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1. "What is a von Neumann algebra? What is a factor (i) 
of type I, (ii) of type II, (iii) of type III? What is a projection 
geometry? And finally, what is a continuous geometry? 

The questions recal l some of the most brilliant mathema­
tical work of the past 30 y e a r s , work which was done by John 
von Neumann, partly in collaboration with F . J . Murray , and 
which grew out of von Neumann1 s analysis of linear operators 
in Hilbert space. */ 

2. Continuous geometries were discovered by von Neumann 
and most of our present knowledge of these geometries is due 
to h im. The first continuous geometries which he found were 
projection geometries of certain rings of operators in a separable 
Hilbert spaced (see definition 3 below for the definition of a 
projection geometry). Roughly speaking, continuous geometries 
which are projection geometries a re a generalization of com-
plex-projective geometry somewhat in the way that Hilbert 
space is a generalization of finite dimensional Euclidean space. 
But to be more prec ise , we need some definitions. 

DEFINITION 1. Suppose U i s a ring of bounded l inear 
operators on a Hilbert space H. Then 1Z is called a von 
Neumann algebra if 

(i) 1? contains the multiplication operators cl a ' on H 
for every complex number c. 

See p . 286 for footnotes. 
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(ii) il contains the adjoint operator T* for each T in 
-ft . 

(iii) "ft contains every T 0 in the strong closure of "7? . 
Von Neumann defined, for any family J of bounded l inear 
operators on H, the commutant 7 ' to consist of those bounded 
linear opera tors B on H such that BA = AB and BA* = A*B 
for all A in 3- He showed that J'' is always a von Neumann 
algebra and he proved that ? is a von Neumann algebra if and 
only if ( ? ' )' = 7 . 

DEFINITION 2. A von Neumann algebra ~ft is called a 
factor if the only opera tors in -ft which are also in ft' a re 
the multiplication operators cl on H. ' 

Von Neumann showed that a von Neumann algebra is a 
factor if and only if it is i r reducible as a r ing,^) 

DEFINITION 3. Suppose -ft is a ring of opera tors on a 
Hilbert space H. Then the projection geometry of ~ft , 
denoted £ = £ ( *# ), is defined to be the system 
0 , M, N, . . . . , H of those non-empty closed l inear subspaces 
of H which have projection (i. e. , orthogonal projection) 
operators in -ft . ' £ is to be considered as an ordered 
system, ordered by the relation of inclusion N d M. ' 

If -ft is a von Neumann algebra then i ts projection 
geometry £ is a la t t ice , in fact a complete lattice^) which is 
orthocomplemented. ' / F u r t h e r m o r e , on this lattice £, there 
can be defined in a natural way, a relation of equivalence, as 
follows: M, N a re called equivalent (written M S N) if there 
exists in iZ an operator T which maps M isometr ical ly 
onto N. ' Von Neumann and Murray showed: 

(i) If M, N in jL a re such that some T in "ft maps 
M in a (1 , 1) way into a set dense in N then M S N. *' 

(ii) The relat ion s is unrestr ictedly additive for or tho­
gonal famil ies , that i s , if M^ ^ N^ for each * and the M^ 
are mutually orthogonal and the N^ a re mutually orthogonal, 
then UM^ S U NU . 

i 
(iii) If M, N in «£ a r e such that M ^ N\ for some 

Nl c N and N ^ Mj for some Mj c M, then M ^ N. 
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(iv) If i ? i s a fac tor t hen for e v e r y pa i r M , N in £> 
e i the r M % N j for s o m e Nj c N or N ^ M j for some 
M i c M . 

F ina l ly if 12 i s a f a c t o r , t h e r e ex i s t s a function d(M), 
with r e a l finite o r infinite non-nega t ive v a l u e s , defined for the 
e l e m e n t s M in £ , such that : d(0) = 0; d(M) ^ d(N) if 
M ^ N i for some Nx c N; d(M) = d(N) if and only if M % N; 
d( U M^ ) = Z. d(Mx ) if the M u a r e mutua l ly o r t h o g o n a l . lz) 

3. In ana lys ing the s t r u c t u r e of a p ro j ec t ion g e o m e t r y 
two defini t ions a r e useful . 

DEFINITION 4 . An e l e m e n t M / 0 in £ i s ca l l ed an 
a tom if for e v e r y N in £ , the r e l a t i o n s 0 ^ N c M imply 
that N co inc ides with M. 

