INTRODUCTION TO VON NEUMANN
ALGEBRAS AND CONTINUOUS GEOMETRY

Israel Halperin
(received June 22, 1960)

1. “What is a von Neumann algebra? What is a factor (i)
of type I, (ii) of type II, (iii) of type III? What is a projection
geometry? And finally, what is a continuous geometry?

The questions recall some of the most brilliant mathema-
tical work of the past 30 years, work which was done by John
von Neumann, partly in collaboration with F.J. Murray, and
which grew out of von Neumann's analysis of linear operators
in Hilbert space. 1

2. Continuous geometries were discovered by von Neumann
and most of our present knowledge of these geometries is due
to him. The first continuous geometries which he found were
projection geometries of certain rings of operators in a separable
Hilbert spacez) (see definition 3 below for the definition of a
projection geometry). Roughly speaking, continuous geometries
which are projection geometries are a generalization of com-
plex-projective geometry somewhat in the way that Hilbert
space is a generalization of finite dimensional Euclidean space.
But to be more precise, we need some definitions.

DEFINITION 1. Suppose ® is a ring of bounded linear
operators on a Hilbert space H. Then R is called a von
Neumann algebra if

(i) ® contains the multiplication operators c1%2) on H
for every complex number c.

See p. 286 for footnotes.
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(ii) R contains the adjoint operator T* for each T in

_@

(iii) ® contains every T, in the strong closure of R .3)
Von Neumann defined, for any family & of bounded linear
operators on H, the commutant ¥' to consist of those bounded
linear operators B on H such that BA = AB and BA¥* = A*B
for all A in F. He showedthat F is always a'von Neumann
algebra and he proved that & is a von Neumann algebra if and
only if (F') = &

DEFINITION 2. A von Neumann algebra 1@ is called a
factor if the only operators in 72 which are also in R' are
the multiplication operators cl on H.4)

Von Neumann showed that a von Neumann algebra is a
factor if and only if it is irreducible as a ring. 5)

DEFINITION 3. Suppose -t is a ring of operators ona
Hilbert space H. Then the projection geometry of R ,
denoted L = £ (R ), is defined to be the system
0, M, N, ...., Hof those non-empty closed linear subspaces
of H which have projection (i.e., orthogonal projection)
operators in R .6) Z is to be considered as an ordered

system, ordered by the relation of inclusion N <« M. 7)

If  is a von Neumann algebra then its projection
geometry £ 1is a lattice, in fact a complete lattice8) which is
orthocornplemented.9) Furthermore, on this lattice £ there
can be defined in a natural way, a relation of equivalence, as
follows: M, N are called equivalent (written M % N) if there

exists in N an operator T which maps M isometrically
onto N.10) Von Neumann and Murray showed:

(i) If M, N in £ are such that some T in R maps
M ina (l,1) way into a set dense in N then M= N, 11)

(ii) The relation @ is unrestrictedly additive for ortho-
gonal families, that is, if M & N, for each « and the My
are mutually orthogonal and the N, are mutually orthogonal,
then UM, 8 UNy .

{

(iii) If M, N in £ are suchthat M & N; for some

N}y ¢ Nand N = M, for some M; ¢ M, then M = N.
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(iv) If R is a factor then for every pair M, N in &
either M 8 N; for some N} « N or N = M) for some
M ¢ M.

Finally if R is a factor, there exists a function d(M),
with real finite or infinite non-negative values, defined for the
elements M in £ , such that: d(0) = 0; d(M) = d4(N) if
M = N for some N} < N; d(M) = d(N) if and only if M & N;
UM, )= 5 dM, )ifthe M, are mutually orthogonal. 12)

3. In analysing the structure of a projection geometry
two definitions are useful.

DEFINITION 4. An element M # 0in &£ 1is called an
atom if for every N in £ , the relations 0# N € M imply
that N coincides with M.

DEFINITION 5. An element M in £ is called finite
if N¥M, Nc M imply that N coincides with M. If M is
not finite it is called infinite.

The factors T are classified in types as follows:
(i) R is said to be of type I if £ contains an atom.

(ii) R is said to be of type II if £ does not contain
any atom, but £ does contain some non-zero finite element.

