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Ice-sheet surging and ice-stream formation
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Mathematical Institute, Oxford University, Oxford OX1 3LB, England

ABSTRACT. A simplified model of ice-sheet behaviour is described. It combines
the assumptions of rapid ice flow, high viscous activation energy and realistic
sediment-based sliding dynamics to form a non-linear diffusion-type equation which
can display relaxation oscillations analogous to those of surging glaciers, and which
may be relevant to large-scale surges of the Hudson Strait and Cabot Strait ice streams

of the Laurentde ice sheet.

When the physics of this model is applied to a laterally extensive unidirectional ice
low, such as that in the Siple Coast of Antarctica, an appropriate mechanism may
exist for the spontancous generation of ice streams,

1. INTRODUCTION

Heinrich events are sequences in the sedimentary record
of the North Atlantic which indicate periods when large
amounts of ice-rafted debris were scoured from Hudson
Bay and Hudson Strait and transported out to the ocean
on icebergs (Heinrich, 1988; Bond and others, 1992;
Grousset and others, 1993). The simplest interpretation of
these sequences (and others described by Bond and Lott
(1993)) is that they occur via repeated, quasi-periodic
surges of the Laurentide ice sheet (Andrews and Tedesco,
1992; Clark, 1994), and specifically of the Hudson Bay ice
dome draining through Hudson Strait. MacAyeal (1993)
has suggested a simple mechanism whereby this could
occur, and Fowler and Johnson (1993) have shown that
this coneept is compatible with theoretical descriptions of
ice flow over wet, delormable sediment,

The concept of ice-sheet surges is highlighted by the
existence of ice streams, for example in Antarctica, which
are relatively fast outlet flows. Their notable feature,
particularly on the Siple Coast, is their lateral variability.
That is to say, the ice streams which drain into the Ross
Ice Shelf divide the drainage basin into regions of fast and
slow flow. This is suggestive of a lateral instability, as is
also the fact that drainage of ice sheets generally seems to
occur through localized ice streams. Again, a principal
feature of the Siple Coast ice streams is that they may be
underlain by a layer of wet, deformable sediment (Alley
and others, 1987).

In this paper, we extend Fowler and Johnsons (1995)
crude model in two ways. First, we allow for spatial
variation in the variables, thus deriving a non-linear
diffusion-type equation, whose surging solutions we
describe. Secondly, in laterally extensive flows (such as
on the Siple Coast, for example), we allow for lateral
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spatial dependence of the variables and we show how the
resulting model may result in the spontancous generation
of ice streams. Payne (1993) has also found oscillations in
an ice-sheet model with thermally activated flow and
sliding., although the mechanism is different from that
proposed here. In other work, he also found that laterally
extensive flows are subject to streaming instability
(personal communication from A, J. Payne).

2. ICE-SHEET MODEL

We follow the development of Fowler and Johnson
(1995), who described an approximate model of ice-sheet
dynamics, based on the (asymptotic) limits ol strong
temperature-dependent variation of viscosity and small
thermal diffusivity. We consider a two-dimensional ice
sheet of thickness h(x, t) (x is owline distance, t is time)
undergoing plug flow: the horizontal velocity is u(x,t),
where u is just the sliding velocity, shearing is negligible
and we are assuming that the bed is at the melting point,
mainly for convenience.
Mass conservation implies

hy + (hu), = a (2.1)

where a is the accumulation rate and subscripts x and ¢
denote partial derivatives. The sliding velocity w is
determined by a sliding law of the form prescribed by
Fowler and Johnson (1995). If the basal shear stress is 7
and the heat flux up into the ice (the basal cooling) is g,
then the heat delivered to the interface is G 4 Tu — ¢,
where G is the geothermal heat flux. We assume it is
constant, having a value G =0.05 W m *. If the resulting
walter supply is distributed across a channelized system
with inter-branch spacing wg, then the water flux per
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channel increases in the direction ol ice [low according to

