A METHOD OF DETERMINING THE STRAIN-RATE TENSOR
AT THE SURFACE OF A GLACIER

Cambridge Austerdalsbre Expedition, Paper No. 6

By J. F. Nve
(University of Bristol)

AnSTRACT. The rate of strain tensor at a point on the surface of a glacier may be determined by settin,
up a number of stakes in a pattern and measuring the rate of change of the distances between them. E
suitable pattern consists of four stakes at the corners of a square with one stake at the centre. Five such
patterns were used on Austerdalsbreen, Norway, in August 1956. The problem is to deduce the best values
of the 3 independent components of the strain-rate tensor from the 8 measured quantities, and, for this
purpose, a least-squares method, invented by Bond for the analogous problem in crystal physics, is used.
The principal strain-rates are found to within about 40-005 yr.—* and their directions relative to the stake
system to within about 40-5° The directions and magnitudes of the principal stresses are then deduced
from Glen's flow law and a suitable general theory. The directions of the principal strain-rates are in good
agreement with the directions of the crevasses, but the experiment is inconclusive on the question of the
magnitude of the stress needed to form a crevasse.

ZuUsaMMENFAsSUNG. Der Tensor der Dcformation,sgcschwindiﬁkeit an einem Punkt auf der Gletscher-
oberfliche kann bestimmt werden, indem man Stécke in regelmassiger Anordnung auf dem Gletscher
befestigt und die Anderung der Distanzen zwischen ihnen misst. Eine geeignete Anordnung besteht aus
4 Sticken an den Ecken eines Quadrats mit einem Stock in der Mitte, Fiinf solche Anordnungen wurden
im August 1956 auf dem Austerdalsbre in Norwegen aufgestellt. Das Problem besteht nun darin aus 8
Messwerten die besten Werte fiir die 3 unabhéngigen Komponenten des Deformationsgeschwindigkeits-
Tensors abzuleiten. Fiir diesen Zweck wurde eine Methode der kleinsten Quadrate verwendet, die von
Bond fiir ein analoges Problem in der Kristallphysik erfunden wurde. Die Hauptgeschwindigkeiten wurden
innerhalb einer Fehlergrenze von 40,005 Jahre—* bestimmt und ihre Richtungen in Bezug auf das Stock-
system innerhalb +0,5°. Die Richtungen und Gréssen der Hauptspannungen wurden dann aus Glen’s
Fliessgesetz und ciner entsprechenden allgemeinen Theorie abgeleitet. Die Hauptdeformationsrichtungen
stimmen mit den Richtungen der Gletscherspalten gut iiberein, aber das Experiment ldsst die Frage der
zur Spaltenbildung nétigen Zugspannung offen.

1. INTRODUCTION

In 1956 the Cambridge Austerdalsbre Expedition was studying the formation of wave
ogives at the foot of the Odinsbre ice fall in Norway.™ # 3 For this purpose a line of 23 stakes
running longitudinally down the glacier was set up (Fig. 1), and the changes in the distances
between the stakes were measured over a period of one month. It was then possible to deduce
the longitudinal strain-rate in the ice as a function of the distance down the glacier; this was
the main purpose of the experiment and the results are fully described in reference 3. The
present paper is concerned with some additional measurements made on the stake system.
Besides finding out the longitudinal component of strain-rate we wanted to have some
information about the other components of the strain-rate tensor at a few representative
points down the stake line. We therefore set up the five squares of stakes shown in Fig. 1
centred on Stakes 3, B, C, D and E. By measuring the sides and diagonals of these square
patterns at intervals over a period of one month it was possible to calculate with considerable
accuracy all components of the rate of strain tensor at the five centre points. The number of
quantities measured at each square is greater than the number of unknowns to be derived
from them, and the method used to calculate the strain-rate components from the data may
be of some interest.

