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Optimal Control Strategies for Virus
Spreading in Inhomogeneous Epidemic
Dynamics

Yilun Shang

Abstract. In this paper, we study the spread of virus/worm in computer networks with a view to ad-
dressing cyber security problems. Epidemic models have been applied extensively to model the propa-
gation of computer viruses, which characterize the fact that infected machines may spread malware to
other hosts connected to the network. In our framework, the dynamics of hosts evolves according to a
modified inhomogeneous Susceptible-Infectious-Susceptible (SIS) epidemic model with time-varying
transmission rate and recovery rate. The infection of computers is subject to direct attack as well as
propagation among hosts. Based on optimal control theory, optimal attack strategies are provided
by minimizing the cost (equivalently maximizing the profit) of the attacker. We present a threshold
function of the fraction of infectious hosts, which captures the dynamically evolving strategies of the
attacker and reflects the persistence of virus spreading. Moreover, our results indicate that if the in-
fectivity of a computer worm is low and the computers are installed with antivirus software with high
reliability, the intensity of attacks incurred will likely be low. This agrees with our intuition.

1 Introduction

The cyber security problem has become increasingly important as cyber attacks con-
tinue to grow in number, scope and severity [5]. Computer viruses and botnets
(zombie networks) are global threats with hundreds of millions of computers in-
fected [1]. Theoretical modeling of computer worm epidemic dynamics is a signif-
icant problem that has attracted many studies. In this paper, we consider the eco-
nomic aspects of botnet activity and suggest optimal attack strategies for the attack-
ers (e.g., hackers, botnet herders, etc.) based on dynamic programming and optimal
control theory. Understanding the attack strategies taken by the botnet herder in
depth may be instrumental in the effective design of security and defense measures.
We characterize the interaction between the attacker and the defender group (net-
work/computer users) as a modified inhomogeneous SIS epidemic model with time
dependent transmission and recovery rates, in which a computer’s state may be either
susceptible or infectious. The infection of computers is subject to direct attack as well
as propagation among hosts. In our framework, the attacker’s goal is to minimize his
cost by intensifying his intrusion in a network of computers. We define attacker’s
optimal attack strategy as the solution to a cost minimization control problem with a
deterministic population. The optimal strategy is obtained as a feedback on the rates
of transmission (infection) and recovery. We predict that it is optimal for the attacker
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to reduce his attack effort (e.g., the spread of malicious programs) when the fraction
of infected hosts is over some threshold function. This threshold function hinges on
the rates of infection and recovery, and may change over time. On the other hand,
the attacker should apply a full attack effort to pursue his economic profit when the
fraction of infected hosts is below the threshold function. As a byproduct, our re-
sult indicates that if the infectivity of a computer worm is low and the computers are
equipped with reliable defense systems, the intensity of attacks incurred will likely be
low (see the discussion in Section 3). This phenomenon is intuitively plausible and
we shall establish a theoretical proof here.

Recently some researchers have combined the epidemic dynamics with optimal
control and game-like modeling to capture interdependent security decisions, e.g., in
[4], [11], [13], [14], [17], [23]. We briefly review the prior work that is conceptually
or spiritually relevant as follows. The work [4] provides a game theoretical frame-
work to model the interaction between the botnet herder and the defender group in
a deterministic population system. Unlike our scenario, the transmission rate and
recovery rate of the system are assumed to be constants. Thus, the optimal strategy
obtained there does not vary with respect to time. Under a given level of network
defense in terms of recovery rate, [14] analyzes the virus propagation business as a
result of profit maximization decision making and investigates the deterrent effect of
the uncertainty presented by virtual honeypots. For more details on honeypots tech-
niques, we refer the reader to the monograph [16]. Optimal adaptive defense against
worm infection is discussed in [23], where cost is introduced by false positives and
false negatives of the detection systems. The authors in [13] address a scenario of a
network of interconnected agents” decisions about whether to invest some amount
to self-protect and deploy security solutions which decrease the probability of conta-
gion. However, they assign fixed transition probabilities of states of computers rather
than employing the epidemic evolutionary process directly. For a different purpose,
the work [11] develops one-shot games between attackers and defenders and investi-
gates attacker coordination as well as the defender’s security defense decisions. Mul-
tiple Nash equilibria are derived under different conditions. Also in [17], the author
examines the effective attack strategies when the virus spreads into a population with
immigrants. However, in all the above-mentioned works, only time invariant trans-
mission and recovery rates are treated.

The rest of the paper is organized as follows. In Section 2, we present our inhomo-
geneous SIS model. The optimal strategies of the attacker are analyzed in Section 3.
In Section 4, we give the proof of the main result. We finally conclude the paper in
Section 5.