DEFINITION 5. An e l e m e n t M in & i s ca l l ed finite 
if N ^ M , N a M imply tha t N co inc ides with M . If M is 
not finite it i s ca l l ed inf in i te . 

The f a c t o r s 1? a r e c l ass i f i ed in types a s fol lows: 

(i) i£ i s sa id to be of type I if £ conta ins an a t o m . 

(ii) H i s sa id to be of type II if / does not conta in 
any a t o m , but «£ does conta in s o m e n o n - z e r o finite e l e m e n t . 

(iii) "# is sa id to be of type III if £ does not conta in 
any n o n - z e r o finite e l e m e n t , 

4« F a c t o r s of type I . If ,£ has a t o m s , t hen any two 
a t o m s a r e n e c e s s a r i l y equivalent and any n o n - z e r o M in & 
can be e x p r e s s e d as the union of an o r thogona l fami ly of a t o m s : 
M = £<£ (M^ ; oc e I) wi th the M^ or thogona l a t o m s . It i s 
not difficult to p rove that the c a r d i n a l i t y of I i s uniquely d e t e r ­
mined by M; d(M) can be defined to be the ca rd ina l i t y of I ( this 
amoun t s to " n o r m a l i z i n g " the function d(M) by the addi t iona l 
condi t ion that d(a tom) should be 1). It i s ea sy to prove that 
th is function d(M) s a t i s f i e s the condi t ions l i s t e d a t the end of 
§ 2 . If a = d(H), w h e r e a i s a finite i n t e g e r o r infini te , we 

s a y f2 i s of type I a . 

In the c a s e that H is a s e p a r a b l e Hi lbe r t s p a c e , a m u s t 
be one of 1, 2 , . . . , n , . . . o r X 0 . M u r r a y and von N e u m a n n 
wro te IQQ to denote I yj . 
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A factor JE has finite l inear dimension as a vector space ' 
(this must be the case whenever H has finite dimension) if 
and only if iZ is of type I n for some finite n. In this case 

£ , considered as an ordered system, can be identified with 
the ordered system of all l inear subsets of a complex-projective 
geometry, the atoms of jL being identified with the points of 
the projective geometry (the normalized function d(M) is then 
the projective geometry dimension increased by 1). If H has 
finite dimension then d(M) differs from the dimension of M, 
considered as a Hilbert space (see footnote 2), by a finite 
multiplicative factor; but if H has infinite dimension then all 
non-zero M in JL have infinite dimension as Hilbert spaces . 

The case I a occurs if 1Z is the ring of all bounded 
linear opera tors on an H of dimension a. Murray and von 
Neumann obtained the important result that every iZ of type 
I a is "essentially '1 such a ring of all bounded l inear opera tors 
on an H of dimension a. To be p rec i se , they defined the 
tensor product Hj <S> H^ ' of two Hilbert spaces H^ , U^ 
and they showed: a factor ~fî on a space H is of type I a if 
and only if H can be expressed as a tensor product Hj & H^ » 
with H^ of dimension a, in such a way that "1Z is identified 
with the ring of those bounded linear opera tors on H which 
depend only on the factor H\. 15) 

5« Fac to r s of type II. If £ has no atoms then every 
M in H can be expressed as the union of two orthogonal 
equivalent elements; in other words , each M can be decomposed 
orthogonally into two equivalent p a r t s , each of which can be 
called a half-M element . 

If now £ has no atoms but F is a non-zero finite element, 
the function d(M) can be constructed in the following way, 
which amounts to "normalizing" d(M) by the additional condi­
tion that d(F) = 1. 

Let F j = F and let Fl denote a half-F^ element. By 
induction, let Fw£n+1 denote a half- ^ l / 2 n element for 
each n = 1, 2, * . . , 

Then an element M in £ is finite if and only if it can 
be expressed as a finite or countable union of orthogonal 
elements 

M = 7®. t F. © Y e F, . ^ 
*-* i=l i ^- n=l l / 2 n 
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r i 

where r i s f inite, r = 0, 1 , 2 , . . . , each of F i , . . . , F„ i s 
i * 

equivalent to F\, and each F ^ ^ n i s either 0 or equivalent 
to F ^ 2 n « the value of r + Z n = 1 ( l / 2 n ) ' where ( l / 2 n ) ' = 0 

or l / 2 n according as ( F ^ ^ n ) i s 0 or i s equivalent to F I ^ I D 

will be uniquely determined by M, Choose this value to be 
d(M) if M is finite. 

