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Wave dispersion in pulsar plasma. Part 1. Plasma
rest frame
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Wave dispersion in a pulsar plasma (a one-dimensional, strongly magnetized, pair
plasma streaming highly relativistically with a large spread in Lorentz factors in its
rest frame) is discussed, motivated by interest in beam-driven wave turbulence and
the pulsar radio emission mechanism. In the rest frame of the pulsar plasma there are
three wave modes in the low-frequency, non-gyrotropic approximation. For parallel
propagation (wave angle θ = 0) these are referred to as the X, A and L modes,
with the X and A modes having dispersion relation |z| = zA ≈ 1 − 1/2β2

A, where
z = ω/k‖c is the phase speed and βAc is the Alfvén speed. The L mode dispersion
relation is determined by a relativistic plasma dispersion function, z2W(z), which is
negative for |z|< z0 and has a sharp maximum at |z| = zm, with 1− zm < 1− z0� 1.
We give numerical estimates for the maximum of z2W(z) and for zm and z0 for a
one-dimensional Jüttner distribution. The L and A modes reconnect, for zA > z0, to
form the O and Alfvén modes for oblique propagation (θ 6= 0). For zA< z0 the Alfvén
and O mode curves reconnect forming a new mode that exists only for tan2 θ & z2

0− z2
A.

The L mode is the nearest counterpart to Langmuir waves in a non-relativistic plasma,
but we argue that there are no ‘Langmuir-like’ waves in a pulsar plasma, identifying
three features of the L mode (dispersion relation, ratio of electric to total energy
and group speed) that are not Langmuir like. A beam-driven instability requires a
beam speed equal to the phase speed of the wave. This resonance condition can be
satisfied for the O mode, but only for an implausibly energetic beam and only for a
tiny range of angles for the O mode around θ ≈ 0. The resonance is also possible
for the Alfvén mode but only near a turnover frequency that has no counterpart for
Alfvén waves in a non-relativistic plasma.
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1. Introduction
The mechanism by which pulsar radio emission is generated remains controversial.

Several different mechanisms continue to attract supporters and critics, including
coherent curvature emission (CCE), relativistic plasma emission (RPE), anomalous
Doppler emission (ADE), linear acceleration emission (LAE) and free-electron maser
emission (FEM). Two of these (RPE and ADE) depend intrinsically on the wave
dispersion in the ‘pulsar plasma’ which we define to be a one-dimensional (1-D),
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electron–positron plasma, streaming outward at a relativistic velocity βsc, where
βs is the streaming speed, c is the speed of light, with streaming Lorentz factor
γs = (1 − β2

s )
−1/2
� 1, and with an intrinsically relativistic spread in Lorentz

factors, 〈γ 〉 � 1, where 〈· · ·〉 denote an average, in the rest frame of the streaming
plasma. Wave dispersion in such a pulsar plasma has major differences from wave
dispersion in a conventional plasma, due to the extreme anisotropy, in the form of
1-D distributions, the absence of ions, the highly relativistic energies of the bulk
of the particles and the superstrong magnetic field. For example, all waves in a
pulsar plasma have phase speeds very close to or above the speed of light, and the
longitudinal waves exist only for propagation parallel to the magnetic field.

Renewed interest in RPE has been stimulated by a recent argument in favour of a
‘beam-driven’ form of RPE: Eilek & Hankins (2016) argued that RPE is the only one
of the suggested mechanisms that can plausibly account for nanoshots from the Crab
pulsar. Specifically, the form of RPE invoked by Eilek & Hankins (2016) involves
beam-driven Langmuir-like waves, which are assumed to build up to a very high level
in localized regions in the pulsar magnetosphere through a mechanism suggested
by Weatherall (1997, 1998). This argument has potentially wider implications: it
is intrinsically unlikely that the emission mechanism in nanoshots is unrelated to
other pulsar radio emission and hence, if the case for RPE operating in nanoshots is
accepted, this would provide a strong argument for RPE being the generic mechanism
for pulsar radio emission. In most forms of RPE (Suvorov & Chugunov 1973, 1975;
Hardee & Rose 1976, 1978; Hinata 1976a,b; Benford & Buschauer 1977; Lominadze,
Mikhaı̌lovskiı̌ & Sagdeev 1979; Lominadze & Pataraya 1982; Asseo, Pellat & Sol
1983; Egorenkov, Lominadze & Mamradze 1983; Lyubarskii 1992; Asseo 1993, 1995;
Weatherall 1994), including the form proposed for nanoshots, it is assumed that
Langmuir-like waves exist in the pulsar plasma, with properties similar to Langmuir
waves in a non-relativistic plasma, but there are no such waves in a pulsar plasma.
Any growing wave must be in a specific wave mode of the pulsar plasma.