(iii) R  is said to be of type III if £ does not contain
any non-zero finite element.

4. Factors of type I. If £ has atoms, then any two
atoms are necessarily equivalent and any non-zero M in &£
can be expressed as the union of an orthogonal family of atoms:
M= Z&M_; « ¢ I)with the M, orthogonal atoms. It is
not difficult to prove that the cardinality of I is uniquely deter-
mined by M; d(M) can be defined to be the cardinality of I (this
amounts to ''normalizing' the function d(M) by the additional
condition that d(atom) should be 1). It is easy to prove that
this function d(M) satisfies the conditions listed at the end of

& 2, If a = d(H), where a is a finite integer or infinite, we
say R is of type I;.

In the case that H is a separable Hilbert space, a must

be oneofl, 2, ..., n, «.. or X, . Murray and von Neumann
wrete I, to denote I, .
©

275

https://doi.org/10.4153/CMB-1960-034-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1960-034-5

A factor ® has finite linear dimension as a vector épace13)

(this must be the case whenever H has finite dimension) if
and only if R 1is of type I for some finite n. In this case
£ , considered as an ordered system, can be identified with
the ordered system of all linear subsets of a complex-projective
geometry, the atoms of £ Dbeing identified with the points of
the projective geometry (the normalized function d(M) is then
the projective geometry dimension increased by 1). If H has
finite dimension then d(M) differs from the dimension of M,
considered as a Hilbert space (see footnote 2), by a finite
multiplicative factor; but if H has infinite dimension then all
non-zero M in £ have infinite dimension as Hilbert spaces.

The case Iz occurs if R is the ring of all bounded
linear operators on an H of dimension a. Murray and von
Neumann obtained the important result that every R of type
I, is "essentially'" such a ring of all bounded linear operators
onan H of dimension a. To be precise, they defined the
tensor product H; ® H214) of two Hilbert spaces Hj, Hp
and they showed: a factor R on a space H is of type I if
and only if H can be expressed as a tensor product H; @ Hj,
with Hj of dimension a, in such a way that R 1is identified
with the ring of those bounded linear operators on H which
depend only on the factor Hj.l5)

5. Factors of type II. If £ has no atoms then every
M in £ can be expressed as the union of two orthogonal
equivalent elements; in other words, each M can be decomposed
orthogonally into two equivalent parts, each of which can be

called a half-M element.

If now £ has no atomsbut F is a non-zero finite element,
the function d(M) can be constructed in the following way,
which amounts to '""normalizing'" d(M) by the additional condi-
tion that d4d(F) = 1.

Let F;=F andlet F.;_ denote a half-F| element. By
induction, let F1/2n+1 denote a half - Fi/2n element for
each n=1, 2, ... .,

Then an element M in £ is finite if and only if it can
be expressed as a finite or countable union of orthogonal
elements

i

T s ©
=)e (<]
M Z‘ i=1 Fi @ Z n=1 Fl/Zn
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where r is finite, r =0, 1, 2, «+s, each of Fl, ...,FI'. is

equivalent to Fj, and each Fl/zn is either 0 or equivalent

n= 1 (1/2% ) where (1/2%)' = 0

or 1/20 according as (FIIZD) is 0 oris equivalent to Fl/Zn'

to F]/zn; the value of r+ Z

will be uniquely determined by M. Choose this value to be
d(M) if M is finite. :

If M is infinite, then M can be expressed as the union
of a countable or non-countable family I of orthogonal elements
each equivalent to Fi, the cardinality of I being uniquely
determined by M. Choose d(M) in this case to be the cardinality
of I.

The function d(M) so defined for all M in &£ will, in
fact, be defined uniquely and will satisfy the conditions given
at the end of § 2. This construction of the function does
depend on the particular choice of finite element F as norma-
lizing element, but a different choice for F will merely change
the function d(M) by multiplying it by a finite non-zero positive
constant; in particular, if M is infinite the value of d(M) is
independent of the choice of F.

If H itself is finite it is convenient to choose H to be F,.
Then the values of d(M) are precisely all x in the interval
0 < x =1. Inthis case we say R is of type II;.