If M is infinite, then M can be expres sed as the union 
of a countable or non-countable family I of orthogonal e lements 
each equivalent to F\, the cardinality of I being uniquely 
determined by M. Choose d(M) in this case to be the cardinality 
of I. 

The function d(M) so defined for all M in i w i l l , in 
fact , be defined uniquely and wi l l satisfy the conditions given 
at the end of % 2 . This construction of the function does 
depend on the particular choice of finite e lement F as norma­
l iz ing e lement , but a different choice for F will m e r e l y change 
the function d(M) by multiplying it by a finite non-zero posit ive 
constant; in part icular , if M i s infinite the value of d(M) i s 
independent of the choice of F . 

If H i tse l f i s finite it i s convenient to choose H to be F . 
Then the values of d(M) are p r e c i s e l y all x in the interval 
0 < x « 1. In this case we say ~iZ i s of type 11^. 

If H i s infinite, and d(H) = a then the values of d(M) 
are p r e c i s e l y al l rea l x ^ 0 together with all infinite cardinals 
<. a. In this case we say iZ i s of type I I a . If H is a 

separable Hilbert space then a factor of type II must be ll\ or 
II ^ . Murray and von Neumann wrote IIco for II ^ 

6. Fac tors of type_HI. Suppose now that all non-zero 
e l ements in £ are infinite. It i s not difficult to prove that 
there ex i s t s in £, a non-zero e lement M 0 such that 
0 f N <c M 0 impl i e s that N ^ M 0 . Then every non-zero e lement 
M in £ can be e x p r e s s e d as the union of a family I of ortho­
gonal e lements each equivalent to this MQ: M = 2L®*é I M ^ , 
M ^ ^ M 0 for al l oc . If M is ^ 0 and is not equivalent to 
M 0 then it i s not difficult to prove that the cardinality of I 
i s uniquely determined. Define d(M: MQ) to be the cardinality 
of I. If M = MQ the cardinality of I i s not uniquely determined; 
define a to be the supremum of all cardinal i t ies of such I 
( n e c e s s a r i l y a ^ X 0 ). 

277 

https://doi.org/10.4153/CMB-1960-034-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1960-034-5


Now if H itself is equivalent to M0, the function d(M) 
can (and must) be defined by: d(0) = 0; for all M t 0, d(M) = b 
for some fixed b > a . In this case ~fZ is said to be of type HIa. 
If H is a separable Hilbert space, every factor of type III must 
be of type III \> ; Murray and von Neumann wrote III oo f° r 

this type III ^ * 

If M0 can actually be expressed as the union of a family 
I of a orthogonal elements each equivalent to Mo (that is, if 
the cardinality a is attained) but H is not equivalent to MG 

then d(M) can (and must) be defined by: d(0) = 0; d(M) = a if 
M is equivalent to MQî d(M) = d(M: MQ) if M is not equivalent 
to M0. In tMs case, let b = d(H: MQ). Then d(M) takes on 
as values:0 and every cardinal K satisfying a ^ X ̂  b. In this 
case the factor ii is said to be of type HI/aj fo). 

Finally, suppose if possible that H is not equivalent to 
M0 and that a is not attained (necessarily a > K0 and a has 
the property that it cannot be the sum of a set of cardinals 
2Z _/ r T ao£ w ^ n each â  «c a and cardinality of J <c a)* Then 

there will be an element M\ in <£ such that d(Mj : M0) = a 
and yet Mj is not equivalent to M0. But for any function d(M) 
with the properties listed at the end of § 2, it is easy to see 
that d(M0) would equal d(M^). Thus if a is not attained and 
H LËL n°t equivalent to MQ there can be no such function d(M) • 
If d(H: MQ) = b (necessarily b > a > Xô ), ~iZ is said to be of 
type HI/^, -px, the sloped mark indicating that a is not attained. 
It is not yet clear whether this type HI(a, fo\ actually occurs. 

7. Examples of factors. As stated at the end of § 4, 
for each finite or infinite a(a = 1 , 2 , . . . , X0 , • . . . ) and for 
each Hilbert space H of dimension divisible by a, there exists 
a factor of type Ia on H. Two factors of type Ia with the 
same a are isomorphic under a suitable isomorphism of their 
H-spaces if their H spaces have the same dimension; in any 
case the factors are isomorphic as rings with a ^-operation 
(a factor is always defined with respect to a particular Hilbert 
space H but two factors can be *-ring isomorphic even though 
they are defined on Hilbert spaces of different dimension). 

