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DEDEKIND SUMS FOR A FUCHSIAN GROUP, 1
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§1. Introduction

The well-known first limit formula of Kronecker asserts that

. ks _ 4
lim|ys >, |m + nz[® —
§—1 MmN =—oc0 S — 1
(m,n)#(0,0)

= 27(C — log2 — log (W ¥ |7(2)P)

where z = x + 1y is contained in the complex upper halfplane H, C =
the Euler-Mascheroni constant, and »(2) is the Dedekind eta-function
defined by

77(z) — eziz/lz ﬁ (1 _ e2ninz) (z eH) .
n=1

It is a simple matter to deduce from the first limit formula that

az + b) — (a b)
= 2 + d s SL2,Z
v(cz+d vz ¥ dy(2) ¢ Y esLe 2,
where |e|] =1, ¢ = e(a, b, c,d). It is possible to calculate ¢ explicitly, as
was first accomplished by Dedekind [1], who proved that if all branches
of the logarithm are taken with respect to the principal branch,' then

az + b
cz+d

logn( ) — log 7(2) + %log (cz + d) + 7iS(@, b, ¢, d) ,

where

S ,b, ,d=a+d—l—c—_ ’d,
@b ed) =~ d e P

and where s(c,d) is a so-called Dedekind sum which has the following
elementary expression:
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1 That is, the branch for which —z > arglogz < =.
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swd = () )

Here ((x)) = « — [x] — &, [x] = the largest integer < z.!

It is our purpose, in the following paper, to construct a generali-
zation of the Kronecker first limit formula which leads to generalizations
of all the above classical facts. The main observation is that the sum
on the left hand side of the Kronecker first limit formula is, apart from
a simple factor, the Eisenstein series (in the sense of Selberg) associated
to the cusp at infinity for the classical modular group. In this paper,
we will exhibit a corresponding limit formula for any Eisentein series
and any cusp of a Fuchsian group of the first kind I'—that is, I" is a
discrete subgroup of SL(2,R) with finite invariant volume. If ¢ is a cusp
of I', then the limit formula for the pair (F,’IC) will lead to an every-
where non-zero automorphic from of weight 1/2 which is the analogue
of the classical function (). In analogy with the classical theory, we
will derive a transformation law for our generalized 7-function. And
this law of transformation will lead to generalized Dedekind sums. We
work out the theory explicitly for the principal congruence groups I'(N)
(N > 1) defined by

I(N) = {(Z Z)\a =d=1(modN),b=c= O(mod(N)}
and we find explicit formulas for the Dedekind sums in this case. It
appears that these generalized Dedekind sums have interesting arithmetic
properties connected with reciprocity laws in certain abelian extensions
of the rationals, but this topic will not be taken up in this paper.

The. author would like to thank Dr. John Fay for suggesting the
problem which initiated the research in this paper and he would also
like to thank Drs. T. Kubota and D. Niebur for a number of valuable
conversations.

§2. The Fourier expansion of the Eisenstein series at a cusp

Throughout this paper, let I" denote a discrete subgroup of SL(2, R) /{ 1}
having a fundamental domain of finite invariant measure. Then I acts
discontinuously on the complex upper half-plane H. Let H = H U {co}

1 For x an integer, set ((x)) = 0.
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and let the action of I be extended to H in the usual manner. Further,
let &, --+,6, be a complete set of inequivalent cusps of I. Choose
0, € SL(2, R) so that

02(00) = K;

G;{[%Gi:: {(1 x)’x(EJZ}.
0 1
where I'; = {0 ¢ I"|o(k;) = x;} = the ['-stabilizer of £,, For z=x + iy c H,
let () = y. Then the Eisenstein series! for the cusp x; is defined by

Ez,s) = Zpy(o;oZ)s (Re(s) >1, zeH). (1)

eI\
This series converges absolutely and uniformly for s in a compact sub-
set of Re(s) > 1. Moreover, one of the fundamental theorems in the

theory of Eisenstein series asserts that F,(z,s) has an analytic continu-
ation in s, namely:

THEOREM A. FE(z,s) can be analytically continued to a meromorphic
function in the entire s-plane and the only poles of the continued function
are simple and lie in the. interval [0,1]. Moreover, E(z,s) always has
a pole at s = 1. ‘

As a function of z, E,(z, s) is an automorphic function for I'—that is,
Ey(o2,s) = Ei(2,8) (el .

Moreover, E(z,s) is an eigenfunction of the Laplace—Beltrami operator

@ 32)
b=y (aac2 T (2)

for the symmetric space H:
DE(z,8) = s(s — DE;(z,5) . (3)

Because of the property (2), E.(z,s) can be expanded in a Fourier series
in a neighbourhood of the cusp x;,. Elementary computations suffice to
show that this Fourier series is of the form [3, p. 28].

