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ON THE BEHAVIOR OF ZEROS OF POLYNOMIALS 
OF BEST AND NEAR-BEST APPROXIMATION 

K. G. IVANOV, E. B. SAFF AND V. TOTIK 

ABSTRACT. Assume/ is continuous on the closed disk D\ : |z| < 1, analytic in 
\z\ < 1, but not analytic on D\. Our concern is with the behavior of the zeros of the 
polynomials {Pn(f)}{° °f best uniform approximation t o / on D\. It is known that, 
for such/, every point of the circle \z\ = 1 is a cluster point of the set of all zeros of 
{ P„(f)} i°. Here we show that this property need not hold for every subsequence of the 
P*n(f). Specifically, there exists such a n / for which the zeros of a suitable subsequence 
{ P%(f)} all tend to infinity. Further, for near-best polynomial approximants, we show 
that this behavior can occur for the whole sequence. Our examples can be modified to 
apply to approximation in the L^-norm on \z\ = 1 and to uniform approximation on 
general planar sets (including real intervals). 

1. Introduction. We investigate the behavior of best and near-best polynomial ap­
proximants in the complex plane C. Let V C C be a compact set containing infinitely 
many points such that C \ V is connected. By || . || v we denote the uniform norm on V, 
i.e., 

| | / | | v :=sup{ | / ( z ) | : zGV} . 

Let n„ denote the set of all algebraic polynomials of degree < n. For any function/ 
analytic on the interior V° of V and continuous on V we denote by P*(f) the best uniform 
approximant t o / on V with respect to n n , i.e., 

En(f)v:=\\f-K(f)\\v<\\f-Pn\\v 

for all Pn Glln . By Mergelyan's theorem we know that En(f)v —• 0 as n —» oo. 
In this paper we shall be concerned with functions/ that are continuous on V, analytic 

in V°, but not analytic on V (that i s , / has some singularity on the boundary of V). We 
denote the collection of all such functions/ by A0( V). 

Let { Sn} be any sequence of functions holomorphic on a neighborhood U of V (U° D 
V) such that \\Sn —f\\v —• 0 as n —• oo. By Montel's theorem (see eg. [5,§ 15.2]), { Sn} 
will be a normal family in U if {Sn(z)} omits two different values a and (3 in U. If 
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this is the case, then an appropriate subsequence {Snk} will converge to a function g 
holomorphic in U° and g will be an analytic continuation of/ to U°. Thus iff G Ao(V), 
then any sequence of functions analytic in a neighborhood of V that approximates / 
uniformly on V can omit no more than one value in this neighborhood. 

It was shown by Blatt and Saff [ 1 ] that if C \ V is simply connected, then the sequence 
{ Pn(f)}o° of polynomials of best approximation t o / G Ao(V) cannot omit any value in 
a neighborhood of V. More precisely, we have 

THEOREM A ([1]). Letf G Ao(V), where C \ V is simply connected. Then there is a 
subsequence { n^} having the following property: given any boundary point zo ofV, any 
&-neighborhood U£(zo) ofzo, and any a G C, the equation P*nk(f; z) — a has a root in 
U£ (zo) far all large k. 

In other words, every boundary point of V attracts a-points of the sequence 
{P*k(f)}j^v Actually, in [2], a stronger result is proved concerning the limiting dis­
tribution of these a -points. 

Theorem A illustrates what Saff [8] has called the principle of contamination, which 
roughly states that the existence of one or more singularities of/ on the boundary of V 
adversely affects the behavior over the whole boundary of V of some subsequence of the 
best polynomial approximants P*n(f) t o / on V. It is important to note that this principle 
as well as Theorem A refer only to some subsequence of the best approximants. 

One goal of this paper is to show that Theorem A does not, in general, hold for the 
whole sequence {P*(f)}i°' With t n e notation 

Dr:={z:\z\ < r } , 

we shall prove 

THEOREM 1. There exists a function f G AQ(D\) and a sequence of integers Nk, 
k— 1,2,... , such that the polynomial P^k (f) of best uniform approximation tof on D\ 
has no zeros in Dk for every k. 

In other words, the zeros of P*Nkif) diverge to infinity. 