The construction of factors of types II and III is a more 
difficult matter. Von Neumann and Murray first constructed 
examples of factors Hi a n d H-X. o n a separable Hilbert space 
by using measure-theoretic methods [7] . In a later paper 

[8] von Neumann defined tensor products TÏ® H^ with an 
infinite number of factor spaces Ha and used an infinite tensor 
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product TT® Ha with each HQ a 4 - dimensional Euclidean 
space to construct a wide variety of factors. It 

turned out that among these tensor product factors, were (i) 
factors of type 11̂  on spaces H of arbitrary dimension > )^0 , 
(ii) factors of type IIa with fixed but arbitrarily given a ^ X0, 
on spaces H of arbitrary dimension ^ a, and (iii) factors of 
type IIIa for fixed but arbitrarily given a on spaces H of 
arbitrary dimension > a. 15a) 

The factors constructed by von Neumann with the help of 
infinite tensor products are not difficult to describe, but the 
verification of their types, as given by von Neumann, is involved. 
In fact, von Neumann actually made the verification only for the 
III factor on a separable Hilbert space by identifying the factor 
on a tensor product space with a certain III measure-theoretic 
factor constructed in a previous Murray-von Neumann paper 
(the II /̂ case then follows easily). 

Later, von Neumann [91 established the existence of a 
factor of type III >>ç> on a separable Hilbert space, again by 
measure-theoretic methods, and asserted that some of the 
factors previously constructed by him on infinite tensor product 
spaces could be identified with some of these (measure-theoretic) 
factors III v 

The next two sections are devoted to a discussion of these 
tensor product factors, avoiding the more involved measure-
theoretic apparatus. 

$• Infinite tensor product spaces. Suppose H^ is a 
fixed Hilbert space for each <* in a set of indices J (assume 
each H^ has dimension ^ 2), and suppose a fixed unit vector 

<£rf has been selected in each H^ • Now let TT'® H^ con­
sist of all finite formal sums v = Z i { TT® f̂  x), where for 
each * in J and for each i, f̂  l is in the corresponding H^ 
and, with at most a finite number of exceptions, f̂  l = fi* . 
If w = Z j ( TT® gaC J) define (v|w) to be Z i$ j TT* (f ^ I g , J) 
(note that Z i j is a finite sum, and for each i, j , the product 
"FT* (f * * |goc J) is a finite product since, with a finite number 
of exceptions, (f ^ i \g^ J) = ( ^ I <f>« ) = 1). Note that the 
vector g = T7§> <£<* is in TT'® H * . 

In TT® Hoc , for each complex number c identify cv 

with ZTi TlQiiJ)' where for each i, (f^1)' = cf*1 for one of the * 

and (f^)' = £<** for all other <* ; also identify v and w if 
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(v-w lv-w) = 0, With these identifications TT ® H^ becomes a 
linear space with inner product; its completion is called the 
tensor product TJ^H^ . This tensor product depends not 
only on the H^ but also on the particular choice of the Cv 
However, different choices of the <£# give tensor product 
spaces which are isomorphic, all having the same dimension^") 
(von Neumann called this space an incomplete direct product; 
he wrote TT® H^ to denote a much larger space which depends 
only on the Ha , not on a choice of <p^ and he showed that his 
larger space decomposed in a unique way into orthogonal parts 
each of which is an incomplete direct product or tensor product 
as defined above). 

Each bounded linear operator T on a single factor space 
Ho(0 determines a bounded linear operator T on the space 
H= TT® Ha in the following way. If v = TR f̂̂  with f a = 4>OL 
for all but a finite number of oc , let Tv = TT<S)f£ where 
f ̂  =frt if c< 4 <x0 and f£0 = Tf^o . Now T is uniquely 
defined by linearity for each v in TT&Ĥ  (the corresponding 
Tv is also in TT'oH* ) and by continuity T is defined 
uniquely on all of H. 

Let "G denote the set of all bounded linear operators on 
H and for fixed oc let ~6<* denote the set of all bounded linear 
operators on H^ . If 7^ is a subset of 13 ̂  let 3^ denote 
the set of all T as T varies over ^ . If for each <* , 

3^ is a subset of 13 ̂  let TT®^ denote the set of those, 
operators from 13 which can be expressed as JET i ( TT^ T^ ) 
with ZZ a finite sum and each TT^T^1 containing only a finite 
number of factors and each T^1 in J^ ; and let TT<2> J^ 
denote the strong closure l 6 ) of T7'<2> £ , 

It is not difficult to prove the following. 