In this paper, and in two accompanying papers (Rafat, Melrose & Mastrano
(2019a,b) referred to as Parts 2 and 3), we discuss wave dispersion and beam-driven
instabilities in pulsar plasma with the objective of providing a systematic description
of the underlying plasma theory needed in a critical discussion of the beam-driven
instabilities invoked in RPE and CCE. Our main purpose in this paper is to describe
wave dispersion in a plasma with the properties that we postulate here for a pulsar
plasma in its rest frame. In particular we emphasize the importance of the relativistic
spread 〈γ 〉 � 1. In all three papers we assume that every particle distribution is a
one-dimensional Jüttner distribution, which is of the form g(u) ∝ exp(−ργ ), with ρ

the inverse temperature in units of the rest energy of the electron, and with u= γβ
the 4-speed. Numerical models suggest that the pair cascade results in broad particle
distributions (Hibschman & Arons 2001; Arendt & Eilek 2002; Medin & Lai 2010;
Timokhin & Arons 2013), which have been described as Jüttner-like (e.g. Arendt &
Eilek 2002).

A Jüttner distribution should be regarded as the default choice for the distribution
function for the particles in a pulsar plasma and in other relativistic astrophysical
pair plasmas. A Jüttner distribution (Jüttner 1911; Synge 1957; Wright & Hadley
1975) is the relativistic generalization of a thermal (or Maxwellian) distribution. We
suggest that a pulsar plasma should be regarded as analogous to most non-relativistic
astrophysical plasmas in the sense that there is a ‘background’ distribution that is
thermal (Maxwellian or Jüttner) with suprathermal tails and other non-thermal features
regarded as complementary distributions or as modifications to this ‘background’
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distribution. The wave dispersion is assumed to be determined primarily by the
‘background’ with instabilities attributed to non-thermal features.

Indirect evidence for a Jüttner distribution follows from numerical calculations,
particularly particle-in-cell calculations, from which the form of the distribution
function can be inferred. As already noted, the results of such calculations for pair
creation in a pulsar plasma suggest a 1-D Jüttner distribution. Another astrophysical
problem concerns the propagation of a shock into an electron–positron plasma, and
again the resulting distribution of the post-shock pair plasma is consistent with a
Jüttner distribution (e.g. Gallant et al. 1992; Sironi & Spitkovsky 2009; Iwamoto
et al. 2017). While such calculations do not provide compelling evidence for a
Jüttner distribution, they do support the suggestion that the default choice should be
a Jüttner distribution. One needs a specific reason for choosing any other distribution
for a relativistic pair plasma in an astrophysical context. The implications of this
default assumption are more important for streaming distributions (Part 2) than for
the non-streaming distribution considered in the present paper, where the main effect
is the large intrinsic spread in Lorentz factors, 〈γ 〉≈ 1/ρ� 1 for the highly relativistic
case, ρ� 1, of interest here. Arendt & Eilek (2002) suggested a Jüttner distribution
with ρ ≈ 1 and γs = 102–103 as being relevant to pulsars. Such numerical models
apply in local regions where pair cascades occur, and it is plausible that many such
local regions contribute to the distribution function of the outwardly streaming pulsar
plasma of interest here. A distribution consisting of many such local distributions
has a wide spread in Lorentz factor, and we suggest that this may be modelled by a
Jüttner distribution with a smaller value of ρ. We discuss both the case ρ = 1, and
also the case ρ � 1. We find that the wave dispersion for ρ = 1, is more closely
analogous to the highly relativistic case ρ� 1 than to the non-relativistic case ρ� 1.

There are three wave modes in a pulsar plasma, labelled here as X, L and A for
parallel propagation and as X, O and Alfvén for oblique propagation. It is convenient
to choose the phase speed z=ω/k‖c as the independent variable, and to introduce two
plasma parameters: the plasma frequency, ωp, defined without including any Lorentz
factors, and βA which is such that βAc is the Alfvén velocity, as conventionally
defined, with βA� 1 in a pulsar magnetosphere. For parallel propagation, the X and
A modes are degenerate with dispersion relation z = zA, with zA ≈ βA/(1 + β2

A)
1/2.

The L mode has dispersion relation ω=ωL(z), with ω2
L(z)=ω

2
pz2W(z), where z2W(z)

is a relativistic plasma dispersion function (RPDF), with W(z) defined in (A 8).
RPE may be regarded as a pulsar counterpart of conventional plasma emission, for

example, in solar radio bursts (e.g. Melrose 1986, p. 94). Plasma emission involves
at least two stages, with the first stage being an instability that generates turbulence
in Langmuir waves, and another stage involving partial conversion of energy in
this turbulence into escaping radio waves. Two difficulties were recognized in early
discussions of RPE. First, the growth rate for various suggested instabilities in the
first stage is too slow to be effective, and ways in which this might be overcome were
proposed and explored (Usov 1987; Ursov & Usov 1988; Asseo & Melikidze 1998;
Gedalin, Gruman & Melrose 2002). Second, the conversion mechanism into escaping
radiation is problematic, and was referred to as a ‘bottle-neck’ by Usov (2000). Here
we are concerned with a third difficulty with RPE: the existence of ‘Langmuir-like’
waves that can be generated through a beam instability. This difficulty is obscured
in most discussions of RPE through over-simplified or implicit assumptions about
the wave dispersion. Examples include the assumption that the plasma is cold or
non-relativistic (in its rest frame), or that the waves have non-relativistic phase
and/or group speeds. We argue that in a relativistic pair plasma, with ρ . 1,
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all waves have relativistic phase speeds, calling into question the possibility of
beam-driven ‘Langmuir-like’ waves in pulsar plasma. We conclude that, like other
proposed emission mechanisms, beam-driven RPE encounters seemingly overwhelming
difficulties as the generic pulsar radio emission mechanism.