Having obtained the strain-rate components we proceed to calculate the principal
strain-rates and, by using the measured flow law of ice, the principal stresses. It so happened
that the main stake line skirted the edge of an extensive crevassed area on its western side.
It is therefore possible to compare the direction of the crevasses with the direction of the prin-
cipal strain-rates, and to see whether the crevasses are associated with tensile stresses.
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Although the experiment can be used for this test of the theory of crevasse formation, it was
not specifically designed for the purpose; if it had been, a different location would have been
chosen.

2. MEASUREMENTS

The relation of the stake line to the ice fall is shown in the map which appears in Fig. 1
of reference 3; Figs. 13, 14 and 15 of the same paper show photographs of the stake system.
The method of making the measurements on the squares has already been described in
reference 3 and the details need not be repeated here. In brief, all the intervals shown by
dotted lines in Fig. 1 of the present paper were measured three or four times in August 1956;
certain corrections were applied, and the average rate of stretching ¢ of each interval over the
month was computed. € is defined by the equation

; 1 b
€ =——In—

a L

where /: and [; are the initial and final lengths of a stake interval and At is the time interval.

3. REpucrion oF REsuLTs

Fig. 2a shows a square pattern of five stakes. Ideally, the outline is a perfect square with
one stake in the centre. The x axis is along one diagonal and points down the glacier; the
z axis is along the other diagonal, and the y axis is normal to the glacier surface. The measure-
ments give 8 values of € corresponding to the 8 stake intervals a;, a;, by, bz, ¢, €1, dx, da. We
first reduce these 8 values to 4 by averaging the intervals a; and a;, b; and b,, ¢; and ¢z, d:
and d.. We then have the values of ¢ corresponding to the four directions 8=o, 45, go, 135°,
where 6 is measured clockwise from Oz (Fig. 2b). The averaging process takes account of
the variation of the strain-rate tensor over the area of the square, so far as this is possible by
linear interpolation, and the 4 values of € obtained all now refer to the point at the centre of
the square. The problem is to deduce from these four values the best values of the 3 com-
ponents €;, €, €, of the strain-rate tensor. An immediate check on consistency comes from
the fact that theoretically

€o1€g0 = €451 €135. (1)

If the object had been simply to measure strain-rates, we could have dispensed with the
stake at the centre; ¢ for the two diagonals of the square could have been measured directly,
instead of by averaging the values for a;, . and ¢1, c.. However, we wanted to make theodolite
measurements of the absolute velocity of the point at the centre of the square, and we
therefore retained the central stake for this purpose.

In fact it was not always possible to make the arrays as near to perfect squares as we
should have liked, because the geometrically correct position of one or more of the stakes
turned out to be in a crevasse. The resulting compromise meant that the angles were not
quite 45° and 9o°. The worst case was the square centred on C, where the angles of the

various pairs of intervals at the mean survey date, measured clockwise from the direction
C-CE, were

(ax) 0 (bx) 44 (e) 9o (dr) 127

(a2) —2 (b2) 51 (¢2) 9o (d2) 136 degrees.
When averaged, these give

(a) —1 (6) 47°5 (¢) 9o (d) 131-5 degrees.
If the axis of reference is now rotated anticlockwise by o-5° we obtain

(a) —o-5 (&) 48 (c) go-5 (d) 132 degrees,

and the greatest misalignment in angle from the ideal values o, 45, 9o, 135° is 3°. We accord-
ingly place Oz at 0-5° anticlockwise from the line C-CE; Ox is placed at right angles to Oz.
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This case has been chosen for illustration because it is the worst. The corresponding
angles for the other four squares are given in the Appendix set out in the same way. Corre-
sponding to the misalignment of 3° noted above for Square C, the misalignments for the other
four squares g, B, D and E were 15, 1, 2 and 0° respectively.