REMARK 1. Theorem 1 remains valid if we replace D\ by any compact set V whose 
complement is connected and regular with respect to the Dirichlet problem. This is an 
improvement of a result of Grothmann and Saff [4, Theorem 2.1], which asserts that 
there exists a n / G AQ(V) and a subsequence {n*} such that any bounded set contains 
o(nk) zeros of P$k(f). 

REMARK 2. It is not necessary to restrict our considerations to polynomials of best 
uniform approximation. In Theorem 1 we may replace P*(f, z) by P*(f, q, z)—the poly­
nomial of best Lq (1 < q < oo) approximation t o / defined by 

En(f)q:=\\f-n<f><Ù\U<\\f-Pn\\q 
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for any Pn G Il„, where 

In the special case q = 2, the polynomial P*(f, 2) is the Taylor polynomial off and we 
obtain that there is a function in AQ(D\) such that all zeros of a special subsequence of its 
Taylor polynomials about the origin diverge to infinity. A similar example was obtained 
by Jentzsch [7] who also showed (cf. [6]) that, for any/ G Ao(Di), every point of the 
unit circle is an accumulation point of the set of zeros of all Taylor polynomials. 

Theorem 1 and Remarks 1 and 2 are proved in Section 2. 
Let us now consider the behavior of polynomials of near-best approximation. We say 

that the sequence of polynomials { Qn(f)}o° is of near-best approximation t o / on V if 
Qn(f) G n„, n = 0 , 1 , . . . , and there is a constant c > 1 such that 

\\f-Ûn(f)\\v<cEntf)v 

for any n. 
It was asked in [4] if at least one point of the boundary of V must be a limit of zeros 

of near-best approximants t o / G Ao(V). Our next theorem shows that the answer is no; 
that is, it may happen that no point of the boundary of V attracts zeros of the whole 
sequence of near-best approximants. In such a situation, we note, however, that for any 
value a / 0 , Montel's theorem implies that the a-points of this sequence must have at 
least one limit point on the boundary of V. 

THEOREM 2. There exists a function f G Ao(D\) and a sequence of polynomials 
Qn G Tln such that: 

(0 11/ - QU\\DX < cEn(f)Dv n = 0 , 1 , . . . , and 
(ii) for any p > 1 there is an N such that Qn has no zeros in Dp for any n > N. 

Theorem 2 should be compared to Theorem 1.3 in Grothmann and Saff [4] which says 
that if we require enough regularity for the error in best approximation of the function 
/ G Ao(V), then at least one point of the boundary of V is a limit point of the zeros of 

unify 

REMARK 3. As in Remark 2, Theorem 2 also holds if Qn is a suitable sequence of 
polynomials of near-best Lq (1 < q < oo) approximation to / . 

Theorem 2 and Remark 3 are proved in Section 3. 

2. Proofs of Theorem 1 and Remarks 1 and 2. 

LEMMA 1. For N > 5\ w\ we have 

j=0Jl L 
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PROOF. For the remainder of the Taylor seies of ew we have 

"w1 1 rw 

*"-Ej /̂>-0V„. 
Therefore, 

(2.1) \ew-"t-\<HN+leH/KU 
j=o j}-

and using the inequality N\ > NNe~N we get for N > 5| vv| 

>|+/V 

< |w|é?(
1-ln5)"+2IHéHH 

< |w^-(51n5-7)|M;^- |vvi 

< l- e-M < -e-M. 
-e(5\n5-l) 2 

PROOF OF THEOREM 1. We set 

CO k 

where Sj and m; are determined by induction in the following way. Set ei := \ In 2, 
mi := 1, n\ := 5. If Ek, mk and nk are chosen, then we first determine £*+i > 0 such that 

1 

V (2.2) ek+\ < -ek, 

and 

(2.3) ek+i <^k-mknkexp(-\\gk\\Dk). 

Then we set 

(2.4) mk+l :=[l/eM], 

and finally we choose rik+i so big that 

(2.5) nk+l>5(k+l)m^ 

and 

(2-6) K-—!- < - exp(- | | f t + 1 \\DM). 
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We note that inequalities (2.5) and (2.6) are also satisfied for k = 0 because 

Next we set 

| g i | k = e\ = - l n 2 a n d « i = 5. 

f(z) := ^z\ fk(z) := ^ ( z ) , Nk := mknk. 

