
Journal of Glaciology

Article
Cite this article: Merkouriadi I, Jutila A,
Liston GE, Preußer A, Webster MA (2025)
Investigating snow sinks on level sea ice: A
case study in the western Arctic. Journal of
Glaciology 71, e66, 1–13. https://doi.org/
10.1017/jog.2025.34

Received: 4 December 2024
Revised: 11 February 2025
Accepted: 25 March 2025

Keywords:
Airborne electromagnetic soundings; Arctic
glaciology; Glaciological model experiments;
Sea ice; Snow

Corresponding author: Ioanna Merkouriadi;
Email: ioanna.merkouriadi@fmi.fi

© The Author(s), 2025. Published by
Cambridge University Press on behalf of
International Glaciological Society. This is an
Open Access article, distributed under the
terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/
by/4.0), which permits unrestricted re-use,
distribution and reproduction, provided the
original article is properly cited.

cambridge.org/jog

Investigating snow sinks on level sea ice:
A case study in the western Arctic

Ioanna Merkouriadi1 , Arttu Jutila1 , Glen E Liston2, Andreas Preußer3,4

and Melinda A Webster5

1Earth Observation Research, Finnish Meteorological Institute (FMI), Helsinki, Finland; 2Cooperative Institute for
Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA; 3Sea Ice Physics,
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Bremerhaven, Germany;
4Earth Observation, German Space Agency at DLR, Bonn, Germany and 5Polar Science Center (PSC), Applied
Physics Laboratory, University of Washington, Seattle, WA, USA

Abstract
SnowModel-LG reconstructs snow depth and density over sea ice, explicitly resolving important
snow sinks like blowing snow sublimation, static surface sublimation and melt, but not snow-ice
formation. To examine snow sinks on level sea ice, we coupled SnowModel-LGwithHIGHTSI, a 1-
D thermodynamic sea-ice model, to create SMLG_HS. SMLG_HS simulations of snow depth and
level ice thickness were evaluated against high-resolution airborne observations from the western
Arctic, highlighting the importance of snow mass redistribution processes, i.e. snow’s tendency to
leave level ice and accumulate over deformed ice due towind-induced redistribution.Not account-
ing for snow mass redistribution, SMLG_HS overestimates snow depth on level ice, resulting in
underestimation of level ice thickness and overestimation of snow-ice thickness. Our case study
shows that snow depth on level ice needs to be reduced by 40% to simulate both snow depth and
level ice thickness realistically in the western Arctic in April 2017. An independent analysis of
snow volume distribution between level and deformed sea ice using airborne radar observations
supported the model results and revealed a linear relationship that enables estimating the amount
of snow remaining on level ice at the end of winter based on the amount of ice deformation.

1. Introduction

Arctic sea ice is going through unprecedented changes, decreasing both in extent (e.g. Stroeve
and others, 2014) and in thickness (Maslanik and others, 2007; Kwok and others, 2009), and
transitioning from a multi-year ice to a seasonal, first-year ice system (Meier and others, 2014).
The role of snow in sea-ice mass balance is becoming predominant in many ways, because of
the higher sensitivity of sea ice to its environmental conditions. The thermal resistance of snow
cover significantly reduces the atmosphere-ocean heat fluxes, regulating sea-ice growth in win-
ter (Maykut, 1978; Ledley, 1991). The high snow albedo reflects most of the solar radiation back
to space, delaying sea ice from melting in spring (Perovich and others, 2017). The snow load
may submerge thinner ice underneath the water level, creating negative freeboard conditions
(Granskog and others, 2017; Merkouriadi and others, 2020). If sea water floods at the ice/snow
interface and freezes there, snow ice is formed that is a mixture of frozen seawater and snow
(e.g. Leppäranta, 1983) and increases the thickness of the sea ice. Snow ice is a common phe-
nomenon in seas that are seasonally covered by ice (i.e. Baltic Sea, Sea of Okhotsk) and in large
parts of the Antarctic sea ice (Massom and others, 2001), but it was not commonly observed
in situ in drifting Arctic sea ice until the Norwegian Young Sea ICE (N-ICE2015) expedition
(Granskog and others, 2017; Provost and others, 2017). Snow ice is a sink for snow, and it can
positively contribute to the sea-ice mass balance (Merkouriadi and others, 2017; 2020), which
has implications for remote sensing retrievals of sea-ice thickness. Therefore, it is essential to
consider it for understanding sea-ice mass balance, both in contemporary times in peripheral
seas and in future scenarios where sea ice may be thinner than present-day conditions.

Accounting for different snow processes is also relevant for remote sensing applications.
Satellite altimetry is the most common method for monitoring sea-ice thickness, providing
nearly full coverage of the Arctic Ocean (Laxon and others, 2003; Markus and others, 2017;
Landy and others, 2022). Information on the snow load on sea ice is crucial for accurate altime-
try retrievals of sea-ice thickness, because radar and laser altimeters measure the elevation of
the ice or snow surface from the water surface, i.e. ice or snow freeboard. Snow depth and den-
sity are required to convert freeboard to sea-ice thickness information (e.g. Laxon and others,
2003). According toGiles and others (2007), uncertainties in snow depth and density contribute
48% and 14%, respectively, to the total error of sea-ice thickness retrievals from radar altimetry.
A more recent study by Landy and others (2020) estimated these uncertainties at 11% for
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snow depth and 16% for density. Similarly, snow depth and density
uncertainties were found to contribute 70% and 30–35%, respec-
tively, to the total error of sea-ice thickness retrievals from laser
altimetry (Zygmuntowska and others, 2014).

Snow depth and density estimates used in satellite altimetry
applications are often derived from snow climatologies ormodified
versions of snow climatologies from historical observations. The
most widely used snow-on-sea-ice climatology is compiled from a
snow depth and density dataset collected mostly over multi-year
ice in 1954–91 (Warren and others, 1999). In a changing Arctic
sea-ice system, snow conditions are expected to change as well
(Blanchard-Wrigglesworth and others, 2015; Webster and others,
2021), and these changes are not captured by theWarren and others
(1999) climatology. In addition to the long-term changes, clima-
tological data are not suitable for representing the spatiotemporal
variability of the snow conditions in the Arctic, which are evi-
dently strong (Warren and others, 1999;Webster and others, 2024).
To account for spatiotemporal variability, efforts have focused
on reanalysis-based snow depth and density reconstructions (e.g.
Kwok and Cunningham, 2008; Blanchard-Wrigglesworth and oth-
ers, 2018; Petty and others, 2018), i.e. pan-Arctic simulations of
snow depth and density evolution on sea ice. A recent contribution
was SnowModel-LG, a state-of-the-art Lagrangian snow evolution
model (Liston and others, 2020a). Compared to other reanalysis-
based products, SnowModel-LG implemented Lagrangian parcel
tracking and included an improved representation of snow evo-
lution physics. It has been bias-corrected and validated against a
wide observation framework in all seasons and yielded good agree-
ment, especially with in situ measurements (Stroeve and others,
2020).

SnowModel-LG explicitly resolves many snow mass sources
and sinks, such as blowing snow sublimation, static-surface subli-
mation andmelt, by performing a snowmass-budget calculation in
each time step (Liston and others, 2020a). However, SnowModel-
LG, similarly to all the abovementioned, operationally used, pan-
Arctic snow models, is not coupled to a sea-ice model. Therefore,
it does not account for snow sinks caused by snow-ice forma-
tion.Moreover, being configured over ice parcels of kilometer-scale
(25 km × 25 km), it does not resolve wind-driven snow mass redis-
tribution. The latter describes the tendency of snow to accumulate
on the lee side of pressure ridges and other roughness elements
(e.g. Liston and others, 2018) as a result of snow redistribution by
the wind. This process results in uneven snow load over a sea-ice
floe (i.e. reduced snow over level ice areas and increased snow over
deformed ice) (Sturm and others, 2002; Webster and others, 2015;
Itkin and others, 2023). Because in this study we are examining
level ice only, we will be referring to the sub-parcel snow mass
redistribution process as a snow sink. In other words, the term
‘snow sinks’ here refers to all processes that reduce snow mass on
level ice, including snow sublimation, melting, snow-ice formation
and snow mass redistribution.

To investigate snow sinks on level Arctic sea ice, we coupled
SnowModel-LG with the High-Resolution Thermodynamic Sea
Ice model (HIGHTSI) (Launiainen and Cheng, 1998) to produce
SMLG_HS. In SMLG_HS, snow ice forms when the ice surface is
depressed below thewater surface (negative freeboard). SMLG_HS
outputs of snow depth, snow-ice and sea-ice thickness from 1
August 2007 until 31 July 2021 were evaluated against airborne
observations in the western Arctic to examine and to mitigate
the biases introduced when sub-parcel snow mass redistribution
processes are ignored.

2. Materials and methods

2.1. SnowModel-LG

SnowModel is a collection of snowdistribution and snow evolution
modeling tools, applicable to any environment experiencing snow,
including sea-ice applications (Liston and Elder, 2006a; Liston
and others, 2018). SnowModel-LG is adapted for snow depth and
density reconstruction over sea ice (Liston and others, 2020a).
It is implemented in a Lagrangian framework to simulate snow
properties on drifting sea-ice parcels. SnowModel-LG accounts
for physical snow processes such as sublimation from static sur-
faces and blowing snow, snow melt, evolution of snow density
and temperature profiles, energy and mass transfers within the
snowpack, and superimposed ice formation in amulti-layer config-
uration. The ice parcels are 1-D, and they do not interact with each
other.