Eo;2,8) = 2 a;5,m(8, Y)e(mx) , =x+1w), (4)

where e(og) = exp (2rix), and where

1Al fécts about Eisenstein series which arecited here can be found in the excel-
lent monograph [3].
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Qi3 (Y, 8) = 25 |m P2 (8) Y K, | M| Wiy m(5) (M £ 0)

5
= 0;;4° + ¢, (S)Y* (m=0), (5)
where
. 1 md
bR
(c >0, dmode, (Z :l) € a{ll’aj)
gi) = o LE =12 4 (), (7)
I'(s) |
K, ) = 217 ,u,m_sr(s)f: %dt > 0) (8)

Moreover, it is fairly easy to show that a;;(s,y) has a pole at s =1,
whereas a,;,(s,¥) is continuous at s =1 for m = 0. Thus, it is fairly
easy to see that

lim [Ei(ojz, 8) — a4y 4Us s)] = 3V gy, De(ma) , (9)

§-1 Mm=—o0

where > denotes a sum which excludes the term for m = 0. Let us
first make the formula (9) somewhat more explicit. It is immediate from
definitions that

@iy (Y, 1) = 2r|m [y 2K, ,2r | m|Y)di s, m(1) (m +0), (10)

K2z |m|y) = (2ﬁ)"1(,m,y)—l/zjm E(?%r_ll__ml_l)@dt
- an

- %qmuy)-w exp (—2x|ml|y)  (m+0).
Therefore, by (6),(10) and (11),

@iym(Yy D) = 7 exp (—2z|m|Ypi; ()  (m#0) 12)

where

$usm(D) = lim 3" L ze(ﬂ)
s=1 ¢ |c|2=‘ a e

13)

(c >0, d(modc), ( *) ea;ll’a,) .

%
¢ d
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§3. The formal limit formula

In this section, we will prove a formal Kronecker limit formula for
the Eisenstein series E,(z,s).
From equations (9)-(13), we see that

ligl [Ei(0)2),8) — aij,o(y’ )]

w . (14)
=x ),/ exp{—2rx|m|x + 2rima}d;; (1) .
Let 2 =2 + iywe H, and let q = ¢**. Then, from (14), we see that
lim [E(s,(2),5) — aij,o(?/, )]
s—1 (15)

=T Z—:l ¢z‘j,m(1)qm + 7 Z—:1 ¢ij,—m(1)q,m )
where ¢ = e~ *%, However, an easy computation implies that

¢ij,_m(3) = ¢ij,m(3)

for any s for which the Dirichlet series ¢;; ,(s) converges. Therefore,
by analytic continuation,

$i5,-n(D) = GijmD)
Therefore, from (15), we have
1331 [E0,(2,8) — a;;,y, 9]
=z Zl $i5,m(DQ™ + nfj $is,mDA™ .

=1

(16)

Let us investigate the structure of a,;(y,s) somewhat more closely.
Equation (5) implies that in a neighborhood of s = 1, we have

@iy,(Y,8) = sc—%l + d;; + higher order terms,

where ¢;; and d;; do not depend on s. Let us find formulas for ¢;; and
d;;. We know that in a neighborhood of s =1, we have

Gig o) = 2 I + Bi; + higher order terms .
8 —

However,

Yy =14 (s — 1) log (¥ + higher order terms
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L6 —=1/2) _ /71— @log2)(s—1) + ---)

I'(s)
(For the latter expansion, set [5, p. 15]). Therefore, by equation (7),
we see that
1/2
az‘j,o(?/» 8) = w'y'~ s‘—f,#)—séz 8) + 0:5Y°

= (L 4 (5 = Dlog () + -+ ) (V7 — 2/ 7log2s — 1) + -+ )
(L% ) G+ )

Therefore, by Cauchy multiplication of power series, we see that

@58, Y) = amn
where
Cig = Ty 18)
d;; = m{Bi; + ai;log (™) — 2a,; log 2} + 6,y . (19)
Combining (17)-(19) with (16), we derive that
lim B (o), 5) — %]
51 s—1
= n{Bi; + @y log (") — 2a;; log 2} + 5,y (20)
+x i}l ¢ij,m(1)qm + 21 G m(Q™ .
Let us rewrite (20) as follows:
81_!11 i(aj(z) s) — 2( — 1)
= iﬁ w— aylog2 + ayf > log ) + L3, @1
2 27C(Xij
+ i 33 D" + aif 3 G -

We will prove below that «;; is real, so that (21) can be rewritten as

lim [
§-1

0~ 56 31)]
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I

+  ofm

‘Bij — Q;j 10g2 + _ag_log (y—l)
4 o
1 A0 v ! m}
aj{4m/__1a” f+afmz=:l¢1, Dq

e S SRR zml'm}.
+ {47{»\/ laij ’lj+ajz¢j()q

Let us denote a;; by «; and B;; by p;, and let us define log 7, () by

log7r,i(2) = — o’ Zl Pui,m(1Q™ , q = eri

471'«/ le;
where the logarithm is taken with respect to the principal branch. It
is clear that logy,.(2) is analytic for ze H, so that 7. ,(2) is analytic
and non-zero throughout the upper half-plane H. Moreover, from (22)
we have

lim[ 1
2r

§-1

X
% 8) = 1)]

&;

2 log (¥ — log 5r (2) — log 9, (2)

2
— 1 l 2 1 1/2, 2
= Eﬁi — a; log 2 — a; log |y ()] .