From (2.4) we have 
\im(6j)l/mj = 1, 

and (2.2) gives ||g — £*||D, < £*. Hence g G A0(I>i) and the same is true for/. 
Next we are going to prove that P^ if) has no zeros in Dk. We shall make use of the 

following simple observation: 
For any/ G C{D\) and any Qv G fl^ we have 

(2.7) IW)- CIID, < HW-Zlk +11/- Clk 
<2||/-Ô,|U, 

because P* (/) is the polynomial of best approximation t o / out of F^. 
From (2.2) we have || gk\\Dl <2ex = ln2, ||g||Dl < In 2, which imply that ||/*||Dl < 2, 

H/llz), < 2. Therefore (2.1) with N = 0 yields 

(2.8) 

yj=k+i ' j=k+\ 

\\f-fk\W < | | / * | | D , e x p ( E e /Z"*)- ! 
11 7=*+l y ' 

( OO \ OO 

Using (2.2) once more we get 

(2.9) 
7 = 1 7 = 1 

Set ô^(z) := H]L0gk(zy/jl G n ^ . From Lemma 1 with/Y = w* and w = gk(z), (2.9) 
and (2.5) we get 

(2.10) I QNAZ) - ^ ' ( z ) | < - e _ M z ) | for any z G Dk. 

From (2.1) with N = n^, w = gk(z), we obtain for any z & D\ 

\QNk(z)-fk(z)\ < 

which together with (2.8) gives 

\gk(z)\ nk+lp\gk(z)\ 

nk 
nkV 

(2.11) l & v * - / l k <8£ik+i + — . 
nk\ 
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From Bernstein's lemma (cf. [10, §4.6]), (2.7) with v — Nk, and (2.11) we get 

\\P*Nk(f)- GvJk < *?k\\rNk<f)- flvJk 

< 2^11/- QNk\\Dl < (16et+i +4/fi t!)^». 

Now using (2.6) (with k instead of k + 1) and (2.3) we obtain 

(2.12) \\nkV)-QNk\W < ^exp(- | |^ | |D f t) . 

Combining (2.10) and (2.12) we get 

\P* (f f\—^kiz)\ < _e-\gk(z)\ + _e-\\gk(z)\\Dk 

< e-\gk(z)\ < \e8k(z)\ 

for any z, |z| = &, which, in view of Rouché's theorem implies that P%(f) has no zeros 
in Dk. This proves Theorem 1. • 

PROOF OF REMARK 1. Let G be the Green's function for C \ V with pole at oo. Then, 
by assumption, G is continuous on C \ V and takes the value 0 on the boundary of V. 
We set, for p > 1,£>* := {z G C\ V : \G(z)\ < l n p } U V. Denote by Tn(z) = ? + •• • 
the generalized Chebyshev polynomial of degree n for V, i.e. 

\\Tn\\v = rmn{\\zn-p(z)\\v:peUn^} 

andletfn(z) := Tn(z)/ \\Tn\\v. If we set ̂ (z) := E ~ , £jTmj(z) and g k(z) := E*=1 e)Tw,(z), 
then with obvious modifications the proof of Theorem 1 will give us Remark 1, with Dk 

replaced by D*k. Notice that {D*k} is an increasing sequence converging to the whole 
complex plane C in an obvious sense. 

PROOF OF REMARK 2. The only changes in the proof of Theorem 1 are: 
(a) Using Nikolskii's inequality [9, § 4.9.2] one replaces (2.7) by 

\\Pl(f,q)-QAW <cvl/q\\P;(f,q)-QAq 

<cvxl%\\Pl(f,q)-f\\q + \\f -Q„\\q) 

<2cvxl«\\f - Qv\\q <2cvl/«\\f - Qv\\Dl 

(c is an absolute constant). 
(b) Therefore we have to replace (2.3) and (2.6) by 

ek+x < —e-\\gk^(mknky
xlqk~mknk 

64c 

and 

nic+i ! 16 

respectively. 
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3. Proofs of Theorem 2 and Remark 3. For any 2TT periodic function F we denote 
by 

u>(F,8) := sup{ \F(ti) - F(t2)\ :\t{-t2\<8} 

its modulus of continuity. 

LEMMA 2. Let G be a2n periodic continuous complex-valued function and è > 0 
be such thatu)(G,6) < 1. IfF(t) := exp{G(0}, then 

(3-e)~^uj(G,S) <w(F,ë) < é?l|G|lo;(G,«), 

where \\G\\ := ||G||[0,27r]-

PROOF. Let w e C, |w| < 1. Then 

kw-H - M 1 + 2! + 3 ! + - -

> |w 

> \w\(l-(e-2)) = (3-e)\w\. 