At each time step (3 hours here), SnowModel-LG performs
a mass-budget calculation, where snow water equivalent (SWE)
depth (m) is defined by snow mass gains, losses and ice parcel
dynamics,

dSWE
dt = 1

𝜌w
[(Pr + Ps) − (Sss + Sbs + M) + D] (1)

where t (s) is time; 𝜌w = 1000 kgm−3 is the water density;
Pr (kgm−2 s−1) and Ps (kgm−2 s−1) are the water-equivalent rain-
fall and snowfall fluxes, respectively; Sss (kgm−2 s−1) and Sbs
(kgm−2 s−1) are the water-equivalent sublimation from static-
surface and blowing-snow processes, respectively; M (kgm−2 s−1)
is themelt-relatedmass loss; andD (kgm−2 s−1) represents themass
losses and gains from sea-ice dynamics processes (i.e. parcels being
created and lost with ice motion, divergence and convergence).

Snow depth hs (m) is related to SWE through the ratio of snow
(𝜌s) and water (𝜌w) densities,

SWE = 𝜌s
𝜌w

hs. (2)

Therefore, the evolution of snowdepths anddensities are calculated
by

d (𝜌shs)
dt = (Pr + Ps) − (Sss + Sbs + M) + D. (3)

In SnowModel-LG, snow density evolves and changes in response
to compaction (weight of the above snow layers), wind force,
freezing of liquid water and vapor flux through the snowpack.
Additional information on the components and the configuration
of SnowModel-LG are summarized and provided in great detail in
Liston and others (2020a). The model configuration in this study
is identical to the one used in Liston and others (2020a), only here
we have coupled it to a sea-icemodel (Sections 2.2–2.3). According
to Stroeve and others (2020), SnowModel-LG performed well in
capturing the spatial and seasonal variation of snow distributions,
when evaluated against several Arctic datasets, including NASA
Operation IceBridge (OIB), ice mass-balance buoys, snow buoys,
MagnaProbes and ruler measurements.

In the simulations presented herein, Lagrangian parcel tracking
began on 1August 2007. At the start of the first simulation year, the
model assumes no snow atop the sea ice, which is well supported by
in situ observations from the contemporary period (Radionov and
others, 1997; Chapman-Dutton and Webster, 2024; Webster and
others, 2024); the following years carry available snow from 31 July
to 1 August. Essential inputs are atmospheric reanalysis estimates
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of near-surface air temperature, relative humidity, precipitation,
wind speed and direction, and sea-ice motion and concentration
products, described in detail in Section 2.4.

2.2. HIGHTSI

HIGHTSI is a 1-D thermodynamic sea-ice model designed to
simulate the evolution of snow and sea-ice thickness and temper-
ature profiles (Launiainen and Cheng, 1998) by solving the heat
conduction equation for multiple ice and snow layers. The sea-
ice thermal conductivity is parameterized following Pringle and
others (2007). HIGHTSI simulates snow-ice formation following
Saloranta (2000).

HIGHTSI has beenwidely used in process studies and validated
extensively against observations (Cheng and others, 2008b; 2013;
Wang and others, 2015; Merkouriadi and others, 2017; 2020). In
this study, we used a model configuration that is derived from vali-
dation studies on Arctic sea ice. The model’s vertical resolution has
been found to be critical for its performance in the Arctic (Cheng
and others, 2008a). Here, we used 20 layers in the ice which is con-
sidered optimal for capturing internal thermodynamic processes
(Cheng and others, 2008a; 2008b; 2013; Wang and others, 2015).
Detailed information onmodel parameterizations is given in Table
S1 in the supplementary material.

Merkouriadi and others (2020) implemented HIGHTSI in a
Lagrangian framework to examine pan-Arctic snow-ice distribu-
tions. In the study presented herein, HIGHTSI was modified fur-
ther, so that snow depth and bulk density evolution were simulated
by SnowModel-LG in a 25-layer configuration.We did this because
SnowModel-LG provides a more advanced representation of snow
physics compared to HIGHTSI’s snow configuration. Additionally,
we wanted to explore the effects of snow sinks using a publicly
available snow product such as SnowModel-LG.

2.3. SMLG_HS

We performed two separate snow-on-sea-ice simulations. First,
we simulated snow depth and density with SnowModel-LG (i.e.
Liston and others, 2020a). Second, SnowModel-LG’s snow depth
and density evolution were coupled with HIGHTSI’s snow-ice and
thermodynamic ice growth representations.Hereafter, wewill refer
to the original SnowModel-LG output as SMLG and to the coupled
output as SMLS_HS.

For the SMLG_HS runs, snow density was simulated follow-
ing Appendix C of Liston and others (2020a) and stored as a bulk
density value. To represent the typical snow stratigraphy of snow
on Arctic sea ice (i.e. high-density wind slab layer at the top, low-
density depth hoar layer at the bottom), the vertical density profile
was parameterized as being a linear fit between densities that are
20% greater than the bulk snow density of SMLG at the top of the
snowpack and 20% less at the bottom of the snowpack. These per-
centages are consistent with snow-pit measurements made during
the Multidisciplinary drifting Observatory for the Study of Arctic
Climate (MOSAiC) expedition in 2019–20 (Macfarlane and oth-
ers, 2023). This approach was chosen to provide a best-possible fit
to available snow density observations and to account for changes
in snow density in response to snow-ice formation.When snow ice
was formed, the corresponding snow-depth amount was removed
from the lower density bottom layers of the snowpack, and the new
bottom density was calculated based on the the linear fit of depth

anddensity of the remaining snow.Additionalmodel specifications
are presented in the supplementary material (Table S1).

2.4. Input datasets

Daily ice concentrations (15–100%) by the NASA team algorithm
(DiGirolamo and others, 2022) were used to define whether an ice
parcel existed and whether snow could accumulate on that parcel.
Icemotion vectors fromTschudi and others (2019); (2020) gridded
over 25 km spatial resolution were used as Lagrangian ice parcel
tracks. NASA’s Modern Era Retrospective Analysis for Research
and Application Version 2 (MERRA-2; Global Modeling And
Assimilation Office (GMAO), 2015a; 2015b; Gelaro and others,
2017) was used as atmospheric forcing to SMLG_HS. Specifically,
SMLG_HS was forced with 10m wind speed and direction, 2m air
temperature and relative humidity, and total water-equivalent pre-
cipitation from MERRA-2. During these simulations, MicroMet
(Liston and Elder, 2006b) provided the required liquid and solid
precipitation, and the downwelling shortwave and longwave radi-
ation following Liston and others (2020a).

We applied the same bias-correction in MERRA-2 reanalysis
as in Liston and others (2020a), where snow depth observations
from NASA OIB (2009–16) were used to scale the precipitation
inputs. In Liston and others (2020a), 8-year averages of precipita-
tion scaling factors were calculated and they were applied over all
ice parcels and through the whole simulation period, making the
results of MERRA-2 and the European Centre for Medium-Range
Weather Forecasts (ECMWF) ReAnalysis-5th Generation (ERA5;
Hersbach and others, 2020)model runs similar.This is whywe only
use MERRA-2 reanalysis in this study. Scaling factor was 1.37 for
MERRA-2, indicating the need to increase the precipitation inputs
in order to match the OIB observations (Liston and others, 2020a).
The same scaling factor was used in this study for the results to
be comparable with the publicly available SMLG snow depth and
density dataset (Liston and others, 2020b).

For the ocean boundary forcing, at the ice/ocean interface, we
used ocean heat flux from the Ocean Reanalysis System 5 (ORAS5)
provided at the ECMWF (Zuo and others, 2019). ORAS5 resolu-
tion is eddy-permitting (0.25∘ latitude and longitude) horizontally
and 1m vertically. ORAS5 includes five ensemble members and
covers the period from 1979 onward. In our study, we used the
ensemble mean, providing one unique value on a 1∘ grid for each
simulation day.

2.5. Model configuration and outputs

The simulations began on 1 August 2007 and ran through 31 July
2021. Temporal resolution was 3 hours to capture diurnal varia-
tions, and the parcel-specific outputs (e.g. snow depth, snow bulk
density, sea-ice thickness and snow-ice thickness) were saved at the
end of each day. Ice parcel trajectories were linearly interpolated
fromweekly to daily time steps. On 1August of each year (except in
the first year), the multi-year ice thicknesses were calculated from
the sea-ice thickness distribution on 31 July. The initial ice thick-
ness conditions on 1 August 2007 were defined by performing a
1-year simulation with a domain-wide initial condition of 1m, and
then using the ice thickness distribution at the end of the first sim-
ulation year as the initial condition for the beginning of the 14-year
simulation (i.e. the model ran the first year twice and assumed the
31 July 2008 ice thickness distribution equaled the 1 August 2007
distribution). In addition, any snow remaining at 00:00 UTC on 1

https://doi.org/10.1017/jog.2025.34 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.34


4 Ioanna Merkouriadi et al.

August (the last time step on 31 July) was used as the initial con-
dition for the following simulation year that started at 03:00 UTC
on 1 August (these are the standard model spin-up procedures as
implemented in Liston and others (2020a)).

The daily simulation outputs for each parcel (approximately
61 000 parcels each year) were gridded to the 25 km× 25 kmEqual-
Area Scalable Earth (EASE) grid, provided by the National Snow
and Ice Data Center (NSIDC).The location of each parcel was used
to calculate the overlap between that parcel and the EASE grid cell,
i.e. the fractional area of the EASE grid cell that was occupied by
the parcel. The fractional area was then multiplied by the sea-ice
concentration of the parcel, and the result was used to weigh the
parcels’ contribution to eachEASEgrid cell.This procedure of area-
and concentration-weighted averages within the EASE grid cells
conserved the examined parameters, similar to Merkouriadi and
others (2020); Liston and others (2020a).

2.6. Evaluation exercise

To evaluate SMLG_HS snow depth and sea-ice thickness, we com-
pared them against a total of >100 airborne surveys from the
Alfred Wegener Institute’s (AWI) IceBird and NASA OIB cam-
paigns over the western Arctic in late winter 2009–19 (Fig. 1).
Summarizing descriptions of the respective datasets are given in
the Sections 2.6.1 and 2.6.2. We averaged the airborne measure-
ments over the same model EASE grid when >50 values were
present in a grid cell.