Thus, summarizing our results thus far, we have

THEOREM 3-1. Let E/(z,s) be the Eisenstein series at the cusp &;
for the Fuchsian group I', and let ¢; ((s) be the Dirichlet series appear-
ing in the constant term of the Fourier expansion of E(z,s) about ;.
Assume that

Bi1,0(8) = __i 1 + B; +
wn a neighborhood of s =1. Then
lslﬂ“ [—Ei(z 8) — '273—0{—T)] = %ﬁ a;log 2 — a; log|y(2) "y, (2)*]
where
1 : 2_—_—2—_—__— l—lm iml 'm,, =2niz‘
0g 7r,(2) i —Ta a mZ=1¢¢, Dq qg=ce
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Next, let us explore the analytical properties of the function 7, .(2).
Our main result will be

THEOREM 3-2. Let ceo;'['0;. Then

log 7, (a(2)) = log 7, ,(2) + % log (cz + d) + av —1S; (0), o= (Z Z) ’

where Sr ,(¢) is real and depends only on I',¢ and ¢ and not on s.

Theorem 3-2 is a generalization of the classical transformation formula
for log »(2) and the quantities S, (o) are generalizations of the classical
Dedekind sums. We will call the quantities S, ,(¢) the Dedekind sum
attached to I' and 1.

Proof. By Theorem 3-1 and the facts that (i) E.(z,s) is automor-
phic in 2, (i) «; and B; do not depend on 2, we see that

log |y(a(2))*yr (a(2))}] = log |y pr ()] . ()
However, y(6(2)) = y/(cz + d), so that
log |Y(a(2))V*yp (0(2))*| = log ¥y — log |cz + d| + log|pr (e(@)} . (xx)
From equations (x) and (x%), we have
log [7r,:(0(2))| = log |9, (2)| + §log|cz + d] .
Therefore, the function F(z) defined by
F(2) = logyr (a(2)) — log p, :(2) — 3 log(cz + d) ,

where all logarithms are taken with respect to the principal branch, has
a real part identically zero. Thus, F'(z) is identically constant and this
constant must be purely imaginary, depending only on I',7 and o.

Next, let us give a complement to the Kronecker limit formula of
Theorem 3-1 by providing a geometric interpretation of the constant
a;;. It is well-known that dady/y* is an invariant valume element on
the upper half-plane H. If D is a fundamental domain for I', then by
hypothesis, D has finite invariant volume which does not depend on the
choice of D. Let us denote the volume of such a fundamental domain
by vol (H/I'). Then we will prove

THEOREM 3-3. Suppose that ¢,;(8) = a;;/(s —1) + By + ---. Then
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. 1
 zvolH/D)

To prove Theorem 3-2, we require some preliminaries. Let Y be a
positive real number, which will be chosen large. Let us define the
compact part EY(z,s) of F,(z,s) by

EY(z,2) = Ei(z,8) — a8, ¥(07'(2)) if y(o;'(®) >Y
= F,(z,5) otherwise .

Then it is known that EY(z,s) belongs to L*(H/I') where integration is
taken with respect to the invariant volume element dxdy/y*. Moreover,
the following inner product formula is a consequence of the so-called
Maass-Selberg formula [3, Theorem 2.3.2]:

‘[ EY(z,8) E¥(z, 8" == dady
Y

_ Y3+s -1 __ Z;:;¢;f(—‘i)9§ik(8/)y—s—8/+l (23)
—s+s’ 578
— $u(s) Y ;t SZ(‘ii(S,)‘Y r?
§—8 §—8

where the formula is valid for Re(s) > 1, Re(s) > 1, s+ ¢s'.
Let us fix a fundamental domain D for [' and let us define DY by

pr=D— \)Dr
k=1
where
Df ={zeH|ylo;(2)) > Y} .

From the definition of EY(z,s) and the Fourier expansion of F,(z,s)
about the cusp «;, it is easy to verify the following facts:
I. (s — 1VE(z,8) — na;; is bounded uniformly for 0 <s <1, ze DY
and as s tends to 1, this quantity tends to zero uniformly for z ¢ D*.
II. (s — DFEY(z,s) is uniformly bounded for 0 <s <1, zeDf (k=
wh), Y >1.
It is clear that

I (s — 1)(s' — 1E¥(z, $)E¥ (z, )40
H/T Y

_j (s — (s — DE 2z, 9E (2, ) dgjdy
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+ Zj (s — (s’ — DE¥(z, )E¥(z, ) %% d”jdy

(s, -1,

af PW 1 06— 1)+ 06 — 1)
oY Y

by I and II. Therefore,

dxdy - 2, dady .24
or

lim (s — (' — DEY(2,9)E¥(z,8)—"L =

s—1 H/T
s'—1
However, by equation (23),

s — (s’ — 1) f EX(z, $)EX(z, )92
H/T y?

_ (s — (s ,_ 1) [Ys+s’~1 . i ¢ik(s)¢ik(sl)y—s~s'+1]
s — 8 =
. (s — D — 1)¢_.(S)Y~s+s' + (s— D" —1) ¢-~(8/)Ys_s/
S’ i1 s — S’ 2

8 —
T, Y,.s_sf+1 — ray S, —_ 1 Y_S+Sl _l_ T, S — 1 Ys_sl
s+ —1 s — ¢ s —¢g
+06—-1+06 -1
T _y=s='+1 4 g 4+ O(s — 1) + O(s’ — 1) .