Therefore, for any a, Z? £ C, | <a — b\ < lwe have 

\ea-eb\ = \eb\\ea-b-l\ > eReb(3 - e)\a - b\. 

Thus if t\ and t2 are two points in [0,2ir) such that 11\ - t2\ < 8 and | G(t0 - G(t2)\ = 
u;(G,<5), we have 

^-||G||(3 _ ^ ( G . g ) < eReG('2)(3 - e) | G(^i) - G(r2)| 

< \eG{tx) - eG{h)\ = \F(ti) - F(t2)\ < u(F,8). 

This proves the first inequality. We get the second inequality in a similar way from 

(3.1) -eb\ <\a-b\ 9m*x{\a\,\b\} 

for any a, b, G C. • 
Denote by % the set of all trigonometric polynomials of degree n. For any 27r periodic 

function F let 
ET

n(F):= inf sup \F(t)-P(t)\ 
P^n 0<f<27T 

denote the best approximation of F by trigonometric polynomials in %. 

LEMMA 3. Iff is continuous on D\, analytic in\z\ < 1, and F(t) : = f(elt), then 

(3.2) ET
n(F) < En(f)D] < 4E{n/2](F). 

PROOF. If P e n„, P(z) = ELo bkJ, then 'k=0l 

n 

Q(t) := P(^ ) = ]£(£* cos fa + ibh sin fa) 
ife=0 
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belongs to %. Therefore, the maximum principle gives 

\\f-P\\Dx = max\f(z)-P(z)\ - \\F- Q\\m^ > ET
n(F). 

\z\ = l 

This proves the left-hand inequality in (3.2). 
Let/(z) = E£o a^- Then the Fourier series of F is given by 

oo 

Y^ (ak cos kt + iak sin let) 

and the corresponding de la Vallée-Poussin sums are Vm(F, t) = Qm(elt), where Qm E 

n2m-i, 
m 2m—I , hx 

Gm(z) = Ea*z*+ E ( 2 - - W . 
Therefore, with m — [n/ 2], 

En(f)Dl < \\f-Qm\W = max \f(z) - Gm(z)| 

= ||F-Vw(F)||[0f2W)< 4 ^ ( f ) , 

where in the last inequality we used the well-known estimate for the de la Vallée-Poussin 
sums given in [3, §6.1]. • 

PROOF OF THEOREM 2. Let mi := 1 and mj+i := (j + \)m\j = 1,2,.... Set 

oo 

« ( z ) : = E 4 " ; z " J . G ( f ) : = g ( A 

fiz)--^, F{t):=f(eu). 

For & = 1,2,... , we further set 

* * ( z ) : = E 4 - V \ G t(0 := 4"Vm", 
7=1 

<3*(0 := Rt-i ( A Ôk(t) := G(0 - Gk(t) - Gk(t), 

Qk(z):=E{^(z))J/r--
j=o 

Note that Qk E Umk+l. Finally, formai < n < mk+2, we set Qn := G* € n n , /: = 1,2, — 
We claim that/ and g„ satisfy all the requirements of the theorem. To this end we 

shall prove the following: 

(3.3) /GA0(Di) ; 

(3.4) - < 4kEn(f)Dl <ci,formk<n< mk+l 

https://doi.org/10.4153/CJM-1991-057-7 Published online by Cambridge University Press

file:////f-Qm/W
https://doi.org/10.4153/CJM-1991-057-7


1018 K. G. IVANOV, E. B. SAFF AND V. TOTIK 

(here and below c\, c2 , . . . denote possibly different absolute constants); 

(3.5) \\f-Qk\W < c 2 4 - * , f o r * = l , 2 , . . . ; 

(3.6) Qk has no zeros in D(k+iy2-

Then (i) of Theorem 2 will follow from (3.4) and (3.5) and (ii) will follow from (3.6). 
For any j > 4 we have m, > 4/, which implies that 

lim(4"-/)1/m7" = 1. 
j—yoo 

Also the series for g is absolutely convergent in D\ and hence g G AQ(D\). This implies 
(3.3). 

