evolves during its whole lifetime, by interacting
with the simultaneously evolved magnetic field. (I: solar interior inflow, L: local inflow, S: side-
ways outflow.) (b) Scheme of granules arrangement: low density arrangement Ay > Ag; high
density arrangement Ay < Ag; initial equilibrium Ay = Ag.

The small characteristic scales Ag, and B¢, are related to the granules, as we shall
see further below.

3. Granules characteristic scales

Here we arrive at an interpretation of the area characteristic scales A, and Bg. This
arises considering the geometric arrangement of granules.

The procedure of magnetic flux tubes coalescence initially takes place in the interme-
diate space between adjacent granules. Therefore, this is the space, being disposed to the
sunspot initial area, Ag.

Now, suppose that granules happens to be distributed in a locally low density ar-
rangement, namely, the initial sunspot area A, is larger than the granule area Ag
(Fig. 1b). Then, the system shall be spontaneously driven to a higher density arrange-
ment. The enclosed area is compressed, being opposed to the emergence of magnetic
elements from below the photosphere, leading to a resistance on the area initial growth,
being proportional to the difference between the initial sunspot area Ay and the granule
area Ag.

Obviously, in the opposite case of locally high density granules arrangement, Ay, <
Ag, the physical system is spontaneously driven to a lower density arrangement, giving
advance to the sunspot creation, exhibiting thus, a negative resistance.

The case of neither high nor low density arrangement is thought to express an initial
equilibrium, formulated by the initial conditions of zeroth area growth rate and zeroth
resistance, that is the initial area being equal to that of the surrounding granules, Ag =
Ag. Consequently, we also have that the initial magnetic strength By is equal to the
respective scale Bg.
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4. Normalized dynamical system

By considering proportionality relations between the functions A(t), B(t), and their
respective initial values, Ag, Bg, we can define the new dimensionless variables z(t) =
A®) and y(t) = B Then, the system Eq. (2.1), can be rewritten as follows:
Ag Bg

A=a-z+q(y” - 1)
B=bpix —povr+y+m]. (4.1)

The physical meaning of the new parameters is inherited from the old ones, namely,
o a = by yields a characteristic time scale 7 = aqt,
*g=+77 2 - (45) ¢ is related to the sunspot creation mechanism (C: coalescence),

°p = + (gi )1 characterizes the inflow of the magnetic flux through the solar interior

(I: interior),

o m = —&—(%)L: characterizes the inflow through the small local regions (L: local
regions),
P —%(jy )s characterizes the outflow of the magnetic flux through the sunspot

boundary (S: sideways area).

Furthermore, we stress that the dynamical system is conservative, V[i(z,y), §(x,y)] =
0, since the condition a; being equal to by, leads to a closed phase space curve, that
is the only phase space curve with physical meaning. Indeed, for a; > bs, phase space
trajectories converge to a sink, describing a sunspot of infinite lifetime. On the other
hand, for a; < be, phase space trajectories diverge to infinity, describing sunspots of
infinite dimensions. Both cases are physically unacceptable, and thus, we conclude with
the condition a; = bs.

Therefore, the Hamiltonian constraint is given by the expression,

H(z,y) = < {qy +3(1—q—z)y+2 prl(x ~1)+pa(a? *U*%m (z—1)+ }
while sunspots found to be described by zeroth constraint value, H(z,y) = H(xq =
l,yo=1)=0.

We remark that the normalized expression of the system Eq.(4.1) shall remain invariant
if we adopt a common functional type for the positive and negative feedbacks involved in
Eq. (2.1), namely, a11 (A — Ag) + a12(B — Bg) instead of a1 (A — Ag), and by (A— Ag) +
bya (B — Bg) instead of bo(B — Bg). However, the normalized dimensionless variables

= g
A= (ﬁ —1)7lis encrypted in the expression of y. (In similar way that the other
parameters Ag and Bg are encrypted in the expressions of « and y.) Then, A¢ and Bg,
A, have to be respectively taken into account when we reverse the problem and we want
to find A(t) and B(¢) in terms of x(t) and y(t).