T s + s =1
Therefore,
: , v v n dady ~1
lim (s — (" — DEY(z,9)EY(z,8) 22 = ray; — na, Y 7',
sy dmr 2?
so that

dady _ oy — mo Y b

But as Y — oo,

dxdy I dxdy
D

pr 9

so that

’o; vol (H|T') = nay;
which is just Theorem 3-3 for ¢ = j. But since zw;; is the residue of
E(z,s) at s =1, we see that ray = rnay; 1 <4, 7<h)
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There is a classical formula for vol (H/I) which gives us arithmetic
information about «;;. Let g denote the genus of H/I' and let e, ---,e,
denote the orders of the ['-inequivalent fixed points of I' on H,h the
number of cusps of I'. Then [3, p. 42], we have

1
e )} ’

vol (H/T") ::27r{2g— 24+ h+ §(1~

Therefore, we have

COROLLARY 3-4. a;; = %ﬂ—Z{gg — 24 h+ i (1 1 )}-1.
y=1
In particular, we have

COROLLARY 3-5. The quantity —(4zv/ —1la;)"' is of the form 2zy/ —1r,
where r; = r,(I") is the positive rational number given by

ri=%{2g—2+h+i}(1— 1)}

v

Our next task is to prove that 7, ,(2) is an automorphic form for
I corresponding to a certain multiplier system. Namely we will prove

THEOREM 3-6. The function 7r.{2) s an automorphic form for
;7' la; of weight 1/2 corresponding to the multiplier system

v(0) = exp {xv —1S, (o)} .

Proof. It is clear from Theorem 3-2 that

7r,:07) = v(@OVez + dyr.(2)

a b

for ¢ = )ea{lfoi, ze€ H, where the branch of the square root is

the one Wchich is positive on the positive real axis. Therefore, it suf-
fices to check that 7,,(2) has the appropriate Fourier expansion about
the cusps of ¢;'¢;. It is easy to check that the cusps of o;'/'¢; are given
by o;'k;) (j=1,---,h). Moreover, the stability subgroup of o¢;'%; in
o7 g; is just o;'[;0;, where I'; is the stability subgroup of «; in I
Also, note that

(07%0) Yo7 jo)(070;) = {((1) glc)ler} .
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Therefore, if ¢;%; = (a” b“), then let us set
Cij Qyj
Ji,2) = 1/cijz + dij—lvl’,i(gi—lajz) .
11
. Then by the funda-
mental transformation property of 7. ,(2), we derive that

Choose peog;'l'e; so that (s7%¢) 'p(o;%0) =

Sz + 1D = \/Cz‘j(z + 1)+ dz’j_lﬂr,i(lfi_lo'j(z + 1)
= '\/C“(Z -+ 1) + dij—lﬁp’i(‘oo';lo'j(Z))
= \/Cz‘j(z + 1+ dij_lﬂ/CO'{lO'jz + dv(P)’?r,i(Ui_loj(z))

where p = (Z Z) If 6= (“ g ) e SL(2, R), let us set
s

where the branch of the square root is the one which is positive on the
positive real axis. Then J(4,z) is well-defined and analytic for ze¢ H and
a trivial computation involving J(4, z)*? shows that

J6C,2) = £J0,LJI(C,2) , (£, 0eSL2,R),ze H) .

But it is clear that for large z very close to the positive real axis, the
plus sign must prevail, so that

JOC,2) = J(0,CJ(C,2) (£, 0eSL2,R),zecH) .

However, since

Ve e + 1) + diy = J(o7%ay, (07%0)) 0070 ,)2)
Veoloz + d = J(p,070,2) ,

we see that

Ve + D + dyy Weailoz + d
= J(p(o70,), 2) ' ((07'a;) " 0(0770;), 2)J (p(o7a), 2)J (07705, 2)7"
= J(o;'0;,2)7" .

Thus, we see that
Sz + 1) = v(p)(07%;, 2)'yr (0770;2) = v(p) [15(2) . (25)

Let us define 6,; to be the unique real number satisfying
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v(p) = eV, 0<6;,;<1.

Then (25) implies that f;;(z) has a Fourier expansion of the form

Jei(®) = i Q€2 Y Im+ 01z (26)

m=—oo

We assert that all terms in the Fourier expansion for which m + a;; <0
are zero. If not, the function f;;() will assume values of arbitrarily
large absolute value in every neighborhood of infinity. However, it
follows immediately from the Fourier expansion (22) that f;;(z) remains
bounded in a neighborhood of infinity. Therefore, the Fourier expansion
(26) has the form

-1 0
_721j.i(0'i ;%) — gV T10iz 37 QeI
Vegz + d;; =

which is the desired Fourier expansion of 7, ,(z) about the cusp o;'%;,.
Thus we have established the character of », ,(2) as an automorphic form.

§4. Properties of the Dedekind sums

In this section, we will prove certain general facts about the Dedekind
sums Sy (o).

THEOREM 4-1. The mapping 0 ;: 0;'c, — R defined by
01‘,1(0) = Sl",i(g)

18 a homomorphism.

Proof. Let g,7€0;'I'0; Then by Theorem 3-2 we have

log 7r (02(2)) = log 9, ((2) + +log (¢"z + &) + av/ —1S; (o7) , (27

el el 2
c d ¢ d ’ ¢’ d” ‘

On the other hand, by applying Theorem 3-2 twice, we see that

where we set

log 7r,(07(2)) = log pp (=(2)) + % log (cz(2) + d) + nv/ —1S; (o)
=log . (2) + $log (ct(z) + d) + $log(c’z + d)  (28)
+ av/ —1 1S, (o) + v/ —1 1S, (o) .