In § 2 we present a general theory for wave dispersion in a pulsar plasma, and in
§ 3 we summarize the properties of the RPDF. In § 4 we describe the wave dispersion
in cases where the spread 〈γ 〉 is neglected (‘cold’ plasma, 〈γ 〉 = 1), where it is non-
relativistic (〈γ 〉 − 1� 1), and where relativistic effects are important (〈γ 〉& 1). In § 5
we derive results for the wave dispersion in the plasma rest frame for 〈γ 〉 � 1. In
§ 6 we discuss the properties of the L mode in more detail, emphasizing the reasons
why the mode should not be regarded as ‘Langmuir-like’. We discuss our results and
summarize our conclusions in § 7. A list of the notation used is included in table 3.

2. Wave dispersion in pulsar plasma
In this section we discuss wave dispersion in a pulsar plasma based on the approach

presented by Melrose & Gedalin (1999) and Melrose et al. (1999). We present our
detailed calculations and assumptions in appendix A.

2.1. Wave dispersion in two frames
Dispersion in any plasma may be described by its dielectric tensor K ij(ω, k) and the
wave equation written in the form Λij(ω, k)ej = 0, with e the polarization vector and
with wave equation tensor

Λij(ω, k)=
c2(kikj − |k|2δij)

ω2
+ K ij(ω, k), (2.1)

where δij is the Kronecker delta. The dispersion equation is given by setting the
determinant of Λij to zero. In appendix A we derive the non-zero components of
Λij(ω, k) as given by (A 10), making the low-frequency approximation in § A.2.1 and
the non-gyrotropic approximation in § A.2.2. The dispersion equation then may be
written as, Λij(ω, k)→Λij,

detΛij =Λ22(Λ11Λ33 −Λ
2
13)= 0. (2.2)

The dispersion relation for any specific wave mode is a specific solution of the
dispersion (2.2). Here we derive and discuss the wave properties in the rest frame
of the plasma; we discuss the wave properties Lorentz transformed to the pulsar
frame in Part 2. We argue for the use of a Jüttner distribution to describe a pulsar
plasma (Arendt & Eilek 2002), which is an even function of β in the plasma rest
frame. For a distribution that is an even function of β the non-zero components of
Λij are given by (A 11).

For parallel propagation, θ = 0, we have Λ13 = 0 so that the solutions of (2.2)
are Λ22 = 0, Λ11 = 0 and Λ33 = 0 which give the dispersion equation for the
parallel X mode, parallel Alfvén or A mode and the parallel longitudinal or L mode,
respectively, with explicit expressions

z2
= z2

A, z2
= z2

A, ω2
=ω2

pz2ReW(z)≡ω2
L(z), (2.3a−c)

where zA is given in (A 11), ReW(z) denotes the real component of W(z), with W(z)
defined in (A 8). For simplicity in writing we omit Re in the definition of ω2

L(z). The
parallel X and A modes are identical and may also be expressed as ω2

= z2
Ac2k2

‖
.
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For oblique propagation, θ 6= 0, the solution Λ22 = 0 gives the oblique X mode,

z2
= z2

A(1+ tan2 θ/b) or ω2
= z2

A(1+ tan2 θ/b)c2k2
‖
, (2.4a,b)

where b is given in (A 11). The solution Λ11Λ33 −Λ
2
13 = 0 gives the Alfvén and the

O modes,

ω2
=

(z2
− z2

A) ω
2
L(z)

z2 − z2
A − b tan2 θ

or z2
= z2

A +
ω2 b tan2 θ

ω2 −ω2
L(z)

, (2.5a,b)

where ωL(z) is given in (2.3). For ω2
L(z) > 0, the O mode is given by (2.5) over z2

A+

b tan2 θ < z2 6∞ and the Alfvén mode is over z2
0 6 z2< z2

A with z0 such that ω2
L(z0)=0.

The case ω2
L(z) < 0 is more subtle and is discussed below.

The polarization vector e corresponding to a solution of Λ22= 0 is along the 2-axis,
which implies that the X mode is strictly transverse. Any solution of Λ11Λ33−Λ

2
13=0

corresponds to a polarization vector, e, in the 1-3 plane with

e1

e3
=−

Λ33

Λ13
=−

Λ13

Λ11
. (2.6)

Longitudinal polarization corresponds to e = (sin θ, 0, cos θ), and the only strictly
longitudinal waves are for parallel propagation, sin θ = 0, satisfying the dispersion
equation Λ33 = 0, which implies that the L mode is strictly longitudinal.