2 The Inhomogeneous SIS Model

Most existing models employed in the study of computer virus and worm prop-
agation are adapted from the so-called contact processes or epidemic models [9],
[10], [15]. In the typical Susceptible-Infectious-Susceptible (SIS) model, the state of
a node (i.e., host or computer) at a given time is either infectious or susceptible. A
host recovered from a worm immediately becomes susceptible again. This reflects the
fact that antivirus software scans a computer regularly and each time a computer is
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infected it remains so until the next scan by the antivirus software [5]. Another rea-
son is that a computer may be subject to several vulnerabilities, so it is still vulnerable
when recovered from one virus.

Let x(t) and y(¢) denote the infectious and susceptible fractions of the hosts at
time t, respectively. One point to mention here is that in mathematical epidemi-
ology conventions the definitions of x(¢) and y(t) are reverse compared with the
above ones. The dynamical process {x(¢), y(¢);t > 0} is initiated by (x(O), )/(0)) =
(x0, ¥0) with xy + yo = 1 and expressed by the following set of differential equations:

e P = (a0, 50) YO — B0 + (Ox()
() P — o0, y0) y10) + BOXOY0) —50x(0)

where ¢ > 0 is the average attack success rate, v(x, y) € [0, 1] is the attack effort
intensity of the botnet herder, 3(t) > 0 is the average number of infecting trans-
missions possible from a given infectious host in each period, and v(¢) > 0 is the
recovery rate. Note that the transmission rate 5(t) and the recovery rate (t) may
vary from time to time, which accommodate realistic scenarios. The infection of
computers occurs from both the direct attack (the first term on the right-hand side
of (2.2)) and the spreading among hosts (the second term on the right-hand side
of (2.2)). Although similar inhomogeneous epidemic models have been proposed in
recent studies [3], [18], [20], [21], they focus on statistical aspects and parameter
estimation for epidemic dynamics.

From (2.1) and (2.2) we get dx/dt + dy/dt = 0; therefore the initial values yield
x(t) + y(t) = 1 for t > 0. We may describe the above dynamical system solely by the
equation of x(t) as

dx(t)

(2.3) - cv(x(t)) (1 — x(t)) + B(t)x(t)(l — x(t)) — y(t)x(t).

Here, the term cv(x(t)) in (2.3) depicts the increment of the fraction of infectious
computers resulting from direct attack rather than contagion (cf. [4]). The attacker’s
control, v(x), indicates how aggressively the attacker exerts his intrusion. By contrast,
the authors in [11] assume that the attacker contains the successful attack rate to a
fixed level, which is equivalent to ¢ = 1 and v(x) = p, a constant probability of
successful attack.

3 The Optimal Attack Strategies

In this section, we deal with the attacker’s optimal strategy in light of the time varying
transmission rate 3(t) and recovery rate y(t). For ease of notation, in what follows
we sometimes suppress the argument t as 5 = §(t), v = y(¢) and x = x(1), etc.

Let k > 0 be the per unit time cost associated with the attacker’s effort. Let f(x)
represent the attacker’s cost function with f'(x) < 0 and f”’(x) > 0. This assump-
tion is borne out in, e.g, [4], [13] and implies that the operational cost of the attacker
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decreases at a decreasing rate as the number of infected computers increases. The to-
tal cost of attack effort per unit time is given by kv(x), which is the extra penalty cost
from increasing probability of getting caught due to the increasing severity of attack.
The attacker’s objective is to minimize the discounted total cost (operation cost plus
effort cost) with a constant discount rate r > 0 over an infinite time scale [6]:

(3.1) inf{ J(v) = /Oo e_”(f(x) + kv(x)) dt}, 0 <wv(x)<l.
v 0

To solve the minimization problem, we write the current value Hamiltonian asso-
ciated with (3.1) by

(3.2) H(x,v,p) = f(x) + kv+p(cv(l —x)+ Px(1 —x) — fyx) ,

where p = p(t) is the attacker’s marginal cost at time ¢. The optimal control, ¥(x), is
obtained by minimizing the Hamiltonian H. Since the Hamiltonian is linear in v, the
optimal control takes the following bang-bang and (a possible) singular form

(3.3) V(x) = Lig,<0) + 4l {m,=o)

with some 0 < u < 1 to be determined and H, = 0H/dv = k + ¢(1 — x)p. When
H, = 0 and stays at this value, the attacker exerts an intermediate attack effort u.
This phase is called singular.

The adjoint equations are shown to be given by

(3.4) p=-Hetrp=—f'(x)+(cv+B2x—1)+v+71)p.