If H is infinite, and d(H) = a then the values of d(M)
are precisely all real x > 0 together with all infinite cardinals
< a. Inthis case we say R isof typeII,. If H isa
separable Hilbert space then a factor of type II must be IIj or

II X Murray and von Neumann wrote Il for II y .
A o

©

6. Factors of type III. Suppose now that all non-zero
elements in £ are infinite. It is not difficult to prove that
there exists in £ a non-zero element Mg such that

0 # N ¢ My implies that N = Mgy. Then every non-zero element
M in £ can be expressed as the union of a family I of ortho-
gonal elements each equivalent to this My: M= 7o, 1M, ,
My = Mg forall « ., If M is # 0 and is not equivalent to
Mo then it is not difficult to prove that the cardinality of I

is uniquely determined. Define d(M: M) to be the cardinality

of I. If M = M, the cardinality of I is not uniquely determined;
define a to be the supremum of all cardmahnes of such 1

(necessarily a = X, ).
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Now if H itself is equivalent to Mg, the function d(M)
can (and must) be defined by: d(0) = 0; for all M # 0, d(M) = b
for some fixed b >a. Inthis case R is said to be of type III,.
If H is a separable Hilbert space, every factor of type III must
be of type III { ; Murray and von Neumann wrote IIl o for
this type III R,

If Mo can actually be expressed as the union of a family
I of a orthogonal elements each equivalent to Mg (that is, if
the cardinality a is attained) but H is not equivalent to Mg
then d(M) can (and must) be defined by: d(0) = 0; d(M) =a if
M is equivalent to Mg; d(M) = d(M: M) if M is not equivalent
to Mg. Inthis case, let b = d(H: Mg). Then d(M) takes on
as values:0 and every cardinal X satisfying a < X <« b. In this
case the factor R is said to be of type IIl(5, p).

Finally, suppose if possible that H is not equivalent to
Mo and that a is not attained (necessarily a > X, and a has
the property that it cannot be the sum of a set of cardinals
2. x¢ ]3¢ Witheach a, < a and cardinality of J < a). Then
there will be an element M) in £ suchthat d(M]: Mg) = a
and yet M] is not equivalent to Mgy. But for any function d{M)
with the properties listed at the end of & 2, it is easy to see
that d{Mg) would equal d(M;). Thus if a is not attained and

If d(H: Mg) = b (necessarily b > a >X_), R is said to be of
type HI(Q’ b)s the sloped mark indicating that a is not attained.
It is not yet clear whether this type Hl(g, b) actually occurs.

7. Examples of factors. As stated at the end of § 4,
for each finite or infinite a(a =1, 2, ..., X,, «...) and for
each Hilbert space H of dimension divisible by a, there exists
a factor of type Iz on H. Two factors of type Iz with the
same a are isomorphic under a suitable isomorphism of their
H-spaces if their H spaces have the same dimension; in any
case the factors are isomorphic as rings with a *-operation
(a factor is always defined with respect to a particular Hilbert
space H but two factors can be *-ring isomorphic even though
they are defined on Hilbert spaces of different dimension).

The construction of factors of types II and III is a more
difficult matter. Von Neumann and Murray first constructed
examples of factors II] and Il x, on a separable Hilbert space
by using measure-theoretic methods [7]. In a later paper

(8] von Neumann defined tensor products TI® H, withan
infinite number of factor spaces Hy and used an infinite tensor
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product TI® H, with each H, a2 4 -dimensional Euclidean
space to construct a wide variety of factors. It

turned out that among these tensor product factors, were (i)
factors of type II} on spaces H of arbitrary dimension > Xo »
(ii) factors of type II with fixed but arbitrarily givena = X_,
on spaces H of arbitrary dimension > a, and (iii) factors of
type III; for fixed but arbitrarily given a on spaces H of
arbitrary dimension > a.153)

The factors constructed by von Neumann with the help of
infinite tensor products are not difficult to describe, but the
verification of their types, as given by von Neumann, is involved.
In fact, von Neumann actually made the verification only for the
11} factor on a separable Hilbert space by identifying the factor
on a tensor product space with a certain II} measure-theoretic
factor constructed in a previous Murray-von Neumann paper
(the HXO case then follows easily).