There are three modes present for either parallel propagation (parallel X, A and
L modes) or oblique propagation (oblique X, Alfvén and O modes). In the rest
frame of the plasma, each mode has a forward-propagating component, z> 0, and a
backward-propagating component, z< 0. The backward-propagating portion is a mirror
image of the forward-propagating one about z= 0. We restrict our discussion to the
forward-propagating solution from which the properties of the backward-propagating
part can be readily inferred.

3. Relativistic plasma dispersion function
Wave dispersion in a non-relativistic plasma with Maxwellian distributions of

particles may be described in terms of the well-known plasma dispersion function,
which has both real and imaginary parts. As usually defined the real part determines
the wave dispersion and the imaginary part determines damping of the waves due to
resonant absorption. Wave dispersion in a pulsar plasma similarly involves the real
and imaginary parts of the RPDF z2W(z).

3.1. One-dimensional Jüttner distribution
Several different choices have been made for the distribution function of the electrons
in a pulsar magnetosphere, including a power law (Kaplan & Tsytovich 1973, §17), a
relativistically streaming Gaussian distribution (e.g. Egorenkov et al. 1983; Asseo &
Melikidze 1998) and water-bag and bell distributions (Arons & Barnard 1986; Melrose
& Gedalin 1999). Although the distribution function for the electrons and positrons
in the rest frame of the plasma is not known, a relativistic thermal distribution is one
approximate form suggested by numerical models for the cascade that generates the
pair plasma (Hibschman & Arons 2001; Arendt & Eilek 2002). We choose a 1-D
Jüttner distribution (Melrose & Gedalin 1999; Melrose et al. 1999; Asseo & Riazuelo
2000) and suggest that this should be the default choice, with a specific reason being
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required to justify any other choice. (In Part 2 a streaming distribution is modelled by
Lorentz transforming a Jüttner distribution from its rest frame to the frame in which
it is streaming.)

The combined distribution function, for electrons plus positrons, is then

g(u)=
n e−ργ

2K1(ρ)
, with n=

∫
∞

−∞

du g(u), (3.1)

where u = γβ and n is the number density. The parameter ρ = mc2/T is the ratio
of the rest energy of the electron to the temperature in energy units, with ρ = 1
corresponding to T = 0.511 MeV≈ 0.6× 1010 K, and K1(ρ) is the Macdonald function
of order 1. One has 〈γ 〉 ≈ 1/ρ for a highly relativistic distribution where ρ� 1.

3.2. RPDF for a Jüttner distribution
The integrand of (A 8) defining the RPDF W(z) is singular at β = z for |z|< 1. The
singularity is treated following the Landau prescription: ω→ ω+ i0 (we assume real
k‖). With z= ω/k‖c, this implies z→ z+ i0 for k‖ > 0 and to z→ z− i0 for k‖ < 0.
For ω > 0, the resonant denominator is then replaced by iπ sgn(k‖)δ(β − z) where
sgn(k‖)= k‖/|k‖| is the sign of k‖. The RPDF may be expressed as

W(z)=



〈
1

γ 3(β − z)2

〉
, for |z|> 1,

1
n

[
iπsgn(k‖)

dg(u)
dβ
|β=z − 2γ 2g(u)|β=z

−℘

∫ 1

−1
dβ

g(u)|β=z − g(u)
(β − z)2

]
, for |z|6 1,

(3.2)

where ℘ denotes a Cauchy principal value integral, and u= γβ = β/(1− β2)1/2. The
expression for |z|> 1 follows from a partial integration of (A 8) and that for |z|6 1
is derived in appendix B. Note that the expression for |z|> 1 can be misleading if
applied to |z|<1. Specifically, the form for |z|>1 is real and positive definite, whereas
for |z|< 1 the RPDF is complex and its real part is negative for 0< |z|6 z0, where
z0 is identified below. For a Jüttner distribution the imaginary part of W(z) follows
from (3.2) with (3.1) implying

Imz2W(z)=−sgn(k‖)
πρz3γ 3

φ exp(−ργφ)
2K1(ρ)

, γφ =
1

√
1− z2

. (3.3a,b)

The RPDF W(z) for the distribution (3.1) can be expressed in terms of another
RPDF,

W(z)=
1

2K1(ρ)

∂T(z, ρ)
∂z

, T(z, ρ)=
∫ 1

−1
dβ

e−ργ

β − z
. (3.4a,b)

The properties of the RPDF T(z, ρ) were summarized by Godfrey, Newberger &
Taggart (1975), cf. also Melrose (2008). We note two alternative forms for T(z, ρ)
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FIGURE 1. The RPDF z2W(z) is plotted as a function of z for 1-D Jüttner distributions.
The thick curves correspond to the real part and the thin curves to the imaginary part of
z2W(z) for ρ = 50 (dotted), ρ = 10 (dashed) and ρ = 1 (solid). The imaginary parts are
identically zero for z > 1 and negative for z< 1. Note that z increases from right to left
to facilitate comparison with dispersion curves shown below.

given by Godfrey et al. (1975),

T(z, ρ)= e−ργφ ln
1− z
1+ z

+

∫ 1

−1

dβ
β − z

(e−ργ − e−ργφ ),

T(z, ρ)=−2ρ
∫ z

0

dx
[(1− x2)(1− z2)]1/2

K1

[(
1− x2

1− z2

)1/2

ρ

]
+ iπe−ργ .