2.6.1. AWI IceBird
The AWI IceBird program carried out 11 survey flights over the
western Arctic Ocean in April 2017 and 2019, monitoring the
regional sea-ice conditions in very high resolution (Table 1). The
nominal measurement spacing along-track is 5–6m. Snow depth
data were derived from an airborne snow radar similar to OIB
using the Peakiness retrieval algorithm (Jutila and others, 2021a;
2021b; 2022b). Sea-ice thickness was derived by subtracting snow
depth from the total (sea ice + snow) thickness data measured
simultaneously with a towed electromagnetic induction sounding

Figure 1. Spatial and annual coverage of the 11 AWI IceBird survey flights in 2017 and
2019 (Table 1) and the 99 NASA Operation IceBridge (OIB) survey flights in 2009–19
(Table A1 in Appendix A). The background shows the average March–April monthly
sea-ice concentration in 2009–19.

instrument (Jutila and others, 2022a; 2024a; 2024b). We distin-
guished measurements over level ice by using the flag in the data
product that implements a sea-ice thickness gradient threshold

Table 1. Statistics of the 11 AWI IceBird survey flights over the western Arctic Ocean in 2017 and 2019 (Fig. 1) used in this study, where L is the total length of the
survey flight, h̄s,level is the average snow depth on level ice, h̄s,deformed is the average snow depth on deformed ice, h̄s,all is the average snow depth of the entire

survey flight including all ice types,
h̄s,level

̄hs,deformed
is the fraction of the average snow depth on level ice to the average snow depth on deformed ice, flevel is the level

ice fraction of the survey flight, fVs,level is the fraction of snow volume on level ice, fMYI is the fraction of multi-year ice (MYI) and fNaN is the fraction of missing
snow depth data

Date L (km) h̄s,level (m) ̄hs,deformed (m) h̄s,all (m)
̄hs,level

̄hs,deformed
flevel fVs,level fMYI fNaN

30/03/17 374 N/Aa 0.327 N/Aa 0.527
02/04/17b 415 0.213 0.300 0.265 0.709 0.397 0.319 0.000 0.231
04/04/17b 266 0.158 0.233 0.200 0.677 0.439 0.346 0.000 0.231
06/04/17b 460 0.133 0.199 0.176 0.666 0.342 0.257 0.000 0.228
08/04/17 619 0.080 0.162 0.136 0.490 0.323 0.189 0.000 0.308
10/04/17 49 N/Aa 0.226 N/Aa 0.627
02/04/19 408 0.361 0.377 0.375 0.956 0.128 0.123 0.808 0.446
05/04/19 187 0.120 0.329 0.298 0.364 0.148 0.059 0.778 0.243
07/04/19 470 0.069 0.211 0.160 0.328 0.363 0.157 0.183 0.491
08/04/19 277 0.044 0.090 0.074 0.489 0.355 0.212 0.000 0.372
10/04/19 415 0.080 0.216 0.166 0.371 0.369 0.178 0.219 0.256
Min 49 0.044 0.090 0.074 0.328 0.128 0.059 0.000 0.228
Mean 358 0.140 0.235 0.218 0.561 0.318 0.205 0.221 0.360
Max 619 0.361 0.377 0.375 0.956 0.439 0.346 0.808 0.627
aNot applicable; no sea-ice thickness measurements.
bUsed in the sensitivity experiment (Section 2.7).
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Figure 2. Panels (a)–(d) show the evaluation of modeled snow depth from SMLG and SMLG_HS against airborne radar-derived snow depth measurements from the AWI IceBird
survey flight on 8 April 2017. Red color refers to the original SMLG and black color to the new, coupled SMLG_HS. Panels (e)–(h) show the evaluation of thermodynamically
grown (TD-grown) sea ice and snow ice modeled with SMLG_HS against airborne sea-ice thickness measurements over level ice from the same flight. The red square in panels
(d) and (h) show the extent of panels (b), (c), (f) and (g). Red color refers to only thermodynamically grown (TD-grown) sea ice, black color indicates the sum of TD-grown sea
ice and snow ice, i.e. total sea-ice thickness. In panels (a) and (e), the size of the data point reflects the relative number of airborne measurements in the grid cell. Upper and
lower right corners of each panel show the statistics of the corresponding year: Pearson correlation coefficient r, p-value in parenthesis, root-mean-square error (RMSE) and
lastly mean bias in parenthesis.

of 4 cm within an along-track distance of 1m over continuous
sections of at least 100m long.

2.6.2. NASA OIB
Annual NASA OIB campaigns over the western Arctic Ocean took
place in March–April 2009–19 (MacGregor and others, 2021) and
comprise 99 survey flights in total (Table A1 in Appendix A). We
used the data products ofKurtz andothers (2015); (2016)where the
snow depth data were derived from airborne snow radars using the
retrieval algorithms described in Kurtz and Farrell (2011); Kurtz
and others (2013). The data are averaged in the along-track direc-
tion to a 40m length scale.We did not use theOIB sea-ice thickness
to evaluate modeled sea-ice thickness, because it is not directly
measured but converted from freeboard and snow depth measure-
ments assuming hydrostatic equilibrium. However, we did use it
together with surface roughness data included in the product to
guide a level ice identification similar to the IceBird data (Jutila and
others, 2022a). To compensate for the increased uncertainty of sea-
ice thickness and the approximately 8–10 times coarser along-track
resolution compared to the IceBird data, we applied here more
strict conditions including a sea-ice thickness gradient threshold of
2 cmm−1 over continuous sections of at least 200m long as well as
ensuring a corresponding surface roughness value of <0.3m. We
determined the numerical values of these conditions throughman-
ual iteration and visually inspecting along-track sea-ice transect
profiles. Using snow freeboard, snow depth and sea-ice thickness

data, we produced figures of snow and sea-ice layer heights with
respect to the local sea level (i.e. zero freeboard) in 10 km long
along-track segments for five OIB flights from different years and
different regions to verify that only truly level ice was identified.

2.7. Sensitivity experiment

Because sub-parcel snow mass redistribution is not considered
in the model, we hypothesized that SMLG_HS would overesti-
mate snow depth on level ice and consequently underestimate
level ice thickness and overestimate snow-ice thickness. To test
our hypothesis, we performed a modeling sensitivity experiment,
wherewe decreased snowdepth in SMLG_HSby 10% intervals and
compared the simulated snowdepth and sea-ice thickness to obser-
vations. We conducted in total seven SMLG_HS runs, decreasing
the snowdepth by 10%, 20%, 30%, 40%, 50%, 60%and 70%, respec-
tively. As observations, we used a subset of IceBird flights in April
2017 that have the highest fractions of level ice and that extend far
enough from the vicinity of coastlines, i.e. the edges of the sim-
ulation domain (Table 1). The data collected in April 2019 were
not included in the experiment due to the smaller fractions of
level ice, the presence of deformed multi-year ice and/or the close-
ness of coastlines. We derived a snow depth fraction that resulted
in best fitting of both snow depth and level ice thickness simula-
tions (including snow-ice formation) to the observations.We argue
that this snow depth decrease represents the sub-parcel snow mass
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Figure 3. Evaluation of the simulations compared against gridded airborne measurements. Panels (a)–(d) with white background show the modeled snow depth against
radar-derived snow depth. The upper panels (a)–(b) show only measurements over level ice and the lower panels (c)–(d) show measurements over all ice types. The left-side
panels (a) and (c) show the NASA Operation IceBridge (OIB) flights in 2009–19 and the middle panels (b) and (d) show the AWI IceBird flights in 2017 and 2019. Red color
refers to the original SMLG and black color to the new, coupled SMLG_HS. The upper right panel (e) with gray background shows the modeled sea-ice thickness compared
against gridded airborne sea-ice thickness measurements over level ice from the AWI IceBird campaigns in 2017 and 2019. Red color refers to only thermodynamically grown
(TD-grown) sea ice, black color indicates the sum of TD-grown sea ice and snow ice, i.e. total sea-ice thickness. The size of the data point reflects the relative number of
airborne measurements in the grid cell. Upper and lower right corners of each panel show the statistics of the corresponding year: Pearson correlation coefficient r, p-value
in parenthesis, root-mean-square error (RMSE) and lastly mean bias in parenthesis.

redistribution sink, because all other snow sinks are accounted for
by the model.

As an independent evaluation, we investigated the snow mass
redistribution between level and deformed ice also along the 100+
airborne surveys in 2009–19 by calculating the fraction of snow
volume on level ice for each flight:

Vs,tot = Vs,level+Vs,deformed = h̄s,level×flevel+ ̄hs,deformed×(1 − flevel) ,
(4a)

fVs,level
=

Vs,level

Vs,tot
=

̄hs,level × flevel
Vs,tot

, (4b)

whereVs,tot is the total snow volume,Vs,level is the snow volume on
level ice, Vs,deformed is the snow volume on deformed ice, h̄s,level is
the average snow depth on level ice, ̄hs,deformed is the average snow
depth on deformed ice, flevel is the level ice fraction and fVs,level

is the
fraction of snow volume on level ice.

3. Results

In the evaluation exercise, we compared SMLG_HS simulations
of snow depth and sea-ice thickness against independent airborne
observations from the IceBird and OIB campaigns, and we were
able to examine snow depth on level ice separately. The results

of the evaluation exercise confirmed our hypothesis. They indi-
cated that SMLG_HS overestimated snow depth over level ice on
average by 0.06–0.07m with a root-mean-square error (RMSE) of
0.10–0.11m, but with an absolute error up to 0.45m (Fig. 2a–d and
Fig. 3a–b). For comparison, in the SMLG, the maximum absolute
error was even higher, 0.60m. Therefore, SMLG_HS underesti-
mated level ice thickness on average by 0.45m with an RMSE of
0.62m, but with an absolute error up to 1.76m (Fig. 2e–h and
Fig. 3e). This result was consistent in all IceBird flights examined
in the evaluation exercise.