Later, von Neumann [9] established the existence of a
factor of type IIL 3, on a separable Hilbert space, again by
measure-theoretic methods, and asserted that some of the
factors previously constructed by him on infinite tensor product
spaces could be identified with some of these (measure-theoretic)
factors III N

The next two sections are devoted to a discussion of these
tensor product factors, avoiding the more involved measure-
theoretic apparatus.

8. Infinite tensor product spaces. Suppose Hy is a
fixed Hilbert space for each « in a set of indices J (assume
each Hy has dimension > 2), and suppose a fixed unit vector

¢« has been selected in each Hyx . Now let TI'® Hy con-
sist of all finite formal sums v = 7 ; ( e f ), where for
each « in J and for each i, fg4 i js inthe corresponding Hg
and, thh at most a finite number of exceptions, f4 1 = d« .
If w= Z;( TT®g,J)define (viw)tobe Zj, j TTa(fullge )
(note that X ; ; is a finite sum, and for each i, j, the product
TTa (fal|gx J) is a flm'ce product since, with a finite number
of exceptions, (f_ i 184 J) = ( #x |¢x) = 1). Note that the
vector g = TI® ¢q isin TT’'® H, .

In TT® Hy , for each complex number c identify cv
with Z; T® (£ ') where for each i, (f,')' = cfy’' for one of the «

and (f‘i)' =f ! for all other «; also identify v and w if
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(v-w lv-w) = 0. With these identifications T'® H,becomes a
linear space with inner product; its completion is called the
tensor product TiI®H, . This tensor product depends not

only on the H, but also on the particular choice of the ¢
However, different choices of the ¢, give tensor product
spaces which are isomorphic, all having the same dimension!5b)
(von Neumann called this space an incomplete direct product;

he wrote Ti® H, to denote a much larger space which depends
only onthe H, , not on a choice of ¢x and he showed that his
larger space decomposed in a unique way into orthogonal parts
each of which is an incomplete direct product or tensor product
as defined above). -

Each bounded linear operator T on a single factor space
Hg, determines a bounded linear operator T onthe space
H= TI®H, in the following way. If v= TI®fy withf, = ¢«
for all but a finite number of x , let Tv = W@f;( where
fq =fa if x# «, and fg, =Tfyx_ . Now T is uniquely
defined by linearity for each v in TT®H, (the corresponding
Tv is alsoin Ti®Hx ) and by continuity T is defined
uniquely on all of H.

Let 13 denote the set of all bounded linear operators on
H and for fixed « let T34 denote the set of all bounded linear
operators on Hy . If ¥, is a subset of 3, let F; denote
the set of all T as T varies over &x . If for each «,

F, isa subset of 13, let TT'®Z denote the set of those.
operators from 13 which can be expressed as 5 j( Tix —T-,,(l)
with Z. a finite sum and each _ 'l'_l'Q('_.l_.'l,g1 containing only a finite
number of factors and each le in ja( ; and let TT® %
denote the strong closurel®) of TT'@ F,

It is not difficult to prove the following.

(i) If Ty and T, are in different ‘1§°( then T1T2 = T2T].

(ii) For each fixed « , ( ‘fga( y'= ‘fg,‘ , i.e. M, isa
von Neumann algebra.

(}ii) The only von Neumann algebra which contains all
the 3, is 13 .

(iv) For fixed « , ?,( is a von Neumann algebra (re-
spectively, a factor) on H if and only if F4 is a von Neumann
algebra (respectively a factor) on H, . If &, , ¥ are

factors, they are of the same type.
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(v) If_f_or each «, J«x is a von Neumann algebra on H
then T7T® Fx is a von Neumann algebra on H and it is the
smallest one which contains all F4

(vi) If for each « , JFy 1is a factor on H, then e %
is a factor on H.

(vi) immediately presents a challenging problem, as yet
not completely solved, namely to determine the type of the
factor TT® F , given the factor F, ineach Hy . Von
Neumann emphasized that (vi) was also important because it
opened up the possibility of constructing complicated factors on
H by starting from known factors on the individual H, . In
fact von Neumann constructed factors of the form TT® F
of types 11}, II x, and III 5, respectively by using spaces
H_, , each an Euclidean space of dimension 4, and in each H ,
a factor Fx of type I.

We shall discuss these examples of von Neumann in the
next section.