have to be defined by z(t) = 22 and y(t) = )\%p — A — 1, where the new parameter

5. Results: The fitting of the model and the predicted decay laws

The fitting of the model to the observational data was derived in three different ways:
First, we compared the model predictions with the observational data referring to one
single sunspot. In such a way, we selected several compact individual sunspots where the
model predicted curve of area A(t) was fitted to the respective photometric light curves,
as shown in Figs. 2a,b for the (RGO-UASF/NOAA) AR1485104 and AR1488603, re-
spectively. Second, we dealt with the fitting of the model predicted phase space curves
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[A(t), A(t)] to the statistically modified forty three respective pairs characterizing the to-
tality of large sunspots A > 35 MSH (Millionths of Solar Hemisphere), as shown in Fig. 2c.
The statistical analysis, being utilized here, was by Hathaway & Choudhary (2005). They
arranged all the decay rates of sunspots into forty three bins of areas, and then, they
calculated the mean and the standard deviation of the decay rate of each bin. (This sta-
tistical manipulation concerns 24000 values of decay rates from the daily observational
data of Royal Greenwich Observatory in 1874-1976, that have been analyzed.) We men-
tioned that there was another kind of fitting, that is the fitting of the model predicted
distribution of the maximum sunspot areas to the respective observational one, found
to be a Log-Normal distribution (Martinez Pillet et al. 1993). (For further details, see:
Livadiotis & Moussas 2007.)

One of the significant results of the fitting was that three model parameters remain
constant, having for all the sunspots the same fixed value. Namely, ¢ = 310 £ 10,p; =
(1.85+£0.10) x 10~3, m = 4.9040.03. On the other hand, there are also variant parameters,
such as po, a1, Ag, Be. However, the only variant parameter, that affects the [z(t), y(t)]
trajectories for each sunspot, is the outflow ps.

In Fig. 2d we depict the evolution of a large sunspot along the trajectories [A(t), A(t)].
The enlarged panel illustrates the decay phase. We observe the “sub-phase” where the
linear decay law is applicable (indicated as L), and also for the parabolic (as P), and the
exponential (as E) decay laws. Also, notice the divergence from exponential law (indicated
as dE), which has recently been established from observations. (Compare with Fig. 2c.)
In addition, we remark that the model predicts the correct numerical features of each of
the three decay laws, as found from observations (Livadiotis & Moussas 2007).

We stress the fact that even though the model predicted evolution of sunspot area
(photometric evolution) has been suitably adjusted to the observational data, the mag-
netic evolution has not yet been fitted, since the solar magnetic observational data are
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Figure 2. Fitting of sunspots (RGO-USAF/NOAA) AR1485104 (a), AR1488603 (b). (c) Fit-
ting of the model predicted curve [A(t), A(t)] (solid line) with the mean decay rates derived
from Hathaway & Choudhary (2005). (d) Evolution of a large sunspot along the trajectories
[A(t), A(t)]. (L: linear, P: parabolic, and E: exponential decay laws; dE: divergence from expo-
nential decay law.)
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rather poor and inadequate. Nevertheless, the values of Bs and A have been estimated in
the case of large sunspots, that is Bg &~ 3100 G and A ~ 25. (For details, see: Livadiotis
& Moussas 2009.)

6. Phase space trajectories [z(t),y(t)]

The various trajectories [x(t),y(t)] can be represented in the phase space diagram
as iso-Hamiltonians. Namely, each trajectory is specified by its Hamiltonian constraint
value, but all of them are characterized by a fixed value of the outflow p;. On the other
hand, however, trajectories can be represented as iso-outflows. Namely, each trajectory
is specified by its outflow p, value, but all of them are characterized by a fixed value of
the Hamiltonian constraint.

The iso-outflows phase space representation is preferred, since the totality of sunspots
are characterized by one single fixed value of Hamiltonian constraint, namely H (z,y) = 0,
derived from the initial equilibrium condition, described in Sec. 3. Even if we adopt
the common functional type of feedbacks, described in Sec. 4, the initial equilibrium
condition remains, namely, Ay = Ag, Ay = 0, leading to yy = 1. Then, we readily derive
that g = 1, yo = 1, resulting to H(z,y) = 0.