When we did not distinguish between level and deformed ice
and we evaluated SMLG_HS simulations against the total snow
depth observations instead (over all ice types), SMLG_HS demon-
strated better fit to the snow depth observations from both IceBird
and OIB flights (Fig. 2a–d), with reduced RMSEs and biases com-
pared to SMLG (Fig. 3c–d). However, based on a non-parametric
Wilcoxon signed-rank test, the differences between the models
were not statistically significant. In any case, this indicates that
total snow-on-sea-ice amounts given by SMLG_HS are realistic,
but they do not account for the sub-grid spatial variations of snow
depth (25 km × 25 km). Without considering the sub-grid snow
distribution, SMLG_HS overestimated snow depth on level ice
resulting in thinner level ice thickness that is more prone to snow-
ice formation. The question now becomes: how much snow is
removed from the level ice due to snow mass redistribution?
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Figure 4. Results of the sensitivity experiment showing (a) snow depth over all (level and deformed) ice types, (b) snow depth over level ice only, (c) sea-ice thickness over
level ice and (d) location of the three IceBird flights (red lines; Table 1) together with the sea-ice type in April 2017 at the time of the flights. The control simulation with
unmodified snow depth (SMLG_HS ctrl) is shown as red circles and the simulation with snow depth reduced by 40% (SMLG_HS 0p6) as black circles. The size of the data
point reflects the relative number of airborne measurements in the grid cell. While 38% of the total data are from the level ice, the total number of the grid cells (N= 57)
is not reduced. Upper and lower right corners of panels (a)–(c) show the statistics of the datasets: the number above is the Pearson correlation coefficient r with p-value in
parenthesis, while below are the root-mean-square error and lastly mean bias in parenthesis. OW stands for open water, FYI for first-year ice, SYI for second-year ice (i.e. sea
ice that has survived one melt season) and MYI for multi-year ice (i.e. sea ice that has survived at least two or more melt seasons).

We examined two different approaches to address the ques-
tion above and to assess the sub-parcel snow mass redistribution:
(1) by conducting a modeling sensitivity experiment with a subset
of IceBird flights and (2) by performing an analysis of snow vol-
ume distribution between level and deformed sea ice based on all
IceBird and OIB flight transects. The results of the modeling sen-
sitivity experiment revealed that snow depth on level ice should be

reduced by 40% to simulate level ice thickness realistically (Fig. 4)
and, at the same time, to maintain snow depth and sea-ice thick-
ness within their respective measurement uncertainties of 0.05m
and 0.12m for the western Arctic in April 2017. This reduced the
mean bias in level sea-ice thickness by 53% from 0.30m to 0.14m.
The analysis of snow volume distribution along all the OIB and
IceBird flight transects in 2009–19 revealed a relationship between
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Figure 5. The relationship between the fraction of level ice and the fraction of snow
volume on level ice demonstrating the effect of snowmass redistribution (gray hatch-
ing). The NASA OIB survey flights are marked with black circles and their linear fit with
a black dashed line, whereas the AWI IceBird ones are shown with red crosses and a
red dashed line. The solid black line shows the linear fit of all airborne data and the
gray shading is its 95% confidence interval. The blue stars show the corresponding
end-of-winter values in March–April 2020 from the MOSAiC expedition ground-based
transect by Itkin and others (2023).

the fraction of level ice (flevel) along a sea-ice transect and the frac-
tion of snow volume on level ice (fVs,level

), demonstrating the effect
of the sub-parcel snow mass redistribution (Fig. 5). This relation-
ship is linear for fractions of level ice up to 0.5, and it can be given
by

fVs,level
= (0.68 ± 0.05) × flevel, (5)

where ±0.05 represents the 95% confidence interval of the slope.

4. Discussion

We performed a modeling study to investigate snow sinks on level
ice in the western Arctic. Specifically, we examined snow sinks
caused by snow and ice interactions, such as snow-ice formation
and snow mass redistribution. Snow loss in leads was not consid-
ered in this study, because observations from the MOSAiC expe-
dition demonstrated that this is likely an insignificant snow sink in
winter, due to quick refreezing of the leads (Clemens-Sewall and
others, 2023). We coupled SMLG snow depth and density evolu-
tion with HIGHTSI thermodynamic sea-ice and snow-ice growth
to create SMLG_HS. Being in fact a 1-D model, SMLG_HS should
be considered for level ice only. It does not account for dynamic
ice thickening, nor for sub-parcel snow mass redistribution pro-
cesses, i.e. the preference of snow to accumulate over ice defor-
mations (Liston and others, 2018). It also assumes that negative
freeboard will lead to snow-ice formation. Therefore, it is expected
to overestimate snow depth on level ice. Being a very effective insu-
lator, this additional snow decelerates level ice growth, resulting in
underestimation of level ice thickness and overestimation of snow-
ice thickness. This hypothesis was confirmed when we compared
SMLG_HS simulations to airborne observations of snow depth
over level ice and level ice thicknesses. SMLG_HS matched the

overall snow depth observations from airborne radars better com-
pared to SMLG, with reduced RMSEs and biases. However, based
on a statistical test (non-parametric Wilcoxon signed-rank test),
the differences between the snow depths in the two models were
not statistically significant.

AWI IceBird data are ideal for evaluating SMLG_HS, because
they offer simultaneous snow depth and sea-ice thickness observa-
tions over hundreds of kilometers of transects in high resolution,
with a possibility to examine level anddeformed ice conditions sep-
arately.However, IceBird campaigns that provide a concrete dataset
of both snow depth and sea-ice thickness observations are lim-
ited to the western Arctic and in April 2017 and 2019 only. In
2019, IceBird flew over multi-year ice that was heavily deformed,
resulting in small fractions of level ice along the flight tracks. The
limited level ice observations would impose a risk of unreliable
conclusions; therefore, we focused our analysis on flights with the
largest level ice fraction in 2017. Moreover, the monitored region
was occasionally close to the coast where parcel trajectory data
are unavailable, rendering these regions outside the simulation
domain and the sensitivity experiment.

The modeling sensitivity experiment showed that reducing
snow depth by 40% produced the best agreement between snow
depth (on level ice) and level ice thickness in the western Arctic
in April 2017 and reduced the mean bias in sea-ice thickness by
53%. The analysis of the snow volume distribution between level
and deformed sea ice using observations from the IceBird and
OIB transects was in good agreement with the model results when
considering their respective limitations.The sensitivity experiment
relies on a 1-D thermodynamic model that does not account
for lateral conduction of heat, a factor that becomes signifi-
cant when snow depth varies spatially (Clemens-Sewall and oth-
ers, 2024; Zampieri and others, 2024). Regarding the airborne
approach, it is not possible to account for snow sinks in snow-
ice formation. Omitting snow-ice formation, that mostly occurs
over level ice, would result in underestimation of the snow mass
redistribution.

We argue that the snow depth decrease on level ice represents
the sub-parcel snow mass redistribution process; however, this
mechanism is not yet fully understood. The deformation rate of a
sea-ice floe, together with the atmospheric conditions (e.g. wind,
warm intrusions) and the properties of snow cover (density, wet-
ness, sintering level and snow-surface shear strength) are expected
to affect the snow redistribution, i.e. the amount of snow removed
from the level to deformed ice. Ice and snow conditions are not
uniform across the Arctic Ocean, but they vary regionally and tem-
porally. Therefore, a 40% reduction of snow depth on level ice is
empirical and more data are needed across the Arctic and the dif-
ferent seasons to study the spatiotemporal variability of snow mass
redistribution. In another, yetmore local example by Itkin and oth-
ers (2023), data from the MOSAiC expedition indicated that 31%
of level ice contained only 18% of the snow volume at the end of
spring (see the blue stars in Fig. 5). In the Surface Heat Budget of
the Arctic Ocean (SHEBA) study in 1997–98, snowdrifts associ-
ated with ridges occupied between 3% and 6% of the total study
area. The drift sections had mean depths that were on average 30%
higher than the surrounding snow (Sturm and others, 2002).

Although the snow depth reduction suggested by the sensi-
tivity experiment cannot be generalized across the entire Arctic
and across different years, as an illustrative attempt, we com-
pared snow-ice formation results from the SMLG_HS simulation
spanning the years 2007–21, with and without a 40% decrease
in snow depth. The 14-year average snow-ice thickness on the
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Figure 6. Snow-ice thickness, 14-year average over the day of maximum snow-on-sea-ice volume in 2007–21, from (a) the control run (SMLG_HS ctrl), (b) the run with snow
depth reduced by 40% (SMLG_HS 0p6) and (c) the difference between the two simulations (reduced minus control).

day of maximum snow-on-sea-ice volume is shown in Figure 6.
Even with a 40% decrease in snow depth, snow ice still has the
potential to form and is characterized by strong seasonal and
regional variations. However, 40% less snow on level ice would
greatly limit snow-ice formation in the central and western Arctic.
This process would be primarily restricted to the Atlantic sec-
tor of the Arctic, particularly along Greenland’s east coast and
north of Svalbard underneath the North Atlantic storm track,
where the N-ICE2015 campaign was conducted. Snow-ice forma-
tion has also been observedwith autonomous sea-icemass-balance
buoys similar to Provost and others (2017) (Text S2 and Fig. S1 in
the supplementary material) and in fully coupled climate models
(Webster and others, 2021) in these regions in the contemporary
period. Understanding the importance of sub-parcel snow mass
redistribution will guide the development of necessary modeling
tools that capture snow sinks properly.