9. Factors with a trace function. Let 7@ be any ring
of operators on a Hilbert space H such that R contains the
identity operator on H and R contains A% if A is in R
Then a function 6 with complex numbers (finite!) as values, is
called a finite trace on R if

(i) B8 (A) is defined for each A in R ,

(ii) 6(A + B) = 8(A) + 0(B) for ali A, B in R ,
(iii) ©(A*A) is real and > 0 for every A # 0in R |
(iv) 8(1) =1,

(v) 6(AB)= ¢ (BA)forall A, B in R .

Suppose now that R is known to be a factor and that it
possesses a trace. Then it must be of type II] or I, for some
finite n, and if Pjp4 denotes the orthogonal projection operator
on a closed linear subspace M then the function 6 (P)4) can
be taken as d(M). To see this, recall that M 2 N means that
there exists an operator T in R which maps M isometrically
onto N. Let W = PNT Ppy. Then W*xW = Pp,, WW* = Py so
B (Py) = 6 (W*W) = 6 (WW*) = 8(PN); i.e. M = N implies
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that 8(Pp) = 6(PN). From this fact and (ii), (iii),and (iv) it
follows easily that d(M) = k 6(P)q) for some finite positive
constant k. This implies that H is finite so that R is
necessarily of type II} or I, for some finite n.

Now make the following definition.

DEFINITION 6. Let 1R be a ring of operators on a
space H such that ®® contains the identity operator on H and
R contains A* if A isin 1R . Then a unit vector g in
H is called a trace-vector for R if (ABg|g) = (BAg|g) for
all A, B in R

It is easy to see that if ¥ possesses a trace-vector g
then (Ag|g) is a finite trace on R; hence if R 1is a factor it
must be of type I or IIj.

Finally, suppose that for each x, R, 1is a factor on
H, and that ¢, is a trace-vector in H, for 1R, (the ¢y
are the vectors in H, involved in the construction of TI® Hy ).
Let g be the vector TT® ¢, in TI® Hy . Thenitis easy
to prove that (ABg|g) = (BAg|g) for all A, B in T'® ‘@x
and hence for all A, B in R = TIT® Ry

This shows that R must then be a factor of type I, or

IIj. Itis easy to prove that R is of type I, if and only if
all R, are of type I,  for finite a, suchthat Tija, is
finite (necessarily = n; then R, is of type I} for all but a
finite number of « ). In all other cases, R is necessarily
of type II}. This indicates a method of constructing II; factors
on a space H of arbitrary dimension a > X, . Namely, first
choose a set J of indices « so that J has cardinality a.
Then choose for each « some space H , of finite dimensionality
ay > 2 and choose a unit vector ¢, in Hyg; TT®H, will
then have dimension a. Next, choose if possible in each Hy
a factor R, of some type Inq with n_ > 1 sothat ¢y is
a trace-vector in Hy for R, and so that the set J' of «
with n, > 1 has cardinality a’ with XN, < a’= a. Then

R = TT® Ry will be a factor of type 1I} on the a-dimen-
sional space TI® Hy as desired.

To complete the selectionof Hy, ¢ and Ry ,
proceed as follows: Let a4 be a product nyx m, with
ny < m, and let H, be itself a tensor product H, =E ® Fg
with E 4 an Euclidean space with a complete orthonormal

282

https://doi.org/10.4153/CMB-1960-034-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1960-034-5

basis h;, ..., hy ~and Fyx an Euclidean space with a com-
plete orthonormal basis kj, ..., ky, . Let R, be the
ring of bounded linear operators on H  which depend only on
E, and let

$u = 1/ myg {(b) @ kp) + (B @ k)4 vt (by D kpy ) .

It is easily verified that ¢, is a trace-vector in Hx
for R, and so e ’)‘!2( is a II] factoron TI® Hyx . The
simplest case of this situation is when all E4 and Fy are
2-dimensional Euclidean spaces and J has cardinality R,
Note that in the general construction the IIj factor.on Ti® Hg
depends on the cardinality of J'

To construct a IIy factor on a space H of dimension a
(assuming a > b >N, ) proceed as follows. Let R ; bea I
factor on a space H) of dimension b, let B, be the ring of
all bounded linear operators on a separable space Hj;, and let

1R 3 be the I) factor consisting of multiplic’ation operators
cl on a space H3 of dimension a. Then R 1 ® B 2 ® 'RZ3
is a factor of type II}, on the space H = H} @ Hp ® H3 of
dimension a.