0Q (G +7u—q)wy (29)
dr Dig s 2
where p is water density and L is the latent heat.
Walder and Fowler (1994) developed a theory which
implied that, for ice sheets moving over wet sediment, the
effective pressure N (overburden ice pressure minus water
pressure) would be related o @ by

N =c"/Q (2.3)

where ¢* was given by

ot = ' Dylhy ", (2.4)

= : S
¢ =~ 1.1x10* bar s7%, and D, is the characteristic
suspended-sediment grain-size. The sliding law is taken

in the form

= o N (2.5)

where values 0 < r, s < 1 are probably appropriate. The
coeflicient ¢ is a constant which measures how “sticky™
the bed is. High values of ¢ mean that the bed has high
friction. The shear stress is

T = —pghh, (2.6)
and the cooling rate may be determined by a thermal

boundary-laver analysis.
Specifically, the temperature T satisfies

uTy — 2T, = kT, (2.7)

where the base is taken as z=10, x is the thermal
diffusivity and the vertical velocity is w = —zu' = —zdu/
dr by continuity (since w=u(x,t)). If wh®/kl > 1,
where [ is the horizontal length scale, then it is
appropriate to solve Equation (2.7) with

T=Txonz=0, T—T4 asz— co,

(2.8)

where Ty 1s the preseribed surface temperature, which we
take to be constant. A similarity solution is appropriate
and we lind that the basal cooling 1s given by (Fowler and

Johnson, 1995)
= AT (m‘pﬂ')'
0 i

where AT =Ty — Ty, p is ice density, ¢, is the specilic
heat, k is the thermal conductivity and

E:/‘ uder.
0

T
0z

u kAT

& h (2:8)

=~

(2.10)
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The second term is added to represent conductive cooling
when u — 0.

The seven Equations: (2.1); (2.2), (2.3); (2.5); (2.6);
2.9) and (2.10) determine the variables h.u.Q,7,q. N
and & We non-dimensionalize the variables by choosing
scales [h], [u], ete., where we define

[r][u]wal

(@] =

Dl
N =2,
e
fr] = clu] [N,
[7] = pglh]* /1.

| = [r][ul,
] = [u]l.

=

(2.11)

Here, we cheat a bit, because the values of ¢, ¢ and
particularly wy are very uncertain, even il appropriate.
Therefore, we argue as follows. A value of ¢ can be
inferred from present conditions on Ice Stream B,
Antarctica, where 7=0.15bar, ©=500mvear ', N =
0.4 bar (Bentley, 1987), thus

s 0.15 bar
o (500 myear=!]"[0.4 bar]""

(2.12)

The value of ¢* is taken from Equation

|| ~ 10 3 D, =10"* m. Thus,

{2.4), choosing

¢* 2 0.32 barms 5. (2.13)

We have no estimate of wg, so we use [N] = 0.4 bar to
determine wg. We then find from Equation (2.11) that

where M = [a]l. We choose r = s =1, rather arbitrarily,

(2.14)

and for values

[a] = 0.2 m year™', 1=2000km. p=917 kg m™®,
g=98ms™?, [N]=04 bar, (B5])

and ¢ given by Equation (2.12), we find M =4 x 10’
m*year ! and

[u] = 258 m year . (2.16)

We then have, with p, = 10°kem 3 L =335 k] kg 3
o =Tk ke K, AY =50K, E=0.1Ww "E",

o
-
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G =0.05Wm?,
[h] = . 1550 m,
['t;]
1=

palh]®
o ==

years,

~ 0.11 bar,

Q] = {¢/IN])? ~ 2md 571,
_ pul[@)]
[rl[ull
lq) = [7][u] ~ 0.09Wm *,

[€) = [u]l ~ 5.2 x 10° m® year™

Wy = ~ 3.7km,

(2.17)

When the equations are non-dimensionalized with these
scales, we obtain
he + (uh), =
Qs =4 T — G,