 (3.5)

In our detailed calculations we compared all three forms, and confirmed their
equivalence.

Examples of z2W(z) for the distribution (3.1) are shown in figure 1 for three
temperatures, ranging from a non-relativistic value, ρ = 50� 1 (dotted), to a value,
ρ = 1 (solid), where relativistic effects are significant. A similar plot was presented
by Melrose & Gedalin (1999), and we make two notable changes in figure 1; we
include the imaginary parts, shown by the thin curves, and we plot the curves such
that the superluminal regime, z> 1 is to the left of z= 1 and the subluminal regime
is to the right of z = 1. The peak in the RPDF evident in figure 1 becomes higher,
narrower and closer to z = 1 with decreasing ρ. We show this peak on a fine scale
and on a very fine scale in figure 2 for ρ = 0.1 (dashed) and ρ = 0.01 (solid). Note
that the shape of the peak near z= 1 scales in a characteristic way with ρ. Numerical
estimates based on the scaling apparent in these figures are given below.

For numerical results and plots we use, unless stated otherwise, pulsar period P=
1 s, period derivative Ṗ = 10−15, emission height at radius r/rL = 0.1, where rL =

Pc/2π is the light-cylinder radius, and multiplicity κ=105. For these parameter values
βA ≈ 5.0× 103 & γA ≈ 3.6× 103 for ρ = 0.1, and βA ≈ 1.6× 103 & γA ≈ 1.1× 103

for ρ = 0.01, where γA is given by (A 12). In some calculations we vary βA which
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(a) (b)

FIGURE 2. As for figure 1 but with ρz2W(z) plotted against (1 − z)/ρ2 for ρ = 0.1
(dashed) and ρ= 0.01 (solid) around z= 1 on a fine scale (a) and on a very fine scale (b).
With these scalings of the vertical and horizontal axes, the plots for ρ = 0.1 and ρ = 0.01
are nearly indistinguishable.

FIGURE 3. A plot of z2ReW(z) (thick solid) and z2ImW(z) (thin solid) over 1 > z > 0
illustrating specific values of z: zm where z2ReW(z) is a maximum, z0 where z2ReW(z)
passes through zero, zmin where z2ReW(z) is a minimum, zImin where z2ImW(z) is a
minimum, and ze1,2 where |z2ReW(z)| = |z2ImW(z)|.

can be achieved by varying a number of pulsar parameters as

β2
A ≈ 2.6× 107

(
10
〈γ 〉

)(
105

κ

)( γs

103

)( Ṗ/P3

10−15

)1/2 (
r/rL

0.1

)−3

. (3.6)

3.3. Properties of the RPDF
In figure 3 we present a typical plot of the real (thick solid) and imaginary (thin solid)
part of the RPDF z2W(z) over 1 > z > 0. We denote the critical z values and the
corresponding value of the real and imaginary parts of z2W(z) at these z values. These
critical values of z are zm where z2ReW(z) is a maximum, z0 where z2ReW(z) passes
through zero, zmin where z2ReW(z) is a minimum, zImin where z2ImW(z) is a minimum
and ze1,2 where |z2ReW(z)| = |z2ImW(z)|. We note that

0< ze2 < zmin < z0 < zImin < ze1 < zm < 1. (3.7)
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Value of αi at: zm ze1 zImin z0 zmin ze2

ρ� 1
α1 0.0132 0.0351 0.0555 0.144 0.421 0.995
α2 6.15 3.77 3.00 1.86 1.09 0.710
α3 2.73 1.95 −2.12 0 −0.361 −0.275

ρ = 1
α1 0.0124 0.0301 0.0469 0.0997 0.223 0.342
α2 6.36 4.11 3.30 2.30 1.59 1.33
α3 3.72 2.71 −2.99 0 −0.568 −0.463

TABLE 1. Empirical values for parameters αi for i= 1, 2, 3.

Average Exact value Approximation for ρ� 1

〈γ 〉
K2(ρ)+K0(ρ)

2K1(ρ)

1
ρ

〈γ n
〉

Kn+1(ρ)

2nK1(ρ)
+

n∑
i=1

(n+ 2− i)Kn−i(ρ)

2nK1(ρ)

n!
ρn

〈1/γ 〉
K0(ρ)

K1(ρ)
ρ[ln(2/ρ)− 0.577 . . .]

〈1/γ n+1
〉

Kin(ρ)

K1(ρ)

√
πΓ (n/2)ρ

2Γ (n/2+ 1/2)

TABLE 2. Averages over a Jüttner distribution as given by Melrose & Gedalin (1999).
The functions Ki(ρ) are modified Bessel functions of second type, and Kin(ρ) are Bickley
functions defined as the nth integral of K0(ρ).