However,
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log (¢2(2) + d) + log (¢'z + d’) = log (c‘z:z_ig; 4 d) +log (¢'z + d))
= log ((ca’ + de)z + (¢b’ + dd)) + 2kav/—1 , (29)

where ke Z does not depend on Z, However, by taking ze¢ H large and
close to the positive real axis, and recalling that all logarithms are taken
with respect to the principal branch, we see that £ = 0. Therefore,
combining (28) and (29) noting that ¢’ = ca’ + d¢/, d”’ = ¢b’ 4 dd’, we
see that

Sr,ilot) = Sp (@) + Sp (o) .

In the remainder of this section, we would like to make some com-
ments on the rationality of the quantities S, ,(¢), since many of the most
significant and interesting properties of the classical Dedekind sums come
from the fact that they are rational numbers. As trivial consequences
of Theorem 4-1, we have

COROLLARY 4-2. If eeo;''o; is elliptic, then S, (o) is rational with
denominator dividing the order of o.

COROLLARY 4-3. (1) S, (o) = —S, (7).
2) If o,rel are conjugate, then S, (o) = S, (7).

It is known that I is finitely generated. Then we have:

COROLLARY 4-4. Let ¢, ---, 7, be generators for o;*'s;. Then Si (o)
is rational for all o e a;'l'a; if and only if Sy () is rational for 1 < j < 7.
Moreover, in case the latter is true, the denominator of Sy (o) o€ a7 ['0;)
always divides the least common multiple of the denominators of Sp (z;)
(A <j7<n). Inparticulor, the Dedekind sums have bounded denominators.

There is one obvious case (other than Corollary 4-2) where we can
conclude the rationality of the Dedekind sum. Namely:

1 =z

THEOREM 4-5. S”((O 1)) s rational.

Proof. By Theorem 4-1, we have

sl )= ).

so that it suffices to prove that
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Seafly )

is rational. But from the definition of the Dedekind sum, we see that

zv —18r; ((3 i)) = log 9, (z + 1) — log 5, ,(2)

However, by the definition of log 7, (2), we see that

—_— 11 1
w5l )=t
=18y, (o 1 dnv/ — 1,
Therefore, by Corollary 3-5,
sedly )=

where

e dprea e 2]

v

COROLLARY 4-6. Suppose that I' has a single cusp and is generated
by parabolic and elliptic elements: Then S (o) is rational for all seor*lv,.

Proof. By Corollary 4-2 and Corollary 4-4, it suffices to show that
Sr.(0) whenever ¢ is one of the parabolic generators ¢ = o700, pc I’ is
parabolic. Then the fixed point 2 of p is a cusp of I and is therefore
equivalent to x,, so that 2 = 6(x;) for some decI'. Therefore, since 2 is
a fixed point of p,«; is a fixed point of "0 and o7, = o is a fixed
point of o760 'pbs,. However, by the way in which ¢ was chosen, this
implies that

o=} ]

for some x e Z. Moreover, by Corollary 4-3, (2), we have

Seal0) = Sraope) = Sr.lo707e08) = Spa} %) -
Therefore, S, .(¢) is rational by Corollary 4-5.
For example, Corollary 4-6 implies to I' = SL(2, Z) which is generated

by ((1) 1) and (g _i) Here, by (30), we have
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sull 2= 4o-o-v1+(+]-

and the denominator of S, (O

—(1)> divides 2. Therefore, by Corollary
4-4, S; (o) is rational for all ¢eSL(2,Z) and has denominator always

divisible by 12. Therefore, in this case, the multiplier

v(0) = exp {xv —1S;,(0)}

is a 24" root of 1.

It would be interesting to determine precisely for which groups I
it is true that S .(0) is rational for all ¢ e o;'I's;. There is some reason
to believe that all arithmetic subgroups of SL(2,R) have the property
that the Dedekind sums are algebraic, but we have no way of proving
this. In the remainder of this paper, we will explicitly compute the
Dedekind sums for the groups I'(N).

§5. Calculation of the Dedekind sums for I"(/V)

Throughout this section, let N be a positive integer and let I'(N)
denote the principal congruence subgroup of SL(2,Z) of level N-that is,

]ﬂW:[G @Pmmﬂeza;dz1mmmmczbEwmwNﬂ.

Set
Ne 1
B —z‘pm<1"zf> W >2)
=16 (N = 2)
1 (N = 1)

Moreover, let © — % denote the canonical homomorphism of SL(2, R) into
SL(2,R)/{=1}. Then it is well-known that I"(N) is a Fuchsian group of
the first kind and that I'(N) has gy /N inequivalent cusps. Moreover, it
is possible to get a set of representatives for these cusps as follows:
Every cusp « is of the form « = a/b, a,be Z, (a,0) = 1. By convention,
we include £ = 1/0 = o0.) Moreover, r, = a/b, r, = ¢/d are I'(N) equiva-
lent if and only if a = c¢(@modN), b =d(@modN) or a = —c(modN), b=
—d (mod N).

Let £ = a/B be a cusp of I'(N) and let o, € SL(2, R)/{+1} be such that
g0 = £ and
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o0, = {(1 x)ler} ,
01

where [, is the subgroup of I'(N) leaving r invariant. Then it is a
reasonably elementary computation to show that

N s
E‘(Z, s) = 2(2—) ___f!/—zs ’
G lee+dl
¢=p(modN)
d=a(modN)

where 6(N) =1 if N =1 or 2 and 6(N) = 2 otherwise.