The procedure is, accordingly, first to choose the x and z axes for each square in
such a way as to make the directions a, b, ¢, d, as close as possible to o, 45, 9o and 135°. We
then assume that the measured values correspond exactly to these ideal directions. The 8
measured strain-rates € for each square are set out in columns 2, 3, 4, 5 of Table I. Each

TanLe I. Tue AVERAGE RATE OF STRETCHING OF THE MEASURED INTERVALS IN AuGUST 1956 (YR.~')

L) €45 €90 €135 4 i . 3 (€o+égo)
Square % s 7 ] €o-+€go €451+ €135 o

3 +o-110 —o0-832 —r1-091%| —o0-258

+0°+436 —ao-260 —0-778 | +o0-0bo

+0-273 | —0-546 —0+935 | —0°099 —0-662 —0-645 —0-017
B —o0-117 | —o-61o —o0-395 | +o-180

+0-164 —0-136 —o0-027 | +o0-185

+0-024 —0-373 —0-211 +0-183 —o0-187 —0°190 +0°003
C —0°'043 | —o0-308 —0-473 | —o0+252

—0-031 —0+224 —o0-381 —0-168

—0°037 —o0-266 —0-427 | —o0-210 —0-464 —0°476 +o0-012
D +0°053 —0+101 +o0-022 | +o0-127

+0-073 —0°077 —0-070 +0°102

+o0-063 | —o-08g —o0-024 | +o0-115 | +0-039 +o0-026 +0-013
E +0-085 —0-099 —o0-201 ~0-010

+o0-122 —0-116 —0-255 —0-006

+o0+104 | —o0-108 | —o0-228 | —o0-008 —o0-124 —o0-116 —o0-008

* Strain-rate for the interval A—3, obtained by taking the mean for the intervals A—2 and 2—3.

square is denoted by the number or letter of the stake at its centre. The 8 strain-rates are
given in the order:
a by e d;

a; bz €z dg_

Corresponding values are then averaged in the next line of the table to give €, €, € and
é135 at the centre of the square. As a preliminary test of consistency €;+-¢ég is compared with
é,5+€n5; the greatest disagreement is found to be 0-017 yr.™* (column 8). It is interesting
to notice that this is very much less than the difference between the strain-rates measured
on parallel intervals of the same square, which in one case (Square 3, §=45°) is as much
as 0-572 yr.~%. The differences between parallel intervals are due to the very high gradients
of the strain-rate components in the area under observation. The figures underline the
importance of reducing the observations so that, so far as is possible by linear interpolation,
they all refer to a single point, the centre of the square.

The principle of least squares is now used to deduce the best values of the 3 strain-rate
COMPpONENts €;, €, € from €, €, € and €r35. The problem is essentially to find the best
solution to 4 simultaneous linear equations involving 3 unknowns. The standard method ™ is
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used, namely, to form the normal equations and to solve them. An exactly analogous
problem arises in crystal physics when one wishes to deduce the components of some tensor
property of a crystal from a number of measurements made in different crystallographic
directions. W. L. Bond has shown ¢ that the crystal physics problem may be very conveni-
ently solved by matrix methods, and it happens that the numerical example of Bond’s
method given in reference 4 applies exactly to the present case. The directions of the x and
z axes and the sense of § in the present paper have therefore been chosen so as to agree with
the notation of the numerical example (x and z corresponding to x; and x;). We shall not
repeat the matrix calculations here but shall merely quote the result: the best values of
€, €, €; are given by

€ = —ién+ié4$ +%€90+ié!35
éxx =% %é45 '_—'}éus - (2)
€ = %E'o +i€.45 _*690 +ié‘35

{2€:; is the component of shear strain-rate as usually defined, that is, the rate of decrease in
angle between two lines in the ice that are instantaneously parallel to Ox and 0z; &, is the
corresponding tensor component of strain-rate.) Equations (2) are readily interpreted. Thus
€ is obtained by giving a weight of 3/4 to the direct measurement ¢, and a weight of 1/4 to
(€45+€135—¢€o). A similar interpretation applies to é;. We also see that ¢, is derived entirely
from €;5 and é;5; this is as it should be, because the measured values of é, and €, can give
no information on the shear strain-rate component.

For illustration we may take the square centred on Stake 3. The value of ¢, measured
directly, that is €, was —0-935 yr.™", but this is corrected with the help of the other three
measurements to —o0-9g31 yr.”". Similarly the direct measurement of ¢;, that is €, is corrected
from +0-273 yr.”* to +0-277 yr.~%. The value of é&, comes out to be —o0-224 yr.”%.