In the rest frame of the plasma these critical points only depend on the value of ρ. For
ρ� 1, the critical z values vary as z≈ 1−α1ρ

2 and the corresponding Lorentz factors
as γφ ≈ α2/ρ, and the real and imaginary components of z2W(z) vary as ≈ α3/ρ. We
give approximate values of αi in table 1 for both ρ � 1 and ρ = 1. We plot these
critical points in figure 4 where ρ varies between 10−2 and 50.

The average value of powers of γ over a Jüttner distribution are related to ρ as
shown in table 2 (Melrose & Gedalin 1999). The approximations given for ρ� 1 are
particularly important and simple.

4. Wave dispersion for ρ > 1

In this section, before considering wave dispersion in a pulsar plasma with ρ� 1,
for comparison we discuss non-relativistic counterparts: the cold-plasma limit, ρ→∞
and a non-relativistic thermal case ρ� 1. We then discuss the case ρ= 1. The highly
relativistic regime, ρ� 1, is discussed in the next section.

4.1. Cold-plasma limit
The cold-plasma limit corresponds to

ρ→∞, 〈γ 〉→ 1, and z2W(z)→ 1. (4.1a−c)

The non-zero terms of Λij are then given by (A 11) with a = 1 + 1/β2
A, b = 1 and

z2W(z) = 1. This limit may also be treated using the cold-plasma model, with the
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(a)

(b)

FIGURE 4. (a) Plots of γφ against ρ with γφ evaluated at z= zm (thick solid), at z= z0
(dashed), at z = zmin (thin solid), at z = zImin (dotted), at z = ze1 (thick dash-dotted) and
at z = ze2 (thin dash-dotted). (b) Magnitude of Rez2W(z) at z = zm (thick solid), at z =
zmin (thin solid), at ze1 (thick dash-dotted) and ze2 (thin dash-dotted) where |Imz2W(z)| =
|Rez2W(z)|, and at z= zImin where |Imz2W(z)| (dotted).

ions replaced by positrons. In cold-plasma theory, it is conventional to solve the
dispersion equation for the square of the refractive index, N2

= k2c2/ω2
= 1/z2 cos2 θ ,

as a function of ω and the angle θ of wave propagation (Stix 1962).

4.1.1. The X mode
The dispersion equation for the X-mode in the cold-plasma limit follows from (2.4)

using (4.1) as

z2
=

z2
A

cos2 θ
, giving N2

=
1
z2

A
= 1+

1
β2

A
. (4.2a,b)

The X mode may be interpreted as a magnetoacoustic wave with zAc the magnetohy-
drodynamic (MHD) speed when the displacement current is included. The polarization
vector for the X mode is along the 2-axis, that is, along the direction k×B.
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4.1.2. Parallel A and L modes
With the cold-plasma assumption (4.1) one obtains from (2.3) the expression for

A mode in a cold plasma as

z2
= z2

A, implying N2
=

1
z2

A
. (4.3a,b)

From (4.2) and (4.3) it is evident that the dispersion relations for the X and A modes
are the same for parallel propagation. The polarization of the A mode is along the
1-axis.

The expression for the L mode in a cold plasma is obtained from (2.3) using
(4.1) as

ω2
=ω2

p. (4.4)

The polarization is longitudinal, which is along B for parallel propagation.

4.1.3. Alfvén and O modes
The Alfvén and O modes (2.5) using the cold-plasma limit (4.1) reduce to

ω2
=

(z2
− z2

A) ω
2
p

z2 − z2
A − tan2 θ

or z2
= z2

A +
ω2 tan2 θ

ω2 −ω2
p
. (4.5a,b)

For β2
A� 1 we have z2

A ≈ 1 which allows us to write (4.5) as

N2
≈

ω2
−ω2

p

ω2 −ω2
p cos2 θ

≈ 1−
ω2

p

ω2
sin2 θ, (4.6)

where the final approximation applies for ω2
�ω2

p. Equation (4.6) implies propagating
waves for ω2 >ω2

p and for ω2 <ω2
p cos2 θ , with a stop band (evanescent waves) in the

range ω2
p cos2 θ < ω2 < ω2

p. The higher-frequency branch corresponds to the O mode
and the lower-frequency branch to the Alfvén mode. For this cold-plasma case the
reconnection of the L and A modes to form these two oblique modes is illustrated in
figure 5, which is similar to a figure presented by Lyutikov (1999).

In a relativistic plasma, an approximation to (2.5) that is similar to (4.6) may
be obtained by regarding ω2

L(z) as a constant (over a small range of z values) and
assuming b≈ 1, z2

A ≈ 1. The dispersion relation reduces to

N2
≈

ω2
−ω2

L(z)
ω2 −ω2

L(z) cos2 θ
. (4.7)

Analogous to the cold-plasma case, as θ increases the reconnected modes move apart,
the O mode to higher ω and larger z, and the Alfvén mode to lower ω.