(i) If Ti and T2 are in different 13̂  then T1T2 = T2T1. 

(ii) For each fixed * , ( 15 ̂  ) = 13 ̂  , i .e . 15u is a 
von Neumann algebra. 

(iii) The only von Neumann algebra which contains all 
the ^ is 13 . 

(iv) For fixed <X , ?<* is a von Neumann algebra (re­
spectively, a factor) on H if and only if 3^ is a von Neumann 
algebra (respectively a factor) on H^ , If ^ , 7^ are 
factors, they are of the same type. 
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(v) If for each oc , 7* is a von Neumann algebra on H 
then TT® 3 ^ is a von Neumann algebra on H and it is the 
smallest one which contains all 7* 

(vi) If for each * , ^ is a factor on H^ then "H"©^ 
is a factor on H. 

(vi) immediately presents a challenging problem, as yet 
not completely solved, namely to determine the type of the 
factor TT® J^ , given the factor 9^ in each H * • Von 
Neumann emphasized that (vi) was also important because it 
opened up the possibility of constructing complicated factors on 
H by starting from known factors on the individual H ^ . In 
fact von Neumann constructed factors of the form TT0 3bc 
of types I I} , II xo and HE ><e respectively by using spaces 
H ^ , each an Euclidean space of dimension 4, and in each H ̂  
a factor ^ of type l£. 

We shall discuss these examples of von Neumann in the 
next section. 

9. Fac tors with a t race function. Let "f? be any ring 
of opera tors on a Hilbert space H such that "*? contains the 
identity operator on H and ~P2 contains A* if A is in "ft . 
Then a function B with complex numbers (finite1.) as values, is 
called a finite t race on "f£ if 

(i) B (A) is defined for each A in H , 

(ii) 0(A + B)= 9(A) + 0(B) for all A, B in 1? , 

(iii) a (A*A) is rea l and > 0 for every A £ 0 in "ft , 

(iv) d (1) = 1, 

(v) 0(AB) = 0 (BA) for all A, B in "R . 

Suppose now that 1Z is known to be a factor and that it 
possesses a t r a c e . Then it must be of type II ̂  or I n for some 
finite n, and if P j^ denotes the orthogonal projection operator 
on a closed linear subspace M then the function 0 (Pj^) can 
be taken as d(M). To see th is , recall that M « N means that 
there exists an operator T in -ft which maps M isometr ical ly 
onto N. Let W = P N T P M . Then W*W = P M , WW* = P N so 
9 (P M ) = 6 (W*W) = Q (WW*) = a (P N ) ; i . e . M s N implies 
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tha t 0 ( P M ) = 9 ( P N ) * F r o m th i s fact and ( i i ) , ( i i i ) ,and (iv) it 
fol lows e a s i l y t h a t d(M) = k 0 ( P ^ ) for s o m e finite pos i t i ve 
cons tan t k . T h i s i m p l i e s tha t H i s f inite so tha t iZ i s 
n e c e s s a r i l y of type I I i o r I n for s o m e f ini te n . 

Now m a k e the fol lowing def in i t ion . 

DEFINITION 6. Le t "R be a r i ng of o p e r a t o r s on a 
space H such t h a t i€ con ta ins the ident i ty o p e r a t o r on H and 
-f? c o n t a i n s A* if A i s in iZ * T h e n a unit v e c t o r g in 

H i s c a l l e d a t r a c e - v e c t o r for -R if (ABg |g) = (BAg |g) for 
a l l A , B in H . 

It i s e a s y to see t h a t if iZ p o s s e s s e s a t r a c e - v e c t o r g 
t hen (Ag |g) i s a f ini te t r a c e on R; hence if "ft i s a f ac to r it 
m u s t be of type I n o r I I I . 

F i n a l l y , s u p p o s e tha t for e a c h <* , -R^ i s a f ac to r on 
H ^ and tha t <&* i s a t r a c e - v e c t o r in H ^ for -f2^ (the q^ 
a r e the v e c t o r s in H ^ involved in the c o n s t r u c t i o n of TT® H^ ) . 
Let g be the v e c t o r TT® ^ in TT® H ^ . Then i t i s e a s y 
to p r o v e tha t ( A B g | g ) = (BAg |g) for a l l A , B in TT'® -R^ 
and hence for a l l A , B in -R = TT(g> -R^ 