5. Conclusions

We showed that a 1-D sea-ice and snow thermodynamic model
approach would overestimate snow sink in snow-ice formation.
Even though the total snow depth (over both deformed and
level ice) matched well with both OIB and IceBird observations,
not accounting for snow redistribution from level to deformed
ice resulted in overestimation of snow depth over level ice. As
expected, this additional snow decelerated thermodynamic ice
growth in the model, resulting in thinner level ice that is more
prone to snow-ice formation. Based on the evaluation of our
simulations against IceBird data in April 2017, fitting both snow on
level ice and level ice thickness simulations to the IceBird obser-
vations, snow depth in SMLG_HS should be reduced by 40%.
We argue that in our 2017 case study in the western Arctic, 40%
reduction in snow depth over level ice represented the sub-parcel
snow mass redistribution process. Based on the analysis of >100
airborne survey flights spanning a full decade, the fraction of snow
volume on level ice in spring is linearly related to the level ice
fraction, and it is given by fVs,level

= (0.68 ± 0.05) × flevel. This lin-
ear relationship indicates that the amount of snow remaining on
level sea ice in the end of winter is proportional to the amount of
ice deformation.

When snow models do not account for snow sinks caused by
snow and sea-ice interactions, such as snow-ice formation or sub-
parcel snow mass redistribution processes, they overestimate snow
depth on level ice. Uneven snow-on-sea-ice load within a sub-grid
area will result in biases in altimetry retrievals of sea-ice thick-
ness by overestimating level ice and underestimating deformed ice
thickness. Regarding sea-ice modeling applications, spatial vari-
ability in snow depth will impact sea-ice thermodynamic growth
in winter, affecting both vertical and horizontal heat fluxes, and
will influence melt pond formation in summer (Thielke and oth-
ers, 2023). Therefore, snow-on-sea-ice reconstructions should be
used with caution depending on the application requirements.
This study emphasizes the need to account for sub-grid scale
heterogeneity in snow and sea-ice interactions to improve the
representation of snow in remote sensing and model studies. It
also highlights the crucial need for additional independent but
simultaneous observations of snow depth and sea-ice thickness,
together with information on snow properties, to understand the
mechanism behind snow mass changes due to coupled physical
processes.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2025.34.

Acknowledgements. IM was supported by the ESA grant CCI+
4000126449/19/I-NB. IM and AJ were supported by the Research Council
of Finland grant 341550. GEL was supported by the United States National
Science Foundation grant 1820927. AP was supported by the European Union’s
Horizon 2020 research and innovation program under grant 101003472.
MAW conducted this work under the National Science Foundation Project
2325430. The authors are grateful to Bin Cheng for providing the software
code for the model HIGHTSI and to Polona Itkin for sharing the MOSAiC
ground-based transect data. Autonomous sea-ice measurements (temperature
profile and heating cycle data) from 2012 to 2020 were obtained from https://
www.meereisportal.de (grant: REKLIM-2013-04). The scientific color maps
(Crameri, 2023) are used in this study to prevent visual distortion of the data
and exclusion of readers with color-vision deficiencies (Crameri and others,
2020).

Author contributions. Conceptualization: IM.Data curation: IM,AJ, GEL,
AP. Formal analysis: IM, AJ, GEL. Funding acquisition: IM. Investigation:
IM, AJ. Methodology: IM, GEL. Project administration: IM. Resources: IM.
Software: AJ, GEL. Supervision: IM. Validation: IM, AJ, GEL. Visualization:

https://doi.org/10.1017/jog.2025.34 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.34
https://www.meereisportal.de
https://www.meereisportal.de
https://doi.org/10.1017/jog.2025.34


10 Ioanna Merkouriadi et al.

AJ.Writing—original draft: IM.Writing—review& editing: IM, AJ, GEL, AP,
MAW. Author contributions follow the Contributor Role Taxonomy (CRediT)
(Brand and others, 2015; National Information Standards Organization
(NISO), 2022).

Data availability statement. Sea-ice concentration data are available at
DiGirolamo and others (2022). Sea-ice motion vectors are available at Tschudi
and others (2019). Atmospheric forcing data are available at Global Modeling
And Assimilation Office (GMAO) (2015a); (2015b). Daily ocean heat flux data
(opa0/daily_r1x1) were downloaded from ECMWF via the ECMWF ECGATE
Class Service (ECS) computing facility using Teleport SSH and a personal
ECMWF user account. Airborne data are available at Jutila and others (2021a);
(2021b); (2024a); (2024b) for AWI IceBird and at Kurtz and others (2015);
(2016) forNASAOIB.Data for SIMBAbuoys are available at Preußer and others
(2025).

Competing interests. The authors have no competing interests to declare.

References
Blanchard-Wrigglesworth E, Farrell SL, Newman T and Bitz CM (2015)

Snow cover on Arctic sea ice in observations and an Earth System Model.
Geophysical Research Letters 42, 10342–10348. doi: 10.1002/2015GL066049

Blanchard-Wrigglesworth E, Webster MA, Farrell SL and Bitz CM (2018)
Reconstruction of snow on Arctic sea ice. Journal of Geophysical Research:
Oceans 123, 3588–3602. doi: 10.1002/2017JC013364

Brand A, Allen L, Altman M, Hlava M and Scott J (2015) Beyond author-
ship: Attribution, contribution, collaboration, and credit. Learned Publishing
28(2), 151–155. doi: 10.1087/20150211

Chapman-Dutton HR and Webster MA (2024) The effects of summer snow-
fall on Arctic sea ice radiative forcing. Journal of Geophysical Research:
Atmospheres 129(14), doi: 10.1029/2023jd040667

Cheng B and 7 others (2008b) Model experiments on snow and ice thermody-
namics in theArcticOceanwithCHINARE2003 data. Journal of Geophysical
Research 113, C09020. doi: 10.1029/2007JC004654

Cheng B, Mäkynen M, Similä M, Rontu L and Vihma T (2013) Modelling
snow and ice thickness in the coastal Kara Sea, Russian Arctic. Annals of
Glaciology 54, 105–113. doi: 10.3189/2013AoG62A180

Cheng B, Vihma T, Zhanhai Z, Zhijun L and Huiding W (2008a) Snow and
sea ice thermodynamics in the Arctic: Model validation and sensitivity study
against SHEBA data. Advances in Polar Science 19, 108–122. https://aps.
chinare.org.cn/EN/Y2008/V19/I2/108.

Clemens-Sewall D and 13 others (2023) Snow loss into leads in Arctic sea
ice: Minimal in typical wintertime conditions, but high during a warm and
windy snowfall event. Geophysical Research Letters 50, e2023GL102816. doi:
10.1029/2023GL102816

Clemens-Sewall D, Polashenski C, Perovich D and Webster MA (2024) The
importance of sub-meter-scale snow roughness on conductive heat flux of
Arctic sea ice. Journal of Glaciology 70, 1–6. doi: 10.1017/jog.2023.105

Crameri F (2023) Scientific Colour Maps, Version 8.0.1., Zenodo. doi: 10.5281/
ZENODO.1243862

Crameri F, Shephard GE andHeron PJ (2020) The misuse of colour in science
communication. Nature Communications 11(1), 5444. doi: 10.1038/s41467-
020-19160-7

DiGirolamo N, Parkinson C, Cavalieri D, Gloersen P and Zwally H (2022)
Sea ice concentrations fromNimbus-7 SMMRandDMSP SSM/I-SSMIS pas-
sive microwave data, Version 2. NASA National Snow and Ice Data Center
Distributed Active Archive Center. doi: 10.5067/MPYG15WAA4WX

Gelaro R and 31 others (2017) The Modern-Era Retrospective Analysis for
Research and Applications, Version 2 (MERRA-2). Journal of Climate 30,
5419–5454. doi: 10.1175/JCLI-D-16-0758.1

Giles K and 8 others (2007) Combined airborne laser and radar altimeter mea-
surements over the Fram Strait in May 2002. Remote Sensing of Environment
111, 182–194. doi: 10.1016/j.rse.2007.02.037

Global Modeling and Assimilation Office (GMAO) (2015a) MERRA-2
tavg1_2d_flx_Nx: 2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation,
Surface Flux Diagnostics V5.12.4 Goddard Earth Sciences Data and
Information Services Center (GES DISC). doi: 10.5067/7MCPBJ41Y0K6

Global Modeling and Assimilation Office (GMAO) (2015b) MERRA-2
tavg1_2d_slv_Nx: 2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation,
Single-Level Diagnostics V5.12.4. Goddard Earth Sciences Data and
Information Services Center (GES DISC). doi: 10.5067/VJAFPLI1CSIVM

GranskogMA, Rösel A, Dodd PA, Divine D andGerland S (2017) Snow con-
tribution to first-year and second-year Arctic sea ice mass balance north of
Svalbard. Journal of Geophysical Research: Oceans 122, 2539–2549. doi: 10.
1002/2016JC012398

Hersbach Hand 52 others (2020) The ERA5 global reanalysis. Quarterly
Journal of the Royal Meteorological Society 146, 1999–2049. doi: 10.1002/qj.
3803

Itkin P and 13 others (2023) Sea ice and snow characteristics from year-
long transects at the MOSAiC Central Observatory. Elementa: Science of the
Anthropocene 11(1), 00048. doi: 10.1525/elementa.2022.00048

Jutila A and 6 others (2021a) Airborne snow depth on sea ice during the
IceBird Winter 2019 campaign in the Arctic Ocean, Version 1 [dataset
publication series]. PANGAEA. doi: 10.1594/PANGAEA.932790

Jutila A and 6 others (2021b) Airborne snow depth on sea ice during the
PAMARCMIP2017 campaign in the Arctic Ocean, Version 1 [dataset publi-
cation series]. PANGAEA. doi: 10.1594/PANGAEA.932668