4.1.4. Cross-over frequency
The dispersion relations for the A and L modes for strictly parallel propagation

cross each other at the cross-over frequency

ω=ωL(zA)≡ωco, z= zA. (4.8)

A cross-over always occurs in the cold-plasma limit, for which the dispersion relations
reduce to the horizontal line, ω = ωp (L mode), and the oblique line, z= zA (A and
X modes) that passes through the origin in the ω-z plane.
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FIGURE 5. Wave properties in the cold limit. The axes of the inset are (ω/ωp− 1)× 106

and (ck‖/ωp− 1)× 106. The dotted line in the inset is the light line, z= 1, and the dashed
line is the X mode.

4.2. Dispersion curves for ρ = 20
The transition from the cold-plasma limit, ρ→∞, to the highly relativistic limit, ρ�
1, leads to a dramatic change in the wave properties. To follow how this transition
occurs, it is helpful to consider two intermediate cases: one where thermal effects are
significant and relativistic effects are small, and another where relativistic effects are
important. We choose the intermediate cases ρ = 20 and ρ = 1.

4.2.1. L mode for ρ = 20
The dispersion curves are illustrated for ρ = 20 in figure 6. The dispersion relation

for the L mode changes from the horizontal line ω=ωp in a cold plasma to the solid
black curve in figure 6, which may be regarded as a plot of ω/ωp versus ck‖/ωp =

(ω/ωp)/z. The cutoff frequency, ωx=ωL(∞)= 〈1/γ 3
〉ωp, moves to just below ωp due

to a relativistic correction 〈1/γ 3
〉. The frequency increases with increasing k‖, crosses

the light line at ω1=ωL(1)= (2〈γ 〉 − 〈1/γ 〉)ωp, k‖c=ω1 and reaches its maximum at
z= zm, corresponding to ω/ωp ≈ 1.5 and ck‖/ωp = 2.6.

The L mode is double valued, with a higher-frequency portion and a lower-
frequency portion joining at what we refer to as a turnover. The turnover, as a function
of z, occurs at z= zm, where the RPDF has its maximum. The lower-frequency portion
of the dispersion curve extends to ω = 0, which is approached along the line z= z0
(or ω/ωp = z0ck‖/ωp), where the RPDF passes through zero. The higher-frequency
portion may be interpreted as a counterpart of the parallel Langmuir mode in a
non-relativistic, magnetized plasma; the L mode dispersion relation (2.3) may be
approximated by ω2

L(z) = ω2
p + 3k2

‖
V2 with ρ = c2/V2

� 1. The lower-frequency
portion of the dispersion curve is in a region of strong Landau damping, and we do
not discuss this branch further.

4.2.2. Cross-over of the A and L modes
The solid black line in figure 6 is the dispersion relation z = zA for the (parallel

Alfvén or) A mode, which is at an angle ψA = arctan zA to the horizontal. For the
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FIGURE 6. Dispersion curves for ρ= 20. The solid black curves correspond to the L and
A modes for θ = 0, and the other nested curves are for the O and Alfvén modes with θ
increasing in steps of 0.25 rad. The X mode (not shown) is degenerate with the A mode
for θ = 0.

value of βA≈ 2.1× 102 chosen in the plot ψA≈π/4 and this line is indistinguishable
from the light line. For this large value of βA the cross-over frequency cannot be
distinguished from the frequency ω1 = ωL(1) in figure 6. For smaller values of βA
the cross-over point is on the higher-frequency portion of the curve for zA > zm, on
the lower-frequency portion of the curve for zm > zA > z0 and there is no cross-over
for zA < z0. In the following discussion we assume zA > zm, except where we discuss
the other two cases explicitly.

4.2.3. Oblique O and Alfvén modes for ρ = 20
For tan θ 6= 0 the L and A modes reconnect to form the O mode, which moves to

the upper left as θ increases, and the Alfvén mode, which moves to the lower right
as θ increases. The turnover, corresponding to the peak in the RPDF, is in the Alfvén
mode for zA > zm. The reconnected Alfvén mode consists of two branches, and for
sufficiently small θ , these are the familiar Alfvén mode with z≈ zA, ω < ωco, and a
branch that follows the L mode for zA > z& zm. We refer to the latter as the turnover
branch. The wave properties remain topologically similar as ρ decreases, but become
increasingly distorted from the mildly relativistic case ρ = 20 as ρ decreases to .1.

4.3. Dispersion curves for ρ = 1
For the case ρ = 1 shown in figure 7, relativistic effects are important. Comparing
the dispersion curves in figure 7 with those in figure 6, an obvious difference
is the cutoff frequency ωx = ωL(∞), which is only marginally below ω = ωp for
ρ = 20, and is significantly below ω = ωp for ρ = 1. Another notable difference
is the frequency ω1 = ωL(1) at which the dispersion curve for the L mode crosses
the light line: this is marginally above ω = ωp for ρ = 20, and significantly above
ω=ωp for ρ = 1. A further difference is a narrowing of the dispersion curve for the
(reconnected) Alfvén mode, with the higher-frequency and lower-frequency portions
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FIGURE 7. Dispersion curves for ρ = 1 in the same form as figure 6.

of the dispersion curves moving closer together and closer to the light line. These
intrinsically relativistic features become increasingly important as ρ decreases to �1.