Let us compute the Dirichlet series ¢, ,(s) which appear in the
Fourier expansion of F (¢.2,s). Let k., denote the cusp at co and let us
write ¢., instead of ¢, . Then, it is easy to see that

oy Vo]

so that

(N"2 0
0., = .
0 N‘l/z)

Since ['(1) has only one cusp, all cusps of I'(N) are ['(1)-equivalent. There-
fore, there exists 6, ¢ I'(1) such that 6,(c0) = k. But then an elementary
argument shows that

0.1 0; = I’}

is the stabilizer of x in 6,'(N)6;'. However, since ['(N) is a normal
subgroup of I'(1), this shows that I'* is the stabilizer of £ in I'(N), and
therefore we have

0. 06t =1,.

Now on the one hand, we have

00700 0.0.) = 62T 0., = {((1) f)lx e Z} )

But on the other hand,
00.)7'0.I.0:)0,0.) = (00.) ' (0,0.) .

Therefore, by comparing the last two equations, we have
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g. =00, . (31)

We can explicitly construct 6, as follows: If x = k.., set 4, = 10 . If

k # co, suppose that £ = a/y, (a,7) =1, y #0. Choose B, ¢ Z such that
ad — By = 1. Then we may set

0, = (‘r" g) . 319

Next, let us compute ¢;''(N)o,. By (81) and (31),
o7 ' (N)o, = (0.0..) ' ['(N)(b.0..) = az'(0;* ['(N)F,) .0 = a1 (N)a.,

since I'(N) is a normal subgroup of /'(1). However, since

(N“/2 0)<a b)(N‘/2 O)Z(a N“‘b)
0 N7Z[\e d/\ 0 N7 Nec d

we see that

o7 I'(N)o,
(e N

)la,b,c,dez,ad—bc—_—l,azdzl(N),bECEO(N)}
Ne d

(317)
It is possible to use (31”) to directly calculate ¢;; ,,(s) from the formulas
of Section 2. However, the expression for ¢;; ,(s) thus derived is rather
complicated. Thus, the following approach to calculating the z-function
seems preferable:
Let g and 72 be arbitrary integers such that (g,k,N) =1, and let
us define the following series:

o(N = e
Boas; Ny =20 s 00
2 ed=-w |cz2 + dff
c=g(mod N)
d=h (mod N)
(c,d)=1
w s
Bies; Ny =N 5 v
2 ed=—w ez 4+ A
c¢=g(mod N)
d=h(mod N)

where the prime on the summation indicates that (¢, d) = (0, 0) is omitted.
Note that if £ = h/g is a cusp of I'(N), then E, ,(2,5; N) = E (3, ).
By using the formal reasoning found in [2, pp. 44-48], we find that

E a8 N) = 3, ( I )E:sg,ah(z,s). 32)
(a,nli)l=1 nas{z;})dl\l)

https://doi.org/10.1017/50027763000015567 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015567

DEDEKIND SUMS 39

Moreover,
E¥,(2s; N) = i”‘z’)—ys{elv(g):rh + Sya) s

where

oo oo

Th= 3 d*,  Su= 3 3 lee+df,

- C=-—o00

d =—o0
d=h(mod N) c=g(mod N) dE‘)iL(mOdN)
c#0
Oy(9) =1 if 9 =0(@modN)

0 otherwise .

By applying the Poisson summation formula to the inner sum of S, ,,
we derive that

. o)y { yroos 1 ¢
E*,(z,s; =77 4 T = _
by ¢ N) 5 T, + N c;;%ﬁw [cfs m;_:w

e‘2zim(h+ Iclx)/NI(s’ 27f I cl y'm. /N)}

where
I(S, 1)) P J‘w Lﬂwd ’
—o (U2 4+ 1)
3 1-2s 0 had
E;jh(z,s;N)=%{0(g)Th+ e ws) E te
- (U 4+ 1) CE%}};N) (32)
yer o3 2ninx/NI( _27my> L-2s g2rink/cN
FE S 5, =2} 5 o }
n#0 c¢=g(mod N)
30 c>0

Thus, by combining (32) and (32’), we see that

E, (2,8, N) = 0a.¥,s; N) + f} O, 1 (Y, 85 N)ePrima/V (33)

m=—oo

where

ao,g’h(y, s; N) = w i:l ( i F;EZ) )I:ys01v(ag) i |d|~2
na=1(

2 a= =1 d=—o
(a,N)=1 mod N) d=ah(mod N)
d#0

+ yzlv (f: (uzo-lfns) 2 'clms]

c=ag(mod N)
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Ay 0N > wn)
a’m,g,h(y78yN) —_ 2N aZ::l ; nZS )

=1
(a,N)=1 mna=1(modN)

. [I <S, . Zizln?l 5 c—Zs+leZMth/cNi|(m +0).

cEagill;"(lst)
c>0
LEMMA 5-1. Let I' be a Fuchsian group of the first kind and let
k be a cusp of I',te SL(2,R) /[{+1}. Then
E. (2,8 = B _1,.-1r(2,9) .
In particular, if ¢ normalizes I, then
E;,P(sz s) = Er_l(t),l‘(z’ s) .