Substituting (2.3) and (3.4) into H, = cp(1 — x) — cpx, and equating H, and H, to
zero, we obtain

k gl
r W=k (s0-m- ).
(3.5) F10 = g (B0 =0 = {2 =
We may solve (3.5) for the steady state percentage of infected computers, x* = x*(¢).
The optimal control ¥(x) in this singular region is a time-dependent rate and found
by solving x = 0 at x*:

Bx* (1 — x*) — yx*
- (1l —x*)

(3.6) Mo*)=u=

Our main result is given as follows.

Theorem 3.1 Suppose that v(t) > [(t) > 0, (B(t)x*(t) + c) (1 - x*(t)) -
~(@®)x*(t) > 0and '(0) < —k(r-i—’y(t) —ﬁ(t)) /cforallt > 0. Recall that f'(x) <0
and f"'(x) > 0. Then the optimal response of the attacker is given by

1, x<x*(1),
(3.7) P(x) = <qu, x=x*(t),
0, x>x*(t),
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where

B ()(1=x* (1) —y()x* (1)

u=ult) = c(l — x*(t))

)

and

2
V(e +1(0) — Bm) +48()c — (c++(1) — B(1)
2[5(t)

Furthermore, the threshold x*(t) is non-decreasing when [B(t) is non-decreasing and
~(t) is non-increasing; x*(t) is non-increasing when [3(t) is non-increasing and y(t) is
non-decreasing. The monotonicity of x*(t) is strict when either B(t) or ~(t) is strictly
monotonic at time instant t. This is illustrated in Table 1.

x*(t) <

. B(t)
U VAR
S 1ID N N
O [ N[ A ]ID] A
e DY

Table 1: Monotonicity of the threshold x™(¢) with respect to the monotonicity of 5(¢) and y(t).
Here, “ID” means “indefinite”.

Theorem 3.1 indicates that if the fraction of infectious hosts x(¢) < x*(t), then it
is optimal for the attacker to enhance the infection in the network by applying full
attack effort. If x(t) > x*(¢), it is optimal to reduce the percentage of invasion in the
network by exerting zero attack effort. If x(¢) = x*(¢), then an intermediate attack
effort u(t) would be optimal, in light of the assumptions given here. In addition, the
correlations between rates 3(t), v(t) and the threshold, x*(¢), imply that if a virus
or bot is liable to transmit and the defense mechanism of computers is weak, they
are then highly prone to be attacked by the botnet herder. On the other hand, if the
infectivity of a computer worm is low and the computers are equipped with reliable
defense systems, the risk of suffering from intensive attacks will likely be reduced. The
reason is that when the threshold x* increases, the size benefits of the operation cost
are apt to overwhelm the opportunity cost of getting caught or traced. Therefore, the
attacker would exert full effort. This phenomenon has been observed in the recent
study of the dormant Confiker botnet [12].

4 Proof of Theorem 3.1

We will proceed in a similar reasoning with [4]. We first establish two useful lemmas.

Lemma 4.1 Suppose the assumptions of Theorem 3.1 hold. Set

(4.1) Feet) = [/t — )+ k(r = 800 9+ ).
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Then for all t > 0 there exits a unique x* = x*(t) such that F(x*,t) = 0. Moreover,
Table 1 in Theorem 3.1 holds.

Proof Fort > 0 we have F(1,t) = +oo and F(0,t) < 0 by (4.1). Since ['(x) <0
and f''(x) > 0, we get Fy(x,t) = c(f"(x)(1 — x) — f'(x)) +kB(t) + ;29 > 0.
Note that f/(x) < 0 by assumption, the results then follow as per straightforward
arguments. |

Lemma 4.2 Suppose the assumptions of Theorem 3.1 hold. Then fort > 0 we have

V(e 440 = B®) +48()c — (e + () — B()
2B(1) ’

which is a solution to a long-run steady state, x = 0 with v(x) = 1.

x*(t) <

Proof There is only one zero for G(x, t) := (ﬁ(t)x+c) (1—x)—~(t)xwithx € (0, 1),

which is at
Ve 9(0) = B0))? +4B(1)c — (c +7(t) — B(1))
x(t) = .
253(¢)
The proof concludes from the assumptions in Theorem 3.1. ]

Proof of Theorem 3.1 We use dynamic programming arguments to obtain the op-
timal control trajectories. It is well known that if the value function is smooth, the
corresponding feedback leads to an optimal solution [6]. The attacker’s value func-
tion is defined as