In order to prove (3.4) we first estimate the modulus of continuity of G. Let<5 = ir / mk. 
Then 

(3.7) «>(Gk;6) < E 4 " ^ ( ^ « ) < E 4 " S — 
7tt p[ Jmk 

< ~ ^ T < ~4-*for&>4, 
mk 3 3 
OO 

(3.8) o;(G*,£)< E 4-- / 'o;(^,«) 

oo 9 

< 2 £ 4^ = U~k, 
j=k+\ ^ 

and 

(3.9) uj(Gk,6) = A-k\eimk{Q)-eimk{lxlmk)\ = 2 - 4 " * . 

From (3.7), (3.8) and (3.9) we easily obtain 

LJ(G,8) < u(Gk,8) + u(Gk,8) + u(Ôk,8) < 3 • 4 -* 

and 
u(G,8) > uj(Gk,8) — oj(Gk,8) — uo(Gk,8) 

> 2 • 4~* - -4~* - -4~* = 4"*, 
3 3 

for k > 4. This implies 

(3.10) c^1 < 4kuj(G,n/mk) < c3 for any k. 

From the monotonicity of the modulus of continuity and (3.10) we get 

Q 1 <4kcu(G,8) <c4 

for any 8 E [1 / ra^+i, 1 / mk]. Thus Lemma 2 gives 

(3.11) c^1 <4*o;(F,«) < c 5 
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for any S G [I/ mk+u I/mk]. 
Jackson's theorem (cf. [9, §5.1.2]) and (3.11) imply that 

(3.12) El(F) < c^~k for any mk <n < mk+\. 

Using (3.11) together with the converse theorem for the best trigonometric approxi­
mation (see eg. [9, § 6.1.1]) we get 

tnk+\ 

ci 4~k < c8 u>(F, \/mk+l) < m^+\ £ Ej(F) 
j=0 

mk-\ mk+\ 

= m~k}x £ Ej(F) + md £ Ej(F) 
j=0 j=mk 

<mï+\(mk\\F\\+mk+lE
T

mk(F)) 

<2mk(k+iym>+ET
mk(F), 

which, for large enough k and mk < n < mk+\, yields 

(3.13) ET
n(F) > ET

mJF) > c94-(^+1) = cl04~k. 

Inequalities (3.12), (3.13) and Lemma 3 yield (3.4) for sufficiently large /c's. Therefore 
(3.4) is valid for all k (with a possibly large constant c\ ). 

In order to prove (3.5) we observe that \Rk(z)\ < 1/ 3 for any z £ D\. Hence from 
(2.1) with N = mk, w = Rk(z) we get 

(3.14) \Qk(z) - ^k{z)\ <(l/3)mk+lel'3/mk\ < 4"*. 

From (3.1) with a = Rk(z), b = g(z), we get for z G D\ 

| / * U ) _ ^ ) | <el'3\Rk(z)-g(z)\ 

( 3 ' 1 5 ) = e V 3 | f ; 4 - ^ 

Combining (3.14) and (3.15) we obtain (3.5) with c2 = 2. 
Finally we prove (3.6). Let |z| = (k + 1)/ 2. Then 

<4~*. 

( k + \\mk k 

for any k. By Lemma 1 with N = mk+\, w = Rk(z), we have 

|***<*>-G*(Z)| <éH*<*>i < | ***<*> |. 

Thus Rouché's theorem asserts that Qk has no zeros in D(k+ly2- This completes the 
proof. • 
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PROOF OF REMARK 3. The same function/ and polynomials Qn from the preceding 
proof are suitable. It is enough to evaluate from below the Lq modulus of G: 

«>(G,6)q = sup{ (-!- j * * \G(x + t) - G(x)\qdx^ q : 0 < t < 6}. 

To this end (3.9) should be replaced by 

/ 7r \ / 1 r27r \ */<? 

u[Gk,—J > [Y~ J0 \Gk(x + n/mk)-Gk(x)\qdxJ 

/ 1 /-27T \i/q 

= 2 - 4 " f e / o dx) =2-4~k> 

because Gk(x + ir/ m*) — —G^ix) for any x. Inequalities (3.7) and (3.8) remain the same 
for Lq moduli and hence u(G, TT/ mk)q > c\o 4~k, which implies an inequality similar to 
(3.4) for the best Lq approximation off. m 
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