Proof. Note first that ='(x) is a cusp of 7'z and that the stabi-
lizer of z7x) in 7'z is just ¢'I',z, where I', = the stabilizer of # in I'.
Moreover, by the definition of ¢, we see that

(z7'0) (" T 2)(c ') = {((1) ﬁ)x ez} ,

so that o._.,, = t7%0,. Therefore,

E, (zz,8) = 3 wyloj'or(2) = 2 ylo'c-v70t(2))*

€T AT GET AT
= 24 Yot yn(2)* = > Yo i yn(2))*
p€r— 1l 7\t~ 17 7€ M—1(s)\e~1I'

= Er‘l(:),t‘lft(z’ s) .
COROLLARY 5-2. Let ¢ = (“ Z) e SI2,Z). Then
(4

Eg,h(azr s) = Edg—bh,—cg+ah(zy s) .
Let us now use Lemma 5-1 to compute E (¢.2,s). By (28), we have
E(0z,8) = E(0.0.%2,8) = E,;-1(,)(0.2,8) = E.(Nz,9) . 34)

Thus, as a consequence of (34), we see that there is only one y-function
for the group I'(N) and this one is an automorphic form for I'(N) itself.
The situation is typical for a normal subgroup of SL(2,Z)/{+1}. Let
us denote this unique automorphic from by 5,(2). By (83), we see that

E(025) = b, s; N) + 3, ba(y,s; Nerine (35)

m#ED
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where
bn(¥,8; N) = @y o ,(Ny,s; N) (meZ).

Then it is easy to see that

b(y,s; N) = sgs; N[ %%
WM = +yp N[ 2 (36)
where
-3 028 — 1) —2sy—
(s N) = §(N)N1-3.222° — ~7 1—p)1,
Po(s; N) (N) (s mN( p~)
Moreover,

bu, 53 N) = 5‘N) ) 2@e) [T (L — 7", —2emy)

Z c—Zs—leanm/cN (m :,E 0) (37)

clm
¢=0(mod N)
>0

Now an easy computation shows that
I(s, —2zmy) = 2x(m|yV°K,,,(2r|m|Y) .

Therefore, combining (37) and (10), we see that

eZ:rim/cN

. m(8) = 5(N) e [ A= 3 m=+0). (38

am cz.s—l

c>0
¢=0(mod N)
(Here we write ¢y ,(s) instead of ¢;; ,(s).) Moreover, another easy com-
putation shows that

fw du _ 1/211(3_'%)

- ’

—= (W' + 1) I'(s)

so that from (36), we see that

P ,o(8) = d(N)N'~ “QZ—S—D 1 —p™)7! (39

L(2s DIN

(where we write ¢y ((s) instead of ¢, (5)).
It is easy to check that the Laurent expansion of ¢y .(s) about s =1
begins

¢N,o(3) =
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where

ay=Som N @ -pa) ", (40)
T

IN

~

by = S 00N T @ —p)] [ —log N — ] B2 SOy

oy p?— 1 ¢(2

PIN

where C is the Euler-Mascheroni constant. Combining the above formulas
with the definition of log »,(2), we see that

ez-vimz

loggy(®) = — 2 — N ST deian
41TZCYN m=1 m dim
a>0
m/d=0(mod N)
z © eZnidez X
_ d - N T3] . id/N
Arioey ki=1d=1 kn
_ z . e2wid/N i eZ:ndIch
Arioy a=1 (42)
- _ z + @1a/N Jog (1 — gPeidN7)
Ariocy a=1

N-1 ©
= — i + e?xia/N Z log (1 — e?ni(a+N7z)Nz)
n=0

N-1 o
— + 6Zkia/N log n (1 . lex'imNz) .

a=0 m=
477."1/6!1\; m=a (mod N)

Thus, we may finally state

THEOREM 5-3. Let I'(N) denote the principal congruence subgroup
of SL(2,Z) of level N. Then

lim LBz, 9) - Tt 1)] = by — axlog 2 — ay log [y 1 ()

where ay and By are given by (40) and (41), respectively, and where

0

+ Z e21ria,/N log 1"[ (1 — eZnimNz) .

4 ZCt'N a=

log 9y (2) =
m-;’::lng)

Let us now explicitly determine the Dedekind sums for the groups
I'(N). Our method is an adaptation of Dedekind’s original proof [1] of
the transformation formula for log 7(z). Throughout this discussion, let

o=% b € I'(N), and let sy(o) denote the Dedekind sum for I'(NV), and

[+
let ¢ denote e*?¥,
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From equation (42), we have

log 77N(z) — + Z e2rid/N log (1 — eridnz)
47['20.’1\; a=1
o o eZnid'rNZ
— Z Z e2rid/N (43)
4751“1\7 d=1r=1 r
= — 1 G
o 4mozN Zl: r1—CQ
where @ = e**¥?, Now by Theorem 3-2, we have
log ny(02) = log ny(2) + % log (cz + d) + =iSy(o) ,
so that
7iSy(0) = ¢ Im {log yy(02) — log ny(2) — % log (cz + A)} . (44)
However, by (43) and the formal identity
a B _ 1 . 1
l—a 1—8 1—a 1-—-p"
we derive
1z z]11 1 & 1T ¢4Q7 QT
Im1 z:—w[_ _]__ — _[ L) — vy
gw@ =Tt Tl T wAylice icg )
1 - 1 &1 [ 1 1 ]
= V4 _————— —_— —
SnaN( +2 QZTZI:’I" 1—¢yQ7 1-47'Qr
Case 1: ¢ 0.
Let us set 2 = —d/c + ic*u,u real and positive. Then, ¢(z) = a/c +
w/ct. By (44), we see that
xSy = i lim Im{log vN(i + ”‘)
v c (46)
d 1 1
~ Tog | )= g vox ()]
O8N c cu 2 o8 cu
However,
7\ 1 . )
log (—) = log (——| + 7 arg ——) ,
cu [eul cu
so that
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Imbg@i):ﬁi it ¢>0
cu 2
—T i<,
2
Thus, by (45), we have
&@:~Li+lmmﬁwwki+ﬂ)
4 |c| T w0 c ct
i . “n
—logmv(—~+ : )}
¢ cu
Now by equation (45), we have
Imlog px(2) = 1 (_Z_d)
8ray ¢
(48)
5 F ) S S S
20 A r L1, VvQ 11—V’