T h i s shows tha t iZ m u s t t h e n be a f ac to r of type I n o r 
I I ! • It i s e a s y to p r o v e tha t -f2 i s of type I n if and only if 
a l l ~tZ oc a r e of type Ia<< for f inite a ^ such tha t "oc 3 - ^ i s 
f ini te ( n e c e s s a r i l y = n; t h e n "R^ i s of type I j for a l l but a 
f in i te n u m b e r of oc ) . In a l l o t h e r c a s e s , i3 i_s n e c e s s a r i l y 
of tyPJL ^ 1 * T h i s i n d i c a t e s a m e t h o d of c o n s t r u c t i n g II]. f a c t o r s 
on a s p a c e H of a r b i t r a r y d i m e n s i o n a ^ Xo • N a m e l y , f i r s t 
choose a se t J of i n d i c e s o< so tha t J h a s c a r d i n a l i t y a . 
Then choose for e a c h c< s o m e space H ^ of f ini te d i m e n s i o n a l i t y 
a ^ ^ 2 and choose a unit v e c t o r 4>^ in H ^ ; TT& H ^ wi l l 
t h e n have d i m e n s i o n a . N e x t , choose if p o s s i b l e in e a c h H ^ 
a f a c t o r "R^ of s o m e type I n wi th n ^ > 1 so tha t ^ i s 
a t r a c e - v e c t o r in H^ for -R^ and so tha t the set J ' of o< 
wi th n ^ > 1 h a s c a r d i n a l i t y a ' wi th K0<^ a ' rs a . Then 

-R = TT<g> ^ ^ wi l l be a f ac to r of type II ^ on the a - d i m e n ­
s iona l s p a c e TT <S> H<* a s d e s i r e d . 

To c o m p l e t e the s e l e c t i o n of H ^ , ^ ^ and 7?^ , 
p r o c e e d a s fo l lows : L e t a^ be a p r o d u c t n x m ^ wi th 
n ^ <, m ^ and le t H ^ be i t se l f a t e n s o r p r o d u c t H ^ = E C < ®F 0 < 

with E ^ an E u c l i d e a n s p a c e wi th a c o m p l e t e o r t h o n o r m a l 
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basis h^, . «, . , l ^ and F^ an Euclidean space with a com­
plete orthonormal basis k j , . . . , k r n . Let "R^ be the 
ring of bounded l inear operators on H ^ which depend only on 
E^ and let 

<kc = 1/V^c U h i ® kx) + (h2® k2)+.- . .+(hn <® k n < J .-

It is easily verified that <£̂  is a t race-vector in Hoc 
for HZ^ and so 71"® - ^ is a III factor ,on T7®Hoc • The 
simplest case of this situation is when all E * and F^ are 
2-dimensional Euclidean spaces and J has cardinality I*0 . 
Note that in the general construction the II i factor",on T7®Hc< 
depends on the cardinality of J ' , 

To construct a 11^ factor on a space H of dimension a 
(assuming a > b > X0 ) proceed as follows. Let "iZ ^ be a Hi 
factor on a space Hi of dimension b , let "8 2

 De * n e r i n g °^ 
all bounded linear operators on a separable space H 2 , and let 
~f£ o De t a e ^1 factor consisting of multiplication operators 

cl on a space H3 of dimension a. Then i2 1 ® -0 2 ® ~^3 
is a factor of type H^ on the space H = Hi <S> H2 <B> H3 of 
dimension a. 

The construction of factors of type III is easy to describe 
using tensor products» Again let J be an infinite set of 
indices & and for each <* let H ^ be a tensor product E^® F ^ 
where E ^ , F ^ have orthonormal complete bases h i , h 2 and 
fl» f2 respectively. Let ^ ^ be the ring of bounded l inear 
operators on H ^ which depend only on E <* . 

But now let <j>^ - c i (h i ® fi)+ c2(h2 ® f2) with 0 < ci < c 2 

and c ^ + c2^ = 1. The fact that c i < c 2 prevents g = TT® ^ 
from being a t race-vector for i? = TT0 -fZ^ on TT®Hc< , 
and von Neumann indicated that this iZ is in fact a factor of 
type III. However, the verification of this fact and construction 
of factors HI/ a ^\ for X 0 s a $> b will not be given in the 
present a r t i c l e . 