N=1/Q},
T=u N°,
7= —hh,,
= Bu/& + A/h,
= / udz (2.18)
where the parameters are defined by
kAT
R
(7] [u][R]
G
— Olrf"‘
BT
- (peoklu]\? AT .
A= ( ) T~ 1 (2.19)
The equations can be written in the form
hy + (hu), = a,
Uy = QH(—h.h_,-)R,
Bu
Q. =v—uhh, ————— A/h, (2.20)
LIS udx}
where
R=1r=2 8S=838=1/3 (2.21)

It should be emphasized that the values of the parameters
are not set in stone and we illustrate our thesis with
differing values below.

3. ANALYSIS

Fowler and Johnson (1995) analysed a parameterized
version of Equation (2.20) by replacing derivatives by a
heuristic integration. In effect, the second two equations
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Fio. 1. Multi-valued velocity vs stress al values A =10,
~= 1.8, 3=2357. This choice of paramelers is distin-
auished from the estimales in Equation (2.19) by historical
accident. In fact, by rescaling w and T in Equation (3.4), il
is easy to show that the shape of the curve depends only on
B/, v=(R+2-5)/2(R+1) =11/18 here. For
Equation (2.19), 3/~" == 1.7, while for the present values,
B/4" 22 2.6, Examination of other values srwumh that
F(7) is multi-valued approximately for By Z2.

were replaced by
u=Q°h™},
Q =+ uh?— But — \/h (3.1)

and elimination of @ indicated that u(h) could be multi-
valued. When Equation (2.20); is solved with such a flux
law, periodic surges result (on the convective time-scale,
here ~8000 years). In this section, we (‘\plore how these
results extend to spatially dependent versions of this
model.

First, we extend the model in Equation (2.20) to apply
to an entire ice sheet with a single divide at x = 0.
Evidently, we have

hi + (uh), =
= 7QSh»R|h.J'|R—1h-”
Bl

~ —uhhy —————— A/h. (3.2
{ [ udz}? )

Qs

However, the model is most easily discussed for x > 0. We
denote Equation (2.20)s as u = f(7,Q), so that

AR} = hf(hhy),
(3.3)

hy + uh, + hfo{y + Tu — ﬁu/élﬁ' —

where f, = af/or, fo=0f/0Q. Since § and @Q are
essentially quadratures, this has the apparent character of
a degenerate non-linear diffusion equation, since
df/0t > 0. The degeneracy refers to the vanishing
diffusion coeflicient when h = 0.

We discuss the full z-dependent model further in
section 4; here, let us take a parameterized version of
Equation (2.20), where we replace Q; by @ and § by w in
Equation (2.20);. Then (with A = 0)

—
Q=+ ur— pu

(3.4)
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Fig. 2. Schematic sequence of an ice-sheet surge following
the semi-parameterized model ( Equation (3.3)). In the
quiescent phase, the ice sheet thickens (AB — A'B') on
the lower branch of the w vs T curve. At B, w_jumps to the
top branch and this region of fast flow propagates rapidly
backwards to G, so that the activated region GH slumps
Jorward. The resulting sltump at G causes increased stress
there and the surge region is likely to propagate backwards
lo . Following the surge, the quiescent phase resumes.

whence we have w = F(7). It is easy to see by graphical
considerations that F(7) will typically be multi-valued
since Q =785yt = 7B/ (Fig. 1). This is
analogous to but more realistic than the parameterized
model of Fowler and Johnson (1995) (who also took
7= h?). The multi-valuedness arises through the con-
flicting roles of » in water production. A slow mode is
possible where @ is small, because low @ means low u and
also low u means cooling is effective at preventing much
water production. However, at the same parameter
values, it is possible to have high @ and high u. The
large u is maintained by the high @ which is produced by
frictional heating, cooling being less relatively effective at
high .