The residuals », say, of the four measured values can be calculated 4 by a further matrix
multiplication. For Square 3 this gives v=+40-004, —0-004, 40004, —0-004 yr.”*
respectively. The four residuals always have the same absolute values, and it is not in practice
necessary to go through the matrix multiplication each time to obtain them. The absolute
value of v is simply the amount by which the value of ¢, or ¢, measured directly is corrected
by the least-squares procedure (it is also one quarter of the figure shown in the last column
of Table I). The standard error in each of the four measured values is * 2||, and by standard
methods it can be shown that the standard error in €; and & is 1/3|¢|, and in &, is V2|7|.

Thus our result for Square 3 is

€y = —0-931I, € = —0°224, € = +o0-277 yr.”},

with a standard error of about +0-:007 yr.~*. The corresponding results obtained by using
the same procedure on the other squares are given in Table I1I.

TasLe I1. STRAIN-RATE COMPONENTS (YR.—?)

Square éx €2 € .S'I:I:::;Ird
3 —0-931 —0-224 +o0-279 +o0-007
B —0°212 —0-278 +0-023 +0-002
C —0°-430 —0-028 —0-040 4-0-005
D —0°027 —0-102 +0-060 +0-005
E —o0-226 —0°050 +o0-106 +0-003
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Since the y axis is perpendicular to the upper surface of the glacier, which is free from
shear tractions, Oy will be a principal axis of stress. If we assume that the principal axes of
the strain-rate tensor are parallel to those of the stress tensor, it follows that Oy is also a
principal axis of strain-rate, and therefore that é,y=é,=o0. Denoting the principal strain-
rate corresponding to Oy by €, and making the assumption that each element of ice remains
unchanged in volume (see Section 5), we have

€= € = —(éxt+6). (3)
¢, calculated from this equation is given in column 3 of Table IIL.

We now calculate the magnitudes and directions of the principal strain-rates €, €, in the

xz plane, from the equations:

€ = %(éx‘}“ éx) —V{i'(éx—és)z +é1}r 3 (4.)
é = d(éxté) +V/{1(éx—é)  +éid, (5)
tan 2¢ = éf:.’ A% << :-:, (6)

where ¢ is the angle between Oz and the principal axis nearest to it, in the sense defined in
Fig. 2b. This principal axis will be that of the algebraically greater principal strain-rate € if
é; > €, and the algebraically lesser principal strain-rate €; if é; < é. Since é; > €, for all
five squares, ¢ is the angle between ¢ and Oz. The results are given in columns 2, 4 and
5 of Table III.

Our determination of the strain-rate tensor at the centres of the five squares is now

complete.

4. CALCULATION OF THE STRESSES

We may now deduce the stresses from the strain-rates by using the results of laboratory
experiments on the flow of ice, but in doing so it is necessary to make some further assump-
tions. There are certain restrictions on what can be assumed, and Glen 5 has recently given
a rather general discussion of the problem. For the present application it is reasonable to
make the mathematically simplest set of assumptions as discussed in reference 6. This includes,
among others, the assumptions that the flow is independent of a superposed hydrostatic
pressure, and that the material is isotropic and incompressible.

If o+, 02, 0 are the principal components of stress (positive when tensile), the hydrostatic
stress o is defined by

o = §(o1+02+03), (7)
and the principal stress deviators o1/, 02", a3 by
o = o1—a, 02 = 02—0, o3 = o3—o. (8)
An effective shear stress 7, equal to 4/3 times the octahedral shear stress,* is defined by
27 = a1* 0" +03'% T >0, (9)
and an effective strain-rate é by
26% = &2 4-€,2 €53, é > 0. (10)

It is assumed that there exists a functional relation é=f(r), called the flow law. Then it is
shown ® that, under the assumptions of the theory,
' T ’ T . L
o = g- €1, Oz = ; €2, 03’ = g€3. (II)
/2¢ may be thought of as an effective viscosity, which varies according to the three dimen-
sional state of stress and strain-rate in an element.