10- Projection geometr ies . For every von Neumann 
algebra iZ on a space H the projection geometry £ is a 
kind of generalization of complex-projective geometry (in the 
case 12 is a factor of type I n , £ is actually a projective 
geometry). It has already been observed that sd is a complete, 
orthocomplemented lattice with a special congruence relation. 
It is not difficult to show that £ is i rreducible as a lattice 
if and only if ^ is a factor. 
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Now £ is not in general a distributive la t t ice , that is 

(*) M n (N u Q) = (M n N) u (M A Q) 

is not t rue , in general . In fact, if "fi is a factor, the only M 
for which (*) holds for all N, Q a re : M = 0 and M = H. 
Thus, even the projective geometry lat t ices a re not distributive* 

But if sC is a projective geometry, £ does satisfy a 
res t r ic ted form of (*); namely (*) with the res t r i c t ion M ^ N 
(this res t r ic ted relat ion (*) is called the modular law). It tu rns 
out that for a general factor -# , ;£ satisfies the modular law 
if and only if _iZ is of type I n with a finite n or of type II j . 

Von Neumann observed that if iZ is of type I n or II ̂  
then £ is not only modular , but it satisfies the continuity 
conditions: 

(**) Mx o M 2 c . . . c M^ c . . . implies LKM^rx N j ^ U M ^ l o N 

for all N, 

M x => M 2 => . . • => M ^ D . . . implies fKM^uN) ^ f î M ^ u N 

for all N, 

(Kaplansky la te r proved in [3] , see also [1] , that every 
orthocomplemented complete modular lattice necessar i ly 
satisfies (**) ) . 

Von Neumann considered the U± projection geometr ies 
to be a natural and very important generalization of c lass ical 
projective geometry and he succeeded in character iz ing them 
by lattice theoret ic axioms (this manuscript has never been 
published but an abs t rac t will be included in the forthcoming 
Collected Works of J . von Neumann). However, these pro jec­
tion geometr ies of 11^ factors a re closely associated with the 
complex number system and von Neumann found it convenient 
to axiomatize a wider class of la t t ice-geometr ies which included 
the I n and I I \ projection geometr ies but no other projection 
geomet r ies . This wider c lass of geometr ies he called continuous 
geomet r ies . His axioms for a continuous geometry L, were: 
L should be a complete latt ice which is modular , satisfies (**) 
and is complemented (for a lattice to be complemented means: 
for each a in L there exists at least one a' such that 
a w a' = 1 and a A ar = 0). Of course , if a lat t ice is or thocom­
plemented it is complemented. 
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A detailed account of continuous geometries is given in 
von Neumann's forthcoming Princeton lectures [13] • The 
f i rs t main theorem of von Neumann for continuous geometry 
was: if the continuous geometry is irreducible then there 
exists a unique dimension function d(a) defined for all a in 
L with the proper t ies : 0 ^ d(a) *=• 1 for each a in L; d(0) = 0; 
d(l) = 1; d(a o b) = d(a) + d(b) if a n b = 0. 
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F O O T N O T E S 

See the r e f e r e n c e s [ 2 , 4 , 5, 6, 7, 8, 9 , 10, 1 1 , 12, 131 . 

In m o d e r n t e r m i n o l o g y , a H i lbe r t s p a c e H i s any v e c t o r 
s p a c e with the c o m p l e x n u m b e r s a s s c a l a r s , p o s s e s s i n g 
an i nne r p r o d u c t (x |y ) and comple t e in the c o r r e s p o n d i n g 
m e t r i c : d i s t a n c e (x ,y ) = || x - yj| = (x - y | x - y)"â. It is 
u sua l l y a s s u m e d tha t H conta ins at l e a s t one n o n - z e r o 
v e c t o r . The d i m e n s i o n of H i s the c a r d i n a l i t y of a 
c o m p l e t e o r t h o n o r m a l b a s i s ; it m a y be f ini te (Euc l i dean 
s p a c e ) , countable ( s e p a r a b l e H i l b e r t space) o r n o n - c o u n t a b l e 
( h y p e r - H i l b e r t s p a c e ) . 

The m u l t i p l i c a t i o n o p e r a t o r cl i s , of c o u r s e : cl(x) = ex 
fo r a l l x in H. 