What is the effect of this partial parameterization?
From Equaton (3.2), we have

8 B
hg =a— m [hF(—hh,)] (3.1))
whence
d
hi+ Fhy =a+ hF' — (hhy,), (3.6)

dz

which is a non-linear convective -diffusion equation, with
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the distinguishing feature that dF/dr = F' <0 on the
middle branch of Figure 1: negative diffusion!

If the ice balance b(x) = ﬁ':'a(;t‘)d.r is an increasing
function, then (with h decreasing) b/h is also, and the
steady-state solution of Equation (3.5), with hh, =
—f7Y(b/h), will have (moving outwards from the divide)
three regions of slow flow (lower branch of Figure 1),
transition (middle branch) and fast flow (top branch).
Because of the negative diffusion, the transition region is
violently unstable and the ice sheet must oscillate.

For a marine ice sheet with b #£ 0 at the margin, the
shear stress is (formally) infinite (this is also true for a
land-based ice sheet with b =0 at the margin) and it is
questionable whether the time-dependent problem is well
posed. However, for the situation where the ice drains
into an ice shelf, we will have b and h non-zero at the ice-
sheet/ice-shell transition and thus 7 is finite there. We
conjecture that the way in which the ice sheet oscillates is
as follows. Let the values of 7 at the lefthand and
righthand noses of Figure 1 be 7_ and 7, (7— < 7). If the
ice sheet is shallow, we suppose 7 << 74 everywhere. As the
ice sheet thickens, 7 increases until 7 =7, at the front.
Then w jumps to the top branch by a rapid transient in
the drainage system and we surmise that an “activation
wave’ passes upstream (Fowler, 1987), shifting the region
with 7 <7< 7, to the fast branch. The resulting
activated i1ce now surges forward, lowering the ice
thickness until the stress is lower than 7_ everywhere. A
repetition of the build-up can then occur, The sequence of
events is portrayed in Figure 2. We imagine that the
advancing marginal ice pushes the ice shelf forward
through compressive stresses, while the draw-down of the
inland ice will cause migration backward of the activated
region to the divide (or extensional failure and ice-chifl
formation and collapse).

4. ICE STREAMS

We now return to the full one-dimensional model
(Equation (2.20)). It is easy to compute the steady state
and an example is shown in Figure 3. It should be noted
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Fig. 3. Steady-state ice sheel from the full one-dimenstonal
model ( Equation (2.20) ). The accumulation function a is
taken as zero. Initial values are h =2, € =0.1, Q = 0.1,
w=10.5 and parameter values are v=0.2, A =0.36.
Note that h — 0 (50 uw — o¢) in a finite distance.

71
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in this igure that no accumulation or ablation is applied,
thus the mass flux is constant. Therelore, the decrease of b
Lo zero (illl(] !)I(J\\"U]) ”i‘ u) Tt‘l]!'t’.‘\'t‘]ll.‘i d l'lllli]\\'il}' in b i
This indicates that the mechanism present in the
parameterized model is stll present in the full system.
While the parameterized version can easily be shown to
be unstable, this is less obvious for the full problem,
although if we write Equation (3.3) in the [orm

hy + u[l — b2 folhe + hifqly — Bu/€/? — Mk =
hf-(hh;),. (4.1)

then we see that the positive feed-back term 7u, which
produces the term —uh?® foh,, may cause the advection
velocity to be negative. It is plausible that this may lead
to instability in the same sort of way as before. In this
section, we propose a model to examine the effect of the
possible instability in a laterally extensive flow.