The construction of factors of type III is easy to describe
using tensor products. Againlet J be an infinite set of
indices « and for each x let H be a tensor product E ® Fy
where E, , Fyx have orthonormal complete bases hj, hz and
fy, f, respectively. Let R, be the ring of bounded linear
operators on H y which depend only on E « .

But now let ¢4 = c1(h1® f1)+cp(hy @ f3) with 0 <c) <c)
and clz + czz = 1. The fact that cj < c2 prevents g = TT® $u
from being a trace-vector for R = TT® R on T ®H«,
and von Neumann indicated that this R 1is in fact a factor of
type III. However, the verification of this fact and construction
of factors HI(a,b) for NX_,=a = b will not be given in the
present article.

10. Projection geometries. For every von Neumann
algebra R on a space H the projection geometry £ isa
kind of generalization of complex-projective geometry (in the
case R is a factor of type I, £ is actually a projective
geometry). It has already been observed that £ is a complete,
orthocomplemented lattice with a special congruence relation.

It is not difficult to show that &£ is irreducible as a lattice
if and only if R is a factor.
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Now £ is not in general a distributive lattice, that is
() MAa(NuQ =MnanN)v(iM~nQ)

is not true, in general. In fact, if R is a factor, the only M
for which (*) holds for all N, Q are: M =0 and M = H.
Thus, even the projective geometry lattices are not distributive.

But if £, is a projective geometry, £ does satisfy a
restricted form of (*); namely (%) with the restriction M ® N
(this restricted relation (*) is called the modular law). It turns
out that for a general factor R , Z satisfies the modular law
'if and only if g is of type I with a finite n or of type II;.

Von Neumann observed that if R is of type Ip or II}
then £ is not only modular, but it satisfies the continuity
conditions:

(¥*) Mjc M; ¢ ... cMyc ... implies UMy~ N)=(UM_ )N
for all N,

M;>M;>2... My> ... implies NM_ uN) =(NMM_ )uN
for all N,

(Kaplansky later proved in [3], see also [l], that every
orthocomplemented complete modular lattice necessarily
satisfies (%%)).

Von Neumann considered the II] projection geometries
to be a natural and very important generalization of classical
projective geometry and he succeeded in characterizing them
by lattice theoretic axioms (this manuscript has never been
published but an abstract will be included in the forthcoming
Collected Works of J. von Neumann). However, these projec-
tion geometries of II; factors are closely associated with the
complex number system and von Neumann found it convenient
to axiomatize a wider class of lattice-geometries which included
the In and II} projection geometries but no other projection
geometries. This wider class of geometries he called continuous
geometries. His axioms for a continuous geometry L were:
L. should be a complete lattice which is modular, satisfies (*%)
and is complemented (for a lattice to be complemented means:
for each a in L there exists at least one a’ such that
ava =land ana' = 0). Of course, if a lattice is orthocom-
plemented it is complemented.
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A detailed account of continuous geometries is given in
von Neumann's forthcoming Princeton lectures [13]. The
first main theorem of von Neumann for continuous geometry
was: if the continuous geometry is irreducible then there
exists a unique dimension function d(a) defined for all a in
L with the properties: 0 =d(a) =1 for each a in L; d(0) = 0;
d(l) = 1; d(a v b) =d(a) +d(b) if a nb=0.
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FOOTNOTES
1. See the references (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 131.

2. In modern terminology, a Hilbert space H is any vector
space with the complex numbers as scalars, possessing
an inner product (x|y) and complete in the corresponding
metric: distance (x,y)= |lx-vyll =(x-vy|x-y)2. Itis
usually assumed that H contains at least one non-zero
vector., The dimension of H is the cardinality of a
complete orthonormal basis; it may be finite (Euclidean
space), countable (separable Hilbert space) or non-countable
(hyper-Hilbert space).

2a. The multiplication operator cl is, of course: cl(x) = cx
for all x in H.

