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If G and H are elementarily equivalent groups (that is, no elementary statement of
group theory distinguishes between G and H) then the definable subgroups of G are
elementarily equivalent to the corresponding ones of H. But the commutator subgroup G'
of G, consisting of all products of commutators [a, b] = a~1b~1ab of elements a and b of
G, may not be definable. Must G' and H' be elementarily equivalent?

A first thought might be that if G' is not definable, even allowing parameters, then it
will follow that there is H = G with H'^G'. However, this naive idea fails.

EXAMPLE. Let G be the direct product of a countably-infinite free-nilpotent-of-class-2-
and-exponent-3 group with a countably-infinite group of exponent 3. If H=G,
then H' and G' are infinite abelian groups of exponent 3 and hence H' = G'. But G' is not
definable (by an obvious modification of the lemma below).

Despite this example, we will show the following theorem.
THEOREM. There exists groups G and H such that G = H (in fact G<H)butG'^H'.

If G = H, then no quantifier-free sentence will distinguish between G' and H', and
the same is true for an V-sentence (and hence an 3-sentence). About the simplest
sentence to consider next would be something of the form Vx3y(x = y2), so our
construction begins with a group F of nilpotent class 2 and reduces modulo a normal
subgroup that makes each commutator a square, but there is no uniform bound on the
length of the commutator word being squared. An ultrapower of the resulting group G
produces H with some non-squares in its commutator subgroup. Now for the details. We
will say that G is a nil-2 group if it is a group satisfying Vx Vy Vz[x, y, z ] = l , where
[x, y, z] = [[x, y], z].

LEMMA. There is a nil-2 group G with the following pair of properties:
(a) every element of G' is the square of an element of G',
(b) for every n<cj, there exist gn and hn in G such that [gm hn] is not the square of any

product of at most n commutators.

Proof of the lemma. Our group G will be F/K where F is the free nil-2 group on
{an:n<to} and K will be a central subgroup generated by relations Rn (rc<<o). For any
word w in F', let l{w) be the minimum number of commutators required to witness that w
is in F' and note that since F is free nil-2 on {a^ : n < w} then [a, be] = [a, b][a, c] and F' is
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a free abelian group with basis {[ai,ai]:i<j<w} (see [1]). Hence for each m<w there
exists w in F' (for example w = [a0, a JOj , a 3 ] . . . [a2m, a2m+1]) such that l(w') > m for all
integers t^O. For, suppose ([a0, ax] . . . [a2m> a2m+1])' were the product of fewer than m
commutators for some if 0. As F' is free abelian on {[a,,, aq]: p<<? < w}, we have for some
integers x(i, j) and y(i, /)

n
OrSpsm

= n [ n ara/), n
Osj<m —1 Ms2m + 1 is2m

is2m+l

n
where

Hence the number

Osi<m-1

equals t if p is even and p +1 = q and is 0 otherwise. If we let

A =

and

x(0,0) -y(0,0)

jc(2m + l,0) -y(2m +

y(l,0) y(0,0)
x(l,0) x(0,0)

y(l, m-2) y(0,m-2)
x(l, m-2) x(0, m-2)

x(0, m-2 ) -y(0, m-2 )

x(2m + l, m-2) -y(2m + l, m-2) (2m+2)x(2m-2)

y(2m y(2m,0)
x(2m, 0)

y(2m + l, m-2 ) y(2m, m-2)
x(2m + l , m - 2 ) x(2m, m-2) (2m-2)x(2m+2)

then A • (l/t)B =/2 m + 2, where /2 m + 2 is a diagonal matrix with pp entry (-l)p. Hence

column rank (A) = row rank (A) = 2m + 2.

Since A has only 2m-2 columns, we have the desired contradiction. (This simple
argument is due to Pat Rogers—see the proof of Theorem 3.10 in [2].)

We are now ready to define the relations Rn, and words wn, inductively. To ease our
notation, let i and / denote the standard enumerations of co such that i(n)</(n)< n + 1
for all n<w and {(i(n), j(n)):n<a)} = {(r, s):r<s<to}. Define wo = [a2,a3] and Ro =
[a0, ax]~lwl; and for each n<<o, pick wn such that l(w'n)>2 + n+ Y. KRm) for a'l

integers (^0—possible by the discussion above—and put Rn =[ai(n), ajM]~*wl. As stated
before, we let K be the subgroup generated by {Rn:n<a>} and put G-FIK.

Property (a) of the lemma now follows from the definition of G. (Since G is nil-2, it
sufficed to arrange for the generators of G' to be squares.) To prove (b) choose r<s such
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that [a,, as] does not appear in Rm for m < n and suppose [ar, as] were the square of some
w, a product of n commutators (modulo K). Then in F, [ar, as]"

1vv2 = RS"Ri1 . . . R1?1 for
some integers ko,ku ... ,k,, where fc,^0. By the choice of r and s,t>n. Recall that
R

( =[«•(>)' aj(o]"'wf; s o /(w?lt'):S2 + n+ X 1UO which contradicts the choice of w,.
m<Lt

Proof of the theorem. Let G be as in the lemma; if a denotes Vx 3y(x = y2) then
G' t= a. To construct H (with H' t= —icr) either take a non-trivial ultrapower of G, or use a
simple compactness argument on

T = Th(G) U {"[c, d] is not the square of the product of n commutators": n<w},

where c and d are constants added to the language of groups. T is consistent since G can
be interpreted as satisfying any finite subset of T, and H can be any model of T.
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