In order to do this, we write the approximate drainage
flux Q= (¢'/N)* in a suitable vector form. In the
derivation of this relation (Walder and Fowler, 1994),
one has that @ is proportional to the square of the
hydraulic head gradient (which is roughly pgsina),
where a is the ice-surface slope. However, a more
accurate expression is pgsina + dN/dxz, so that the
drainage law is more accurately

\? anN1?
(ﬁ) [1 -‘r?,"'a] (4.2)

where 10 = 1/pgsin . An appropriate vector form of this

Q

18

24,3
Q- (‘N) K+ UUN|(x+UVN)  (43)

where % is a unit vector downslope. Since [t VN| < 1,
we approximate the downslope and cross-stream water

a3 \? 8
Q= ((N) , QL= (ﬁ) gl.:%:j (4.4)

fluxes as

where y is the lateral space variable. Conservation of

water [lux now takes the form (in steady flow)

Q) (G+ru—quwq 0Q,

dx o ay 4:3)

and, if we non-dimensionalize as before, but choosing
Q, ~ Y[N][Q]/d. and choosing a lateral space scale

d ~ {I[N]}, (4.6)

then Equation (4.5) becomes

) ac
A o yrru— g2 (4.7)
du Ay
with
1 1 ON  1,.19Q,
—r—— ( —_—— — — 4 =0 _1
Q=ps “=mg = 3% 5 “¥
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Equation (4.7) thus takes the diffusive form (Q = @)

aq Ld [ 180
= b R
ox T ('H_Bi)y[2 (I)y]

(4.9)

with [ =400km (appropriate to the Siple Coast area),
[N]=0.4bar, p=917kgm™ sina=10"3, then
) ~0.11 Pa 'm and thus d ~42 km, comparable to the
width of ice streams.

The variation of Q with y suggests that we should also
allow for lateral variation of h. Indeed, one can posit a
maodel similar to Equation (4.9) for i based on an almost
parallel flow but one then finds that the lateral diffusion
coellicient for h is large, whence we can deduce (just as [or
a valley glacier) that b = h(x.t) and thus mass conserva-
tion leads to the (dimensionless) relation

L
h / udy = M*

S0

(4.10)

where L is the (scaled) width of the flow area and M* is
the scaled mass flux. We are assuming a prescribed value
ol M* at x =0 with no accumulation, so that the mass
flux M™ is constant in x. As before,

u = Q%(—hh.)®,

-j.
q :—Hriﬁ Alh.

{ flJ’ udz }’

Insofar as parameterized versions of this model show some

(4.11)

signatures ol run-away associated with multiple steady
states, we might expect an initially laterally inhomoge-
neous flow to develop “hot spots™ as x increases,
corresponding to ice streams.

-4
3
<z

P fi i ey

-3888EE8ES

500
y km

1000

Fig. 4. Formation of ice streams from a laterally non-
uniform initial condition. The parameter values are
vy=0.2, B=1, A=0.56 (which are more appropriate
values for the Siple Coast ice streams) and the model is
integrated forward with initial thickness of 1500 m and
veloctly 1 m year ! The initial condition for Q is critical
and is taken (dimensionlessly) as Q =0.05 with five
perturbations  superimposed. The precise location and
nwmber of the ice streams generated depends sensitively on
the initial prescription of Q) chosen but the streaming itself
is a robust phenomenon, providing vy is low enough (or (3 is
high enough ) that QQ can decrease to a minimum, and parts
of the bed are frozen.
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Figure 4 shows the result of a numerical computation,
in which we can see the development of ice “streams”
from an initially inhomogeneous state. While the nature
of the model and of the computation is preliminary, it is
an indication that the hydraulic run-away mechanism
could be responsible for the existence of Antarctic ice
streams,

5. DISCUSSION

In this paper we extend the parameterized model of

hydraulic run-away developed by Fowler and Johnson
(1995) in two ways. First, we give versions which allow for
spatial variability. For parameterized water flux and
spatially variable basal shear stress, the solutions will
oscillate in a periodic, surge-like l[ashion. Secondly. for
laterally unconfined flows, uniform [lows can spontan-
cously break up to form ice streams. We therelore suggest
that for ice sheets moving over wet, delormable sediments,
ice streaming is a natural consequence of canal-type
drainage dynamics.
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