Jutila A and 8 others (2022b) High-resolution snow depth on Arctic sea
ice from low-altitude airborne microwave radar data. IEEE Transactions
on Geoscience and Remote Sensing 60, 4300716. doi: 10.1109/TGRS.2021.
3063756

Jutila A, Hendricks S, Ricker R, von Albedyll L andHaas C (2024a) Airborne
sea ice parameters during the IceBird Winter 2019 campaign in the Arctic
Ocean, Version 2 [dataset publication series]. PANGAEA. doi: 10.1594/
PANGAEA.966057

Jutila A, Hendricks S, Ricker R, vonAlbedyll L andHaas C (2024b) Airborne
sea ice parameters during the PAMARCMIP2017 campaign in the Arctic
Ocean, Version 2 [dataset publication series]. PANGAEA. doi: 10.1594/
PANGAEA.966009

Jutila A, Hendricks S, Ricker R, von Albedyll L, Krumpen T and Haas C
(2022a) Retrieval and parameterisation of sea-ice bulk density from airborne
multi-sensor measurements. The Cryosphere 16, 259–275. doi: 10.5194/tc-
16-259-2022

Kurtz NT and 8 others (2013) Sea ice thickness, freeboard, and snow depth
products from Operation IceBridge airborne data. The Cryosphere 7(4),
1035–1056. doi: 10.5194/tc-7-1035-2013

Kurtz NT and Farrell SL (2011) Large-scale surveys of snow depth on Arctic
sea ice from Operation IceBridge. Geophysical Research Letters 38(20),
L20505. doi: 10.1029/2011gl049216

Kurtz NT, Studinger M, Harbeck J, DePaul Onana V and Yi D (2015)
IceBridge L4 Sea Ice Freeboard, Snow Depth, and Thickness, Version 1.
NASA National Snow and Ice Data Center Distributed Active Archive
Center. doi: 10.5067/G519SHCKWQV6

Kurtz NT, Studinger M, Harbeck J, DePaul Onana V and Yi D (2016)
IceBridge Sea Ice Freeboard, Snow Depth, and Thickness Quick Look,
Version 1. NASA National Snow and Ice Data Center Distributed Active
Archive Center. doi: 10.5067/GRIXZ91DE0L9

Kwok R and CunninghamGF (2008) ICESat over Arctic sea ice: Estimation of
snow depth and ice thickness. Journal of Geophysical Research 113, C08010.
doi: 10.1029/2008JC004753

KwokR,CunninghamGF,WensnahanM,Rigor I, ZwallyHJ andYiD (2009)
Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008.
Journal of Geophysical Research 114, C07005. doi: 10.1029/2009JC005312

Landy JC and 12 others (2022) A year-round satellite sea-ice thickness
record from CryoSat-2. Nature 609(7927), 517–522. doi: 10.1038/s41586-
022-05058-5

Landy JC, Petty AA, Tsamados M and Stroeve JC (2020) Sea ice rough-
ness overlooked as a key source of uncertainty in CryoSat-2 ice freeboard
retrievals. Journal of Geophysical Research: Oceans 125, e2019JC015820. doi:
10.1029/2019JC015820

Launiainen J andCheng B (1998)Modelling of ice thermodynamics in natural
water bodies.Cold Regions Science andTechnology 27, 153–178. doi: 10.1016/
S0165-232X(98)00009-3

Laxon S, Peacock N and Smith D (2003) High interannual variability of
sea ice thickness in the Arctic region. Nature 425, 947–950. doi: 10.1038/
nature02050

https://doi.org/10.1017/jog.2025.34 Published online by Cambridge University Press

https://doi.org/10.1002/2015GL066049
https://doi.org/10.1002/2017JC013364
https://doi.org/10.1087/20150211
https://doi.org/10.1029/2023jd040667
https://doi.org/10.1029/2007JC004654
https://doi.org/10.3189/2013AoG62A180
https://aps.chinare.org.cn/EN/Y2008/V19/I2/108
https://aps.chinare.org.cn/EN/Y2008/V19/I2/108
https://doi.org/10.1029/2023GL102816
https://doi.org/10.1017/jog.2023.105
https://doi.org/10.5281/ZENODO.1243862
https://doi.org/10.5281/ZENODO.1243862
https://doi.org/10.1038/s41467-020-19160-7
https://doi.org/10.1038/s41467-020-19160-7
https://doi.org/10.5067/MPYG15WAA4WX
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1016/j.rse.2007.02.037
https://doi.org/10.5067/7MCPBJ41Y0K6
https://doi.org/10.5067/VJAFPLI1CSIVM
https://doi.org/10.1002/2016JC012398
https://doi.org/10.1002/2016JC012398
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.1525/elementa.2022.00048
https://doi.org/10.1594/PANGAEA.932790
https://doi.org/10.1594/PANGAEA.932668
https://doi.org/10.1109/TGRS.2021.3063756
https://doi.org/10.1109/TGRS.2021.3063756
https://doi.org/10.1594/PANGAEA.966057
https://doi.org/10.1594/PANGAEA.966057
https://doi.org/10.1594/PANGAEA.966009
https://doi.org/10.1594/PANGAEA.966009
https://doi.org/10.5194/tc-16-259-2022
https://doi.org/10.5194/tc-16-259-2022
https://doi.org/10.5194/tc-7-1035-2013
https://doi.org/10.1029/2011gl049216
https://doi.org/10.5067/G519SHCKWQV6
https://doi.org/10.5067/GRIXZ91DE0L9
https://doi.org/10.1029/2008JC004753
https://doi.org/10.1029/2009JC005312
https://doi.org/10.1038/s41586-022-05058-5
https://doi.org/10.1038/s41586-022-05058-5
https://doi.org/10.1029/2019JC015820
https://doi.org/10.1016/S0165-232X(98)00009-3
https://doi.org/10.1016/S0165-232X(98)00009-3
https://doi.org/10.1038/nature02050
https://doi.org/10.1038/nature02050
https://doi.org/10.1017/jog.2025.34


Journal of Glaciology 11

LedleyTS (1991) Snowon sea ice: Competing effects in shaping climate. Journal
of Geophysical Research: Atmospheres 96(D9), 17195–17208. doi: 10.1029/
91jd01439

Leppäranta M (1983) A growth model for black ice, snow ice and snow thick-
ness in subarctic basins.Hydrology Research 14, 59–70. doi: 10.2166/nh.1983.
0006

Liston GE and 7 others (2020a) A Lagrangian snow-evolution system
for sea-ice applications (SnowModel-LG): Part I—Model description.
Journal of Geophysical Research: Oceans 125, e2019JC015913. doi: 10.1029/
2019JC015913

Liston GE and Elder K (2006a) A distributed snow-evolution modeling sys-
tem (SnowModel). Journal of Hydrometeorology 7, 1259–1276. doi: 10.1175/
JHM548.1

Liston GE and Elder K (2006b) A meteorological distribution system for high-
resolution terrestrial modeling (MicroMet). Journal of Hydrometeorology
7(2), 217–234. doi: 10.1175/JHM486.1

Liston GE, Polashenski C, Rösel A, Itkin P and King J (2018) A distributed
snow-evolution model for sea-ice applications (SnowModel). Journal
of Geophysical Research: Oceans 123, 3786–3810. doi: 10.1002/2017JC0
13706

Liston GE, Stroeve J and Itkin P (2020b) Lagrangian Snow Distributions
for Sea-Ice Applications, Version 1. NASA National Snow and Ice
Data Center Distributed Active Archive Center. doi: 10.5067/27A0P5
M6LZBI

Macfarlane AR and 26 others (2023) A database of snow on sea ice in the cen-
tral Arctic collected during the MOSAiC expedition. Scientific Data 10, 398.
doi: 10.1038/s41597-023-02273-1

MacGregor JA and 61 others (2021) The scientific legacy of NASA’s
Operation IceBridge. Reviews of Geophysics 59, e2020RG000712. doi: 10.
1029/2020RG000712

Markus T and 26 others (2017) The Ice, Cloud, and land Elevation Satellite-
2 (ICESat-2): Science requirements, concept, and implementation. Remote
Sensing of Environment 190, 260–273. doi: 10.1016/j.rse.2016.12.029

Maslanik JA and 6 others (2007) A younger, thinner Arctic ice cover: Increased
potential for rapid, extensive sea-ice loss. Geophysical Research Letters 34,
L24501. doi: 10.1029/2007GL032043

Massom RA and 14 others (2001) Snow on Antarctic sea ice. Reviews of
Geophysics 39(3), 413–445. doi: 10.1029/2000rg000085

Maykut GA (1978) Energy exchange over young sea ice in the central Arctic.
Journal of Geophysical Research: Oceans 83(C7), 3646–3658. doi: 10.1029/
jc083ic07p03646

Meier WN and 12 others (2014) Arctic sea ice in transformation: A review of
recent observed changes and impacts on biology andhuman activity.Reviews
of Geophysics 52, 185–217. doi: 10.1002/2013RG000431

Merkouriadi I, Cheng B, Graham RM, Rösel A and Granskog MA (2017)
Critical role of snow on sea ice growth in the Atlantic sector of the
Arctic Ocean. Geophysical Research Letters 44, 10479–10485. doi: 10.1002/
2017GL075494

Merkouriadi I, Liston GE, Graham RM and Granskog MA (2020)
Quantifying the potential for snow-ice formation in the Arctic
Ocean. Geophysical Research Letters 47, e2019GL085020. doi: 10.1029/
2019GL085020

National Information Standards Organization (NISO) (2022) ANSI/NISO
Z39.104-2022, CRediT, Contributor Roles Taxonomy, doi: 10.3789/ansi.niso.
z39.104-2022

Perovich D, Polashenski C, Arntsen A and Stwertka C (2017) Anatomy
of a late spring snowfall on sea ice. Geophysical Research Letters 44(6),
2802–2809. doi: 10.1002/2016gl071470