This phase space representation is illustrated in Fig. 3, whereby the totality of sunspots
can be found in the grey region of the trajectories. This is limited by the peculiar stable
point S7 and by the unstable point Us. All the trajectories expand, as ps decreases. The
outflow maximum value, ps yrq, = p1 +1+m =~ 5.90185, corresponds to the trivial single
point trajectory, that is S, while the outflow minimum value, ps arin =~ 0.26284686. . .,
corresponds to the most expanded trajectory, that passes through Us.

Hence, the largest value of the maximum normalized area x,,,, corresponds to the
outflow minimum value, py prin =~ 0.26284686..., and that is the upper limit of the
normalized areas, found to be of about 2y, rim = 5700.

Given the value of the initial area, that is of the area of the initially surrounding
granules, we can arrive at the upper limit of the sunspot areas. Therefore, by utilizing
the maximum area attained by granules, that is Ag me, = 1.1 MSH (Foukal 2004),
we retrieve the sunspot area upper limit, namely, Ayprim = AGmaz - TupLim, hence,

20

-20

10° 10

Figure 3. The phase space portrait represented by the iso-outflow curves. (S1,2: stable, Uy 2:
unstable fixed points. The Hamiltonian constraint is zero. The outflow ps values are indicated.)
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Ay prim = 6200+£400 MSH. (The errors of the fixed values parameters propagate the error
of the upper limit areas.) We note that the peculiar case of the year 1947 is characterized
by extremely large sunspots with areas bounded by the estimated upper limit. The
light-curve of the largest ever sunspot, that appeared on April 3, 1947, is shown in
Fig. 2b.

The unstable point Us yields also the upper limit for the normalized magnetic strength
y, that is yyprim = 4.404. Given the values of Bg e, ~ 3100 G and A, ~ 25 that
correspond to large sunspots, we arrive at the sunspot magnetic strength upper limit,
namely, By,rim = 1357 “(YyupLim + Amaz + 1), hence, By,rim = 3770 G.

Therefore, we finally conclude in the magnetic flux upper limit Yyprim ~ Avprim -
Buprim = 7.23x10?* Mx. Observations justify this result, since the largest active regions
reach a maximum magnetic flux of ~ 10?* Mx (Vial 2005, Solanki et al. 2006).

7. Discussion and Conclussions

The magnetic flux concentrated in the totality of the granules of the whole area of
the quiet Sun (with area Ag,, = 2 x 105 MSH), having a typical maximum magnetic
strength of about Bg ~ 12 G (Rabin et al. 1991), is equal to Ag,, - Bg ~ 7.2 x 10?3
Mx (Wang 2004, Fisk 2005). Hence, the upper limit of the magnetic flux in an active
region is phenomenologically equal to the magnetic flux concentrated in the totality of
the granules of the quite Sun.

Therefore, the magnetic flux concentrated in an active region cannot exceed the mag-
netic flux concentrated in the photosphere as a whole.

Furthermore, it has to be underlined that the estimated upper limit of the magnetic
flux concerns not only the sunspots but also the active regions.

PhMD model concerns the fact of one compact main core of a flux tube, that of an
individual sunspot. This is governed by the upper limits of the sunspot photospheric
area (photometric factor) and magnetic strength (magnetic factor), as well as by the
upper limit of their product, that is of the magnetic flux. Even though, the upper limits
of sunspot area and magnetic strength do not indispensably characterize also the host
active region, this is thought to hold for the magnetic flux upper limit. Sunspots included
in an active region are supposed to be antagonistic in absorbing magnetic flux (inflowing
either by solar interior or by local regions), while a dominant sunspot (if there is) shall
be the one of outflowing the smaller amount of magnetic flux.

Hence, it is expected that the presence of extremely large sunspots costs the absence of
sufficiently smaller ones. As a consequence, it is natural to claim that in the hypothetical
presence of the most extended sunspot, attained the areas upper limit, no other sunspot
can prevail, as their magnetic flux shall be absorbed by the dominant sunspot. In such
a case, all the magnetic flux of the active region has to be transferred to the gigantic
sunspot. By means of such consideration we claim that the upper limit for sunspot
magnetic flux yields is also an upper limit for active regions.
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