where V = ¢ 2N/ — eg=N/en . However, as #— 0, @, tends rapidly
to infinity and it is clear that the summation in (48) tends to zero as
% — 0. Thus,

limImlognN(—i-l— ’ >: d .
-0 c cu droyc
Thus, by (47), we see that
1 ¢ d 1,. o m
Sy)= —L ¢ @ 1 piml (_ __> 49
#(o) 4 || 4rayc + 7 ume 0 OBIN\T + ¢ 9

Let W = eiVe/e, Q, = e¢~?**¥/*, Then (45) implies that
Im log ;7N<ﬁ + ﬂ)
c c
a 1 i l[ 1 . 1 ]
) rL1—-CyWQ 1—-C3Wrer

A simple argument (see [1, p. 167]) can be used to justify the interchange
of the summation on the right of (50) and the operation % — 0. However,

(50)

i { 1 1 }
m —_
us0 |1 — Ly W@ 1 —-CGW R
1 1 . (51)
- _ £ L W1
T an T wer I L
0 if W =1.
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If 1 is a k™ root of 1, then a simple argument shows that

1 1k,

Therefore, since {yW~ is a |¢|N™ root of 1, we see that, if (W™ # 1,

1 1 '0%—1 W
— ! 0 ir
1—Cywr le|N & Y
1 1 lelv-1 T
e W ir
oW~ N &

Thus, by equation (51), we see that

1 1 1
:_r,{)l 1 . C WTQT - 1 _ C—lW—lQr
N 1 1 - N 1 (52)
— Wit — (GIWitY,
“TelN ]Zi HCk Cw }

provided that {yW~” =+ 1. However, if {yW" =1, then (51) shows that
(52) again holds, so that by (50),

lim Im log 771\,(9~ 4 —WT)

u—0
= lelN
__e 1 5 1 Z ey Wir — gW=ir) (53)
4droeye 2t =1 7r|e|N
. a . 1 lelV-1 = o CJWJT_C IW-ir
"~ dnaye  2i[c|N ; P r '

Let us now show that the inner sum of (53) is just the Forier expansion
of an elementary function.

Let z be a real number and let [z2] = the largest integer <z. Further,
let ((»)) =2 — [2] — 1/2*. Then a simple computation shows that

oo —27:2'2;: . eriz,u
2m((z — _)> pafLB ity
2 =1 JZ

Therefore,

2zi<<z . 1 )) B i e—ni/Ze-—ZiriZ,u _ eni/2627r'152[l
4 n=1 U

-2z 21
e wi2p + enzzy

i3
r=1 U

* See the footnote on p. 22.
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Thus, as a consequence, we see that

£ e el ) oo~ 2)
£ el 2=~ 1)

Thus, finally we see that for 1¢C,

é AePeize _#A"e-zmﬂ _ ((z — _>){2 e ((z — __>>{,2 + 277,

Let us set 2 =1¢_%, 2 = Naj/c. Then we see immediately that

$ W = W
r=1 T

- (% - Dol - P o

c

= —2eioin () (55 - ) = eon2ei (1) (5 -5

Thus, by combining (565) with (49), we have, finally, that

1_0_ d a 1

Sv(0) = — 1+
#0) 170 T dwaye T dmage TN

lely -1 27:])( Naj 1 1
ijysm(N ( ¢ 4>)+]c|
lely -1, 27:7)(( Naj 1
X8 deos (X S 2)
_ 1 (a—{—d)__l_i (55)
Aray \ ¢ 4 le] ]

)
FNE -2

Jj=

+ cos

{m(zﬂw&'N
E

This completes the discussion of Case 1.

Case 2: ¢ =0.

10

In this case, ¢ = (0 1), b =0(modN). Thus, by equation (42),
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log px(02) = log yy(z + b) = log yy(2) — Z? .
471'7/0(]\[

Thus, by the definition of S,(s), we have

SN(O') =

Aoy
Combining Cases 1 and 2, we may state the following

THEOREM 5-4. Let ¢ = (a b
c d

) e T'(N). Then the Dedelind sum Sy(c)
18 given by

6 . :
SN(O'):M, lfC=0
L (etd) 1e o1
47’y c 4 |c| [e| N

lely -1 2rq ( Naj _1_>>

X j=1 y[sm( N c 4

(- 2)] 0
+ cos( N - 5 ) (c+0)
where
-1
ar = (2o T -]

s pIN

In particular, Sy(e) is an algebraic number belonging to the N™ cyclo-
tomic field.
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