P(x) = irvlf{ Jx(v) = /OoO e " (fx) + kv(x)) dt}.
The corresponding Bellman equation (e.g., [22]) is
ré(x) = inf{ f(x) + kv + ¢"(x)x}
= inf{ f(x) +kv-+ /() (ev(1 = x) + Bx(1 — x) — ) }
= infH(x,7,6'(x))
= irvlfH(x, v, p),

where p := ¢’ (x).
From (3.3) we know that the optimal control ¥ takes the form

V(%) = Lkt pe(1—x)<0] T Ul (ks pe(1—x)=0]

and then we may express the Hamiltonian as

H(x,v,p) = f(x)+p(5x(1 —Xx) ffyxfux) - (k+pc(1 fx))i,
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where z(x, 1) = —z(x, t)1[,<0). Consequently, we get

(4.2) ro(x) = f(x) + ¢'(x)(Bx(1 — x) — x) — (k+ ¢’ (x)c(1 —x))

Set z(x,t) = k+ ¢'(x)c(1 — x), and we have z'(x, t) = c(¢”(x)(l —x) — ¢’(x)) . By
utilizing (4.2), we derive that

r— B0 —x) +
(Bx + clizx <o) (1 — x) —

(4.3)  ze(x,t) + z(x,t)

N F(x,t)
(Bx + clizx <o) (1 — x) —

If z(x,t) < 0, by (4.1) and (4.3) we obtain

=B+ 2% r—BU—+ 11z
(4.4) i(z(x e Io Wd5)+(ﬁ " i(:c’t)) e I Wdf—o
X+ C —X)—

If z(x,t) > 0, by (4.1) and (4.3) we have

(4.5) %(z(x, t)ef %dé) + ﬁx(llgﬁx—;;)_eﬂ %df —0.
For x* < x < 1, involving (4.5) we set
2(x, el $d§ + ) # i %dg dn =o0.
-
Hence,
(4.6) 26, t) = / o ’t)_ o S e g,

It is clear that z(x,t) > 0 for ¢t > 0. Now we need to verify that z(x, t) also satisfies
the boundary condition for z(x, ) — k as x — 1. We rewrite (4.6) using integration
by parts and (4.1) as

r—A1—&+ L _ L TB0=0+
z(x t)—k kef* ;gi g_lwgsdf M f Be(i— s—l §dfdn
o Bl —mn) —
I e d¢ 1—x x f(me(1—n) f 77(7§ %idg
The fact that el 7-0-¢ © < =% and | [, 55—l o S dy| <

C(1 — x)(x — x*) for some constant C 1mply the boundary condition at x = 1.
For 0 < x < x*, by using (4.4) we set

r—80-9+; X P09+ e
—z(x,t)e” Jo Teano ”fds-i-/ F(??,t) 7f0 Beraa—9 quf dn_ 0.
« Bn+od—n)—m
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Accordingly,

e F(y,1) ,f%;;fﬂ
(4.7) z(x,t) = /x Grrol—m— FEan—a—¢ % dn,

and z(x,t) < 0 for t > 0 by the assumptions in Theorem 3.1.
For x = x*(t), we have z(x*, t) = 0. It follows from Lemma 4.1 that x* is uniquely
defined, and Lemma 4.2 implies

V(e300 = B0)* + 480 = (e + (0 - ).
250)

By setting x|, = 0, we obtained the optimal control as

BE)x*()(1—x*(t)) — y(t)x* ()
c( 1-— x*(t)) '

x"(t) <

P=u(t) = —

Thereby, we have obtained the optimal feedback of the attacker

1, x<x¥,
N _ ok
P(x) =< u, x=x*
0, x>x*,
as desired. [ |

5 Conclusion

In this paper, we investigate the spread of virus in computer networks based on opti-
mal control theory. We move a step further by exploring models that accommodate
practical situations where the rates of infection and recovery may change over time,
which capture the fact that attack and defense are under dynamical adjustment. Op-
timal attack strategies are provided by minimizing the cost function of the attacker.
Understanding the optimal strategies taken by the attacker may offer some guidelines
for the network society on how to cope with the cybercriminals. One interesting fu-

ture direction would be to incorporate randomness into the model [7], since virus
propagation is an inherently stochastic phenomenon and subjects to many random
disturbances.

Restriction on the topology of the spreading networks is not explicitly stated in
the current work. Realizing the fact that different hosts may have different infection
capabilities due to their different degrees, finding the optimal strategies over gen-
eral (directed) network topologies [19] is another interesting problem. To capture
the infection process between different hosts, multi-type models [2], [3], [8] would
certainly be appealing.

Finally, we mention that the present study is meant to investigate analytical char-
acterizations of attack-defense dynamics while assuming certain parameter values are
observed by drawing on empirical data or expert knowledge.
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