Petty AA, Webster M, Boisvert L and Markus T (2018) The NASA Eulerian
Snow on Sea Ice Model (NESOSIM) v1.0: Initial model development and
analysis.GeoscientificModel Development 11, 4577–4602. doi: 10.5194/gmd-
11-4577-2018

Preußer A, Nicolaus M and Hoppmann M (2025) Snow depth, sea ice thick-
ness and interface temperatures derived from measurements of SIMBA

buoys deployed in the Arctic Ocean and Southern Ocean between 2012 and
2023. doi: 10.1594/PANGAEA.973193

Pringle DJ, Eicken H, Trodahl HJ and Backstrom LGE (2007) Thermal con-
ductivity of landfast Antarctic and Arctic sea ice. Journal of Geophysical
Research 112, C04017. doi: 10.1029/2006JC003641

Provost C and 7 others (2017) Observations of flooding and snow-ice forma-
tion in a thinner Arctic sea-ice regime during the N-ICE 2015 campaign:
Influence of basal ice melt and storms. Journal of Geophysical Research:
Oceans 122, 7115–7134. doi: 10.1002/2016JC012011

Radionov VF, Bryazgin NN Alexandrov EI (1997) The snow cover of
the Arctic basin. Technical Report APL-UW TR 9701, Applied Physics
Laboratory, University of Washington, Seattle, Washington. https://apps.
dtic.mil/sti/tr/pdf/ADA327057.pdf.

Saloranta TM (2000) Modeling the evolution of snow, snow ice and ice in the
Baltic Sea.Tellus A:DynamicMeteorology andOceanography 52, 93–108. doi:
10.3402/tellusa.v52i1.12255

Stroeve JC and 9 others (2020) A Lagrangian snow evolution system for sea
ice applications (SnowModel-LG): Part II—Analyses. Journal of Geophysical
Research: Oceans 125, e2019JC015900. doi: 10.1029/2019JC015900

Stroeve JC, Markus T, Boisvert L, Miller J and Barrett A (2014) Changes in
Arctic melt season and implications for sea ice loss. Geophysical Research
Letters 41, 1216–1225. doi: 10.1002/2013GL058951

Sturm M, Holmgren J and Perovich DK (2002) Winter snow cover on the
sea ice of the Arctic Ocean at the Surface Heat Budget of the Arctic Ocean
(SHEBA): Temporal evolution and spatial variability. Journal of Geophysical
Research: Oceans 107(C10), 8047. doi: 10.1029/2000jc000400

Thielke L and 9 others (2023) Preconditioning of summer melt ponds from
winter sea ice surface temperature. Geophysical Research Letters 50(4),
e2022GL101493. doi: 10.1029/2022gl101493

Tschudi M, Meier WN and Stewart JS (2020) An enhancement to sea ice
motion and age products at theNational Snow and IceDataCenter (NSIDC).
The Cryosphere 14(5), 1519–1536. doi: 10.5194/tc-14-1519-2020

Tschudi M, Meier WN, Stewart JS, Fowler C and Maslanik J (2019) Polar
Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 4. doi:
10.5067/INAWUWO7QH7B

Wang C, Cheng B,Wang K, Gerland S and Pavlova O (2015) Modelling snow
ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard. Polar
Research 34, 20828. doi: 10.3402/polar.v34.20828

Warren SGand 6 others (1999) Snow depth on Arctic sea ice. Journal
of Climate 12, 1814–1829. doi: 10.1175/1520-0442(1999)012<1814:
SDOASI>2.0.CO;2

Webster MA and 7 others (2024) Summer snow on Arctic sea ice modulated
by the Arctic Oscillation.Nature Geoscience 17(10), 995–1002. doi: 10.1038/
s41561-01525-y

Webster MA, DuVivier AK, Holland MM and Bailey DA (2021) Snow
on Arctic sea ice in a warming climate as simulated in CESM. Journal
of Geophysical Research: Oceans 126(1), e2020JC016308. doi: 10.1029/
2020jc016308

Webster MA, Rigor IG, Perovich DK, Richter-Menge JA, Polashenski CM
and Light B (2015) Seasonal evolution of melt ponds on Arctic sea ice.
Journal of Geophysical Research: Oceans 120, 5968–5982. doi: 10.1002/
2015jc011030

Zampieri L, Clemens-Sewall D, Sledd A, Hutter N and Holland M (2024)
Modeling the winter heat conduction through the sea ice system during
MOSAiC.Geophysical Research Letters 51(8), e2023GL106760. doi: 10.1029/
2023gl106760

Zuo H, Balmaseda MA, Tietsche S, Mogensen K and Mayer M (2019) The
ECMWF operational ensemble reanalysis–analysis system for ocean and
sea ice: A description of the system and assessment. Ocean Science 15(3),
779–808. doi: 10.5194/os-15-779-2019

Zygmuntowska M, Rampal P, Ivanova N and Smedsrud LH (2014)
Uncertainties in Arctic sea ice thickness and volume: New estimates and
implications for trends. The Cryosphere 8, 705–720. doi: 10.5194/tc-8-705-
2014

https://doi.org/10.1017/jog.2025.34 Published online by Cambridge University Press

https://doi.org/10.1029/91jd01439
https://doi.org/10.1029/91jd01439
https://doi.org/10.2166/nh.1983.0006
https://doi.org/10.2166/nh.1983.0006
https://doi.org/10.1029/2019JC015913
https://doi.org/10.1029/2019JC015913
https://doi.org/10.1175/JHM548.1
https://doi.org/10.1175/JHM548.1
https://doi.org/10.1175/JHM486.1
https://doi.org/10.1002/2017JC013706
https://doi.org/10.1002/2017JC013706
https://doi.org/10.5067/27A0P5M6LZBI
https://doi.org/10.5067/27A0P5M6LZBI
https://doi.org/10.1038/s41597-023-02273-1
https://doi.org/10.1029/2020RG000712
https://doi.org/10.1029/2020RG000712
https://doi.org/10.1016/j.rse.2016.12.029
https://doi.org/10.1029/2007GL032043
https://doi.org/10.1029/2000rg000085
https://doi.org/10.1029/jc083ic07p03646
https://doi.org/10.1029/jc083ic07p03646
https://doi.org/10.1002/2013RG000431
https://doi.org/10.1002/2017GL075494
https://doi.org/10.1002/2017GL075494
https://doi.org/10.1029/2019GL085020
https://doi.org/10.1029/2019GL085020
https://doi.org/10.3789/ansi.niso.z39.104-2022
https://doi.org/10.3789/ansi.niso.z39.104-2022
https://doi.org/10.1002/2016gl071470
https://doi.org/10.5194/gmd-11-4577-2018
https://doi.org/10.5194/gmd-11-4577-2018
https://doi.org/10.1594/PANGAEA.973193
https://doi.org/10.1029/2006JC003641
https://doi.org/10.1002/2016JC012011
https://apps.dtic.mil/sti/tr/pdf/ADA327057.pdf
https://apps.dtic.mil/sti/tr/pdf/ADA327057.pdf
https://doi.org/10.3402/tellusa.v52i1.12255
https://doi.org/10.1029/2019JC015900
https://doi.org/10.1002/2013GL058951
https://doi.org/10.1029/2000jc000400
https://doi.org/10.1029/2022gl101493
https://doi.org/10.5194/tc-14-1519-2020
https://doi.org/10.5067/INAWUWO7QH7B
https://doi.org/10.3402/polar.v34.20828
https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2
https://doi.org/10.1038/s41561-01525-y
https://doi.org/10.1038/s41561-01525-y
https://doi.org/10.1029/2020jc016308
https://doi.org/10.1029/2020jc016308
https://doi.org/10.1002/2015jc011030
https://doi.org/10.1002/2015jc011030
https://doi.org/10.1029/2023gl106760
https://doi.org/10.1029/2023gl106760
https://doi.org/10.5194/os-15-779-2019
https://doi.org/10.5194/tc-8-705-2014
https://doi.org/10.5194/tc-8-705-2014
https://doi.org/10.1017/jog.2025.34


12 Ioanna Merkouriadi et al.

Appendix A. NASA OIB survey statistics
Table A1. Statistics of the 99 NASA Operation IceBridge survey flights over the western Arctic Ocean in 2009–19 (Fig. 1) used in this study, where L is the total
length of the survey flight, h̄s,level is the average snow depth on level ice, h̄s,deformed is the average snow depth on deformed ice, h̄s,all is the average snow depth of

the entire survey flight including all ice types,
̄hs,level

̄hs,deformed
is the fraction of the average snow depth on level ice to the average snow depth on deformed ice, flevel is

the level ice fraction of the survey flight, fVs,level is the fraction of snow volume on level ice, fMYI is the fraction of multi-year ice (MYI) and fNaN is the fraction of
missing snow depth data