If 5e i s a se t of bounded l i n e a r o p e r a t o r s , t h e n a bounded 
l i n e a r o p e r a t o r T 0 on H i s sa id to be in the s t r o n g 
c l o s u r e of c? if for e v e r y given finite se t of v e c t o r s 
X i , . . . , x in H and a r b i t r a r i l y given £ > 0 t h e r e 
e x i s t s a T in 2F such tha t II ( T 0 - T) X£ II < £ for 
i = 1 , . . . , m . The condi t ion (iii) holds a u t o m a t i c a l l y 
w h e n e v e r (i) ho lds if H h a s finite d i m e n s i o n , m o r e 
g e n e r a l l y if ~R. h a s finite l i n e a r d i m e n s i o n a s a v e c t o r 
s p a c e ( this m e a n s : ~fZ c o n s i s t s of the l i n e a r c o m b i n a t i o n s 
of a fixed f ini te s e t of o p e r a t o r s ) . 
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4. In other words: the only operators in iZ which permute 
with all members of i% , a re the multiplication operators 
cl on H, 

5. Irreducibility of a ring iZ with identity element means 
that it is not possible to find two subrings ~R ̂ , Ĉ ? of 
-ft s neither consisting only of the zero element in 1Z , 

such that T1T2 = T2Tx = 0 whenever Ti is in R^ and 
T^ is in R£, and such that each T in 1? can be expressed 
as a sum T = T^ + T^ with Tj in i? 1 and T£ in 1î 2 . 

6» The zero in £ , denoted 0, consists of only the zero vector 
in H. 

7. N c M (equivalently: M D N) means that N is part or all 
of M, that i s , every vector in N is also in M. 

8. An ordered system M, N, . . . is called a complete lattice 
if: for every family {M<*} in the system there is a least 
M in the system such that M >̂ M^ for all <* (this M is 
called the union of the M^ and denoted U M« ) and a 
greatest M in the system such that M c M^ for all <* 
(this M is called the intersection of the M^ and denoted 
H Mu }* In the case of a projection geometry £, , the 
union (JM^ is actually the closed linear subspace of H 
generated by the M <* and the intersection f l M ^ is 
actually the set- intersect ion of the M ^ ; 0 is the least 
element (the zero) in £ , and H is the greatest element 
(the unit) in £ * 

9. A lattice with zero 0 and unit 1 is said to be orthocomple-
mented if for each M in the lattice there is assigned an 
element M# such that M o M = 1, M n M = 0 and (M#)' = M. 
For a projection geometry, M ' can be taken to be the 
orthogonal complement of M with respect to H. 

10. That i s , (i) for each x in M, Tx is in N and || Tx II = [| x || , 
and (ii) N is the set of all Tx when x var ies over M. 

11. Define Wf to be the operator which, for each x in M, 
maps (T*T)2X onto Tx and such that Wx = 0 for each x 
orthogonal to M. Then Wf is defined on a set dense in 
H and is bounded and l inear . By continuity W has an 
extension W defined on all of H and it is not difficult to 
see that W is in TÎ and W maps M isometr ical ly onto N. 
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12. To be p rec i se , such a function d(M) exists if H is a factor 
(cf. Definition 5) of type I or II. But among the factors of 
type III there may be exceptional cases in which such a 
function d(M) fails to exist (see the last sentence of § 6 
below). It is not yet known whether such exceptional cases 
do in fact exist . The original discussion of Murray and 
von Neumann assumed H to be a separable Hilbert space 
and for this H there is no difficulty with exceptional cases . 
Von Neumann remarked in a la ter paper that separabili ty 
of H was not involved essentially in the discussion of 
factors but he was probably aware of the possible difficulty 
connected with exceptional cases among the factors of type 
III for non-separable Hilbert space. 

13. See footnote 3 above. 

14. Let H} ® H£ consist of all finite formal sums 
v = 2L £ (f̂  © g )̂ with all f£ in H^ and ĝ  in H£. If 

w = Z j (nj ® kj), define (v|w) to be Z ^ |hj)(gi I kj). 

Now identify cv with ^^(cf^ <2> g )̂ for every complex 
number c and identify v with w if (v - w | v - w) = 0. 
With these identifications Y\\ ® H^ becomes a vector 
space with inner product (a pre-Hi lber t space) and its 
completion is called the tensor product, denoted Hj & ¥^2* 

15. A bounded l inear operator T on H\ ® H^ is said to 
depend only on H^ if there exists a bounded l inear 
opera tor T\ on H^ such that T(f ® g) = (Tjf) ® g for 
all f in Hj_ and g in H£. Then 1 \ de te rmines Tv by 
l inear i ty for all v in Hj ® H£ and by continuity for all 
v in H]_ ® H2» 

15a.A simple construction of f ac to r s II, using groups, is given 
in [10] . 

15b. Let the Hi lber t -space dimension of a Hilbert space H be 
denoted by D(H). Then D( TT^H* ) = TT D(H « ) if 
IT D{HK ) is finite; otherwise D( TT®H* ) = £D(Ha). 

16. See footnote 3. above. 
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