* Erratum. In reference 8, page 478, last line but one, the phrase should read “an ‘effective shear stress’
7, equal to 4/3 times the octahedral shear stress”. Reference 6 is correct in this respect.
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If we take the flow law given by Glen’s experiments 7 in uniaxial compression at
—o0-02° C. we find (p. 129 of reference 6)
é = 0148 42, (12)
where £ is in yr.~* and 7 is in bars, or
T=1-577 %%, (13)
This theory can now be applied to the strain-rates measured on the squares of stakes.
We first calculate ¢ from (10), then 7 from (13), then 7/¢, and hence o', 02’, o3’ from (11).
These results are given in Table III.
Finally we put o.=0 (leaving atmospheric pressure out of account); hence

o = (o +03) (14)
and

O = 201'+03’

a3 == G’:"f'?(h' }. (15)

The values of the hydrostatic pressure o and the principal stresses o; and o3 calculated from
these equations are given in Table I11.

The map in Fig. 1 shows the magnitudes and directions of the principal stresses so
obtained. The date of the map is 23 August 1956. On the other hand, the foregoing calcula-
tions give the directions of principal stress relative to the stake line at the mean survey date,
12 August 1956. This introduces a small difficulty because the stake line, particularly in the
upper parts, rotated slightly between the two dates. The directions of principal stress have
been inserted on the map for 23 August by assuming that they remained fixed relative to the
stake line between 12 and 23 August.

5. CORRELATION WITH THE CREVASSES

Fig. 1 shows the positions and directions of the crevasses in the neighbourhood of the
stake line. From Stake 10 to Stake B the stake line marks the edge of a very heavily crevassed
area which lies on its western side (see the photographs in Figs. 13 and 14 of reference 2).
This crevassed area continues up the ice fall from Stake B, but its eastern boundary in this
region is to the west of the stake line; thus it leaves an area from Stake 4 to Stake 1 where
clearly defined crevasses are absent. There is nevertheless very considerable relief of the
surface from Stake 3 to Stake 1, for this is the beginning of the ice fall proper.

An attempt has been made in Fig. 1 to indicate the nature of the crevasses. Many of
them were far from being sharp fissures in the ice; in many places they could better be
described as a series of parallel sharp ridges with either sharp or rather rounded depressions
between them. Many of the crevasses in fact appeared to be old ones, much modified by
ablation.

The presence of crevasses within the area of a square raises the question of what stress
and strain-rate it is that has been measured, for the crevasses must introduce local inhomo-
geneities into the stress and strain-rate ficld. Now the depth of the crevasses was always less,
and in nearly all cases very much less, than the distances between the stakes. We picture the
upper crevassed layer of ice as resting on an unbroken continuous layer at a depth of a few
metres, and it is the strain-rate of this under-layer that is being measured (provided we
neglect the changes of strain-rate with depth caused by large-scale bending of the ice 3). If
the inhomogeneities introduced by the crevasses had affected the measurements seriously,
the test of consistency €, - €go= €;5 +¢€135 would not have been satisfied.

Similar considerations hold for the validity of the equation €y= —(é,--€.). Crevasses may
be opening or closing within the area of a square, and the volume enclosed by the crevasses
may be changing. ¢, given by the equation is then not even an average of the fluctuating
strain-rate in the upper crevassed layer. It is, however, properly interpreted as the strain-rate
of the continuous under-layer (with the same proviso as before).
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According to theoretical ideas (for example, references g and 10) crevasses should only
appear when at least one of the principal stresses in the surface is tensile; and if one prin-
cipal stress is tensile and the other is compressive the crevasses, if any, should be perpen-
dicular to the tensile stress component. The extent of the agreement with these predictions
may be judged from Fig. 1.

We may first note that at all five measured points any crevasses present in the neighbour-
hood are perpendicular to the algebraically greatest (most tensile) principal stress, and in
this respect the theory is well obeyed. A similar result was found by Ward ™3 on Highway
Glacier, Baffin Island. Meier ' found, as a result of a very extensive and systematic experiment
on the Saskatchewan Glacier, that ““the major crevasse systems are related in orientation
[i.e. perpendicular] to the greatest principal strain-rate although there is some suggestion
of slight differences in angle”. Meier suggests very plausible reasons why small differences
should be expected.