3. If F is a set of bounded linear operators, then a bounded
linear operator Ty on H is said to be in the strong
closure of F if for every given finite set of vectors

» Xy in H and arbitrarily given £ > 0 there

exists a T in F such that ||[(To5 - T) xjll < ¢ for

i=1, ..., m. The condition (iii) holds automatically

whenever (i) holds if H has finite dimension, more

generally if ‘R has finite linear dimension as a vector
space (this means: R consists of the linear combinations
of a fixed finite set of operators).

Xl, PREEY
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4. In other words: the only operators in @ which permute
with all members of ® , are the multiplication operators
cl on H.

5. Irreducibility of a ring ® with identity element means
that it is not possible to find two subrings TR, R 2 of
12 , neither consisting only of the zero element in R ,
such that T};T = T2T; = 0 whenever T; isin Rj and
T, is in R, and such that each T in "R can be expressed
asasum T=T;+ T, with T} in R jand Ty in K ,.

6. The zeroin £ , denoted 0, consists of only the zero vector
in H.

7. N ¢ M (equivalently: M > N) means that N is part or all
of M, that is, every vector in N is also in M.

8. Anordered system M, N, ... is called a complete lattice
if: for every family {M 4] in the system there is a least
M in the system such that M > M, for all x (this M is
called the union of the M, and denoted U My )anda
greatest M in the system such that M ¢ My for all «
(this M is called the intersection of the My and denoted
N My ). Inthe case of a projection geometry £ , the
union UM is actually the closed linear subspace of H
generated by the M 4 and the intersection N M, is
actually the set-intersection of the M, ; O is the least
element (the zero) in £ , and H is the greatest element
(the unit) in £ .

9. A lattice with zero 0 and unit 1 is said to be orthocomple-
mented if for each M in the lattice there is assigned an
element M’ suchthat M o M"=1, M A M' = 0 and (M) =M.
For a projection geometry, M’ can be taken to be the
orthogonal complement of M with respect to H.

10. That is, (i) for each xin M, Tx is in N and |ITxIl = x| ,
and {ii) N is the set of all Tx when x varies over M.

11. Define W' o be the operator which, for each x in M,
maps (T*T)Zx onto Tx and such that Wx = 0 for each x
orthogonal to M. Then W' is defined on a set dense in
H and is bounded and linear. By continuity W' has an
extension W defined on all of H and it is not difficult to
see that W isin R and W maps M isometrically onto N.
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12. To be precise, such a function d(M) exists'if R is a factor
(cf. Definition 5) of type I or II. But among the factors of
type III there may be exceptional cases in which such a
function d(M) fails to exist (see the last sentence of &6
below). It is not yet known whether such exceptional cases
do in fact exist. The original discussion of Murray and
von Neumann assumed H to be a separable Hilbert space
and for this H there is no difficulty with exceptional cases.
Von Neumann remarked in a later paper that separability
of H was not involved essentially in the discussion of
factors but he was probably aware of the possible difficulty
connected with exceptional cases among the factors of type
III for non-separable Hilbert space.

13. See footnote 3 above.

14, Let H; ®' H, consist of all finite formal sums
v=2Z;(f; ®g;) withall f; in Hy and g; in Hp. If
w = Z’J (h_] ® kj), define (v|w) to be X ij(fi |hj)(gi|kj).
Now identify cv with Zi(Cfi ® g;) for every complex
number c¢ and identify v with w if (v - w|v -w) =0,
With these identifications H; @' H; becomes a vector

space with inner product (a pre-Hilbert space) and its
completion is called the tensor product, denoted Hj ® Hj.

15. A bounded linear operator T on H; ® H, is said to
depend only on H; if there exists a bounded linear
operator T} on H;] suchthat T(f ® g) = (T;f) ® g for
all f in H} and g in Hp. Then T; determines Tv by
linearity for all v in H; ®’ H; and by continuity for all
v in Hj; ® Hj.

15a.A simple construction of factors II, using groups, is given
in [10].

15b.Let the Hilbert-space dimension of a Hilbert space H be
denoted by D(H). Then D( TT®Hg ) = TID(Hy ) if
TT D(Hg ) is finite; otherwise D( TT®Hy ) = Z D(H,).

16. See footnote 3. above.

Queen's University
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