Date L (km) h̄s,level (m) h̄s,deformed (m) h̄s,all (m)
̄hs,level

̄hs,deformed
flevel fVs,level fMYI fNaN

02/04/09 2332 0.207 0.320 0.313 0.647 0.066 0.044 0.748 0.383
05/04/09 2556 0.228 0.220 0.220 1.037 0.030 0.031 0.948 0.165
21/04/09 631 0.235 0.356 0.351 0.660 0.036 0.024 0.894 0.423
25/04/09 3050 0.168 0.277 0.273 0.605 0.038 0.024 0.341 0.783
23/03/10 2660 0.267 0.334 0.333 0.799 0.014 0.011 0.998 0.362
26/03/10 2822 0.107 0.240 0.232 0.443 0.058 0.027 0.858 0.425
02/04/10 3039 0.099 0.135 0.130 0.733 0.142 0.108 0.743 0.145
05/04/10 2796 0.126 0.228 0.222 0.552 0.062 0.035 0.952 0.321
12/04/10 2570 0.162 0.285 0.280 0.568 0.044 0.026 0.986 0.313
19/04/10 2028 0.152 0.229 0.223 0.660 0.082 0.055 0.982 0.140
20/04/10 1733 0.144 0.257 0.252 0.560 0.045 0.026 0.957 0.192
21/04/10 1885 0.107 0.249 0.238 0.432 0.074 0.033 0.985 0.496
16/03/11 1126 0.155 0.200 0.198 0.775 0.051 0.040 0.884 0.115
17/03/11 1869 0.175 0.227 0.226 0.771 0.029 0.022 0.791 0.074
18/03/11 1779 0.188 0.234 0.233 0.805 0.013 0.011 0.970 0.121
22/03/11 1159 0.142 0.210 0.207 0.676 0.041 0.028 0.949 0.058
23/03/11 1402 0.084 0.123 0.111 0.683 0.315 0.239 1.000 0.158
25/03/11 2248 0.228 0.199 0.200 1.142 0.007 0.008 0.929 0.135
26/03/11 2247 0.201 0.245 0.244 0.821 0.021 0.018 0.980 0.126
28/03/11 2669 0.150 0.237 0.235 0.631 0.023 0.014 0.769 0.202
14/03/12 2399 0.191 0.221 0.221 0.866 0.001 0.001 0.969 0.408
15/03/12 2422 0.117 0.152 0.150 0.773 0.064 0.050 0.951 0.267
16/03/12 2580 0.112 0.124 0.124 0.907 0.030 0.027 0.960 0.354
17/03/12 2171 0.107 0.137 0.136 0.782 0.050 0.040 0.937 0.271
19/03/12 2187 0.313 0.258 0.258 1.214 0.001 0.001 0.930 0.259
21/03/12 2340 0.182 0.247 0.247 0.734 0.012 0.009 0.769 0.416
22/03/12 2043 0.180 0.241 0.241 0.745 0.012 0.009 0.917 0.349
23/03/12 2453 0.206 0.257 0.257 0.803 0.004 0.004 0.942 0.343
26/03/12 1473 0.225 0.241 0.241 0.933 0.006 0.005 1.000 0.702
27/03/12 1878 0.196 0.302 0.301 0.651 0.007 0.004 0.994 0.424
28/03/12 2473 0.304 0.230 0.230 1.323 0.006 0.008 0.647 0.599
29/03/12 2113 0.348 0.324 0.324 1.074 0.009 0.010 0.987 0.210
02/04/12 2270 0.206 0.281 0.281 0.732 0.004 0.003 0.776 0.455
10/04/12 1809 0.065 0.266 0.265 0.244 0.007 0.002 0.863 0.657
21/03/13 2521 0.133 0.206 0.198 0.647 0.109 0.073 0.983 0.374
22/03/13 2481 0.109 0.109 0.109 1.001 0.247 0.247 0.986 0.516
23/03/13 2325 0.114 0.197 0.171 0.580 0.317 0.213 0.958 0.264
24/03/13 2380 0.116 0.138 0.129 0.845 0.411 0.371 0.949 0.233
26/03/13 2234 0.197 0.270 0.268 0.730 0.029 0.021 0.913 0.169
27/03/13 2464 0.140 0.365 0.348 0.385 0.074 0.030 0.684 0.292
22/04/13 2007 0.187 0.306 0.298 0.611 0.061 0.038 0.967 0.247
24/04/13 2400 0.206 0.300 0.293 0.686 0.071 0.049 0.804 0.400
25/04/13 1739 0.192 0.315 0.307 0.610 0.062 0.039 0.925 0.330
12/03/14 1110 0.183 0.171 0.172 1.071 0.085 0.090 0.847 0.505
13/03/14 1824 0.290 0.258 0.259 1.125 0.040 0.044 0.910 0.268
14/03/14 2465 0.150 0.193 0.190 0.779 0.071 0.056 0.985 0.344
15/03/14 2143 0.136 0.135 0.135 1.010 0.062 0.063 0.956 0.645
17/03/14 2058 0.141 0.159 0.157 0.886 0.102 0.092 0.848 0.381
18/03/14 2386 0.129 0.145 0.144 0.894 0.059 0.053 0.946 0.563
19/03/14 2354 0.135 0.150 0.149 0.896 0.090 0.082 0.954 0.435
21/03/14 2225 0.301 0.253 0.253 1.187 0.005 0.006 1.000 0.412
24/03/14 1150 0.274 0.220 0.223 1.241 0.055 0.068 0.678 0.455
25/03/14 2232 0.065 0.108 0.107 0.602 0.027 0.016 0.014 0.422
26/03/14 2204 0.396 0.267 0.268 1.485 0.008 0.011 0.972 0.332
28/03/14 1495 0.250 0.287 0.286 0.872 0.015 0.013 0.960 0.289
31/03/14 1577 0.093 0.299 0.295 0.313 0.020 0.006 0.886 0.306
03/04/14 2994 0.216 0.277 0.276 0.779 0.019 0.015 0.955 0.209
28/04/14 2115 0.244 0.279 0.278 0.877 0.018 0.016 0.889 0.238
19/03/15 937 0.214 0.299 0.296 0.714 0.045 0.032 0.699 0.519
24/03/15 1378 0.255 0.307 0.305 0.830 0.041 0.034 0.822 0.458
25/03/15 2275 0.170 0.297 0.291 0.571 0.050 0.029 0.917 0.259

(Continued)
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Table A1. (Continued.)

Date L (km) ̄hs,level (m) h̄s,deformed (m) h̄s,all (m)
̄hs,level

h̄s,deformed
flevel fVs,level fMYI fNaN

26/03/15 2177 0.155 0.247 0.243 0.628 0.046 0.029 0.974 0.351
27/03/15 2083 0.125 0.246 0.238 0.509 0.067 0.035 0.955 0.501
29/03/15 2466 0.115 0.170 0.165 0.679 0.101 0.071 0.923 0.420
30/03/15 2134 0.100 0.180 0.172 0.555 0.106 0.062 0.867 0.462
01/04/15 1646 0.157 0.379 0.378 0.414 0.004 0.002 1.000 0.276
03/04/15 1503 0.228 0.333 0.330 0.685 0.022 0.015 0.952 0.306
20/04/16 2536 0.107 0.285 0.280 0.375 0.029 0.011 0.952 0.652
21/04/16 2337 0.108 0.156 0.154 0.692 0.039 0.027 0.793 0.749
29/04/16 2079 0.340 0.343 0.343 0.990 0.015 0.014 0.843 0.656
03/05/16 1749 0.290 0.339 0.339 0.855 0.003 0.003 0.782 0.599
04/05/16 1724 0.252 0.307 0.306 0.823 0.007 0.006 0.808 0.668
09/03/17 2146 0.154 0.279 0.269 0.552 0.082 0.047 0.950 0.158
10/03/17 2368 0.167 0.225 0.220 0.740 0.087 0.066 0.959 0.271
11/03/17 2193 0.106 0.181 0.159 0.585 0.292 0.195 0.994 0.168
12/03/17 2262 0.105 0.133 0.123 0.785 0.364 0.310 0.970 0.246
14/03/17 2378 0.193 0.247 0.236 0.782 0.200 0.164 0.881 0.049
20/03/17 2300 0.183 0.280 0.272 0.651 0.080 0.053 0.956 0.232
23/03/17 2096 0.172 0.390 0.380 0.441 0.045 0.020 1.000 0.317
24/03/17 1233 0.141 0.333 0.328 0.424 0.025 0.011 0.980 0.212
03/04/17 769 0.037 0.241 0.194 0.153 0.231 0.044 0.677 0.564
05/04/17 2635 0.175 0.252 0.246 0.696 0.075 0.053 0.976 0.382
06/04/17 1703 0.097 0.169 0.149 0.577 0.273 0.178 0.719 0.287
07/04/17 2469 0.123 0.290 0.282 0.425 0.046 0.020 0.927 0.306
11/04/17 2182 0.187 0.300 0.292 0.623 0.066 0.042 0.925 0.201
19/04/17 1690 0.145 0.255 0.241 0.571 0.121 0.073 0.931 0.186
22/03/18 1914 0.117 0.265 0.256 0.442 0.066 0.030 0.814 0.264
03/04/18 1446 0.110 0.230 0.210 0.476 0.164 0.085 0.894 0.381
04/04/18 2186 0.178 0.325 0.316 0.546 0.064 0.036 0.922 0.174
06/04/18 2662 0.177 0.300 0.286 0.590 0.113 0.070 0.971 0.306
07/04/18 2302 0.143 0.227 0.212 0.629 0.174 0.117 0.934 0.370
08/04/18 2163 0.165 0.240 0.233 0.687 0.093 0.066 0.991 0.637
14/04/18 2403 0.075 0.275 0.222 0.275 0.265 0.090 0.944 0.314
16/04/18 2449 0.087 0.353 0.326 0.246 0.100 0.027 0.933 0.154
06/04/19 1953 0.210 0.366 0.360 0.574 0.039 0.023 0.890 0.202
12/04/19 1548 0.164 0.218 0.213 0.752 0.092 0.071 1.000 0.061
19/04/19 1184 0.281 0.323 0.321 0.872 0.045 0.039 0.989 0.070
20/04/19 1599 0.180 0.353 0.340 0.510 0.078 0.042 0.838 0.306
22/04/19 743 0.241 0.267 0.266 0.903 0.044 0.040 0.978 0.063
Min 631 0.037 0.108 0.107 0.153 0.001 0.001 0.014 0.049
Mean 2062 0.174 0.249 0.243 0.714 0.074 0.051 0.894 0.336
Max 3050 0.396 0.390 0.380 1.485 0.411 0.371 1.000 0.783
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