As regards the sign of the algebraically greatest principal stress in the present experiment
the matter is less clear-cut. One notices that the stress in question is compressive at 3, very
slightly tensile at B, definitely compressive at C, definitely tensile at D, and very slightly
compressive at E. To judge whether the signs of the borderline results at B and E are signifi-
cant we may note that (é;-}-}¢:), whose sign decides whether the principal stress o, is tensile
or not, has the value +0-00940-002 yr.”* at B and —0-004+4-0-003 yr.~* at E. Thus the
stress of 4-0-06 bars at B is probably genuinely tensile, but the sign of the stress of —o-04
bars at E is more doubtful. That there should be borderline results at B and E is not un-
expected, since these points lie at the edge of crevassed areas, and one would therefore expect
a criterion for crevasse formation to be only just satisfied, or only just not satisfied.

At 3 clearly defined crevasses are absent and the two principal stresses are compressive,
in accord with the theory. Near D there are crevasses and one principal stress is tensile, also
in accord with the theory. The situation at C is unexpected; there are crevasses close by but
they run perpendicular to a compressive stress of 1-47 bars. It is unlikely that the transverse
gradient of stress do3/dz is sufficient to turn the compressive stress into a tension in such a
short distance; nor is there any obvious tensile region up glacier from C where the crevasses
might have formed; this case remains puzzling.

Thus the theoretical prediction that the crevasses should be perpendicular to the alge-
braically greatest principal stress is very well verified—but the experiment is inconclusive on
the question of the magnitude of the stress necessary to form crevasses.

Since many of the crevasses appear to be old and since the velocity of the ice in this area
is between 0-g and 0-4 m./day, it is interesting that there is such a good correlation between
crevasse directions and principal stress directions. One would rather have expected to find a
correlation between the crevasses at a particular point and the principal stress directions,
not at this point but at the point higher up the glacier where the crevasses were formed.
This correlation is not easy to make, however, because one would have to allow for the fact
that the general flow of the ice will cause a crevasse to rotate after it is formed.

As we have already mentioned, the experiment was not designed to test the theory of
crevasse formation, and in setting out the stake line we were more concerned to avoid
crevasses than to include them. This is why the measured points are on the edge rather than
in the centre of a crevasse field. There is no reason, however, why similar stake patterns
should not be used in an experiment designed specifically to test crevasse theory.
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STRAIN-RATE TENSOR AT A GLACIER SURFACE

APPENDIX
The angles of the stake intervals are given in degrees in the order:
ax by [23 dy
as ba ca da
SQUARE 3
o 44 91 139 clockwise from
3 47 93 138 3—AE
Average 15 45°5 92 1385
Rotate axis clockwise by 2° and obtain:
—0°5 43°5 90 1365
Greatest misalignment = 1-5°
Oz placed 2° clockwise from 3—AE.
Square B
o 44 88 133 } clockwise from
o 47 96 140 B—BE
Average o 45°5 92 1365
Rotate axis clockwise by 1° and obtain:
=1 44 3 91 1355
Greatest mlsahgnment
0z placed 1 clockwasc from B—BE.
Square C
[ 44 go 127 } clockwise from
—2 51 9o 136 C—CE
Average —1 47 90 131+5
Rotate axis anticlockwise by 0:5° and obta.m
—0°5 48 905 132
Greatest misalignment = 3°,
0z placed o-5° anticlockwise from C—CE.
Square D
o 47 04 137 } clockwise from
o 47 94 137 —DE
Average 0 47 94 137
Rotate axis clockwise by 2° and obtain:
~— 45 92 135
Greatest misalignment = 2°,
0z placed 2° clockwise from D—DE.
Square E
o 45 go 135 } clockwise from
o 45 9o 135 E—EE
Average 0 45 90 135

Misalignment = 0°.
Oz placed parallel to E—EE.
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