5. Wave dispersion for ρ� 1

In this section we discuss the wave properties for a pulsar plasma with ρ � 1,
corresponding to 〈γ 〉 ≈ 1/ρ� 1.

5.1. L mode for 〈γ 〉� 1
Approximate forms for the dispersion relation for the L mode, given by (2.3), for large
z and for z≈ 1, were given in the early literature (Lominadze & Mikhailovskiı̌ 1979;
Lominadze et al. 1979). These approximations are derived by expanding z2W(z) in
powers of 1/z� 1 and in powers of |1− z| � 1, respectively, and retaining only the
lowest-order terms,

z2W(z)≈


〈

1
γ 3

〉 [
1+

3
z2

(
1−
〈γ −5
〉

〈γ −3〉

)]
≈

1
〈γ 〉

(
1+

3
z2

)
, for |z| � 1,

2〈γ 〉 + (z2
− 1)4〈γ 3

〉 ≈ 2〈γ 〉[1+ 12(z2
− 1)〈γ 〉2], for |1− z2

| � 1,
(5.1)

where the final forms apply for a Jüttner distribution with 〈γ 〉�1 (Melrose & Gedalin
1999),

〈γ n
〉 = n!〈γ 〉n, 〈γ −1

〉 = 〈γ 〉−1
[ln(2〈γ 〉)− 0.577], (5.2a,b)

〈γ −3
〉 ≈ 〈γ 〉−1, 〈γ −5

〉 ≈
2
3 〈γ 〉

−1. (5.2c,d)

We rederive the approximations (5.1) in appendix D by expanding in powers of 1/z2

and z − 1, respectively. Although we find that the approximation for z2
� 1 is well

justified, that for z− 1 is based on an expansion that converges only for z2
= 1. We

suggest that the approximation (5.1) for |1 − z2
| � 1 should not be used, at least

without further justification.
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The cutoff frequency ωx and the frequency ω1 are given by

ωx =ωL(∞)= 〈1/γ 3
〉ωp, ω1 =ωL(1)= (2〈γ 〉 − 〈1/γ 〉)ωp, (5.3a,b)

with 〈1/γ 3
〉 ≈ 1/〈γ 〉 for 〈γ 〉� 1. For a cold plasma one obtains ωx =ω1 =ωp.

The dispersion relation, ω=ωL(z), just above the cutoff frequency ωx is then given
by

ω2
L ≈ω

2
x + k2

‖
c2, (5.4)

which reproduces a known result (Lominadze & Mikhailovskiı̌ 1979; Lominadze et al.
1979; Melrose & Gedalin 1999). However, analogous approximate dispersion relations
for z2

≈ 1 are questionable for the reason discussed above. Specifically, although one
can evaluate z2W(z) and all its derivatives at z2

= 1, the Taylor series in (z2
− 1)

involving these derivatives appears to have zero radius of convergence (appendix D).

5.2. O mode for 〈γ 〉� 1
The O mode has the same cutoff frequency, ωx, as the L mode independent of θ . As
θ increases the dispersion curve for the O mode deviates increasingly from that of the
L mode frequency. One may rewrite (2.5) in the form

ω2(z, θ)=
ω2

L(z)
1+ a(z) tan2 θ

, a(z)=
b

z2
A − z2

. (5.5a,b)

One has z2 > z2
A + b tan2 θ for the O mode, and hence a(z) < 0, which implies that

the frequency is an increasing function of θ . Except for the small range θ 2 . 2/β2
A

the dispersion curve for the O mode is entirely in the superluminal range. The
resonance condition βs = z, where βsc is the streaming speed, cannot be satisfied for
the O mode except for this tiny range of angles. An approximate dispersion relation
for the (superluminal) O mode follows by setting z2

A→ 1, b→ 1 in (5.5),

ω2
O(z, θ)≈ω

2
L(z)

(z2
− 1) cos2 θ

z2 cos2 θ − 1
, (5.6)

which applies for z2 > 1 when β2
A � 1. The frequency, ωO(1, θ), at which the

dispersion curve crosses the light line increases with increasing θ ,

ω2
O(1, θ)=ω

2
1

1− z2
A

1− z2
A − b tan2 θ

≈
ω2

1

1− β2
Aθ

2/2
, (5.7)

where the approximation applies for β2
A� 1, 〈γ 〉� 1 and θ 2

� 1.
An approximate dispersion relation for the O mode for z= 1/N cos θ� 1 and ω2

�

ω2
L(z= 1/N cos θ) that follows from (4.7) using (5.1) is

N2
O ≈

1−ω2
p sin2 θ/〈γ 〉ω2

1+ 3ω2
p sin2 θ cos2 θ/〈γ 〉ω2

≈ 1−
ω2

p

〈γ 〉ω2
[sin2 θ(1+ 3 cos2 θ)], (5.8)

where the final expression applies for ω2
� (1+ 3 cos2 θ)ω2

p sin2 θ/〈γ 〉.
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5.3. Alfvén mode for 〈γ 〉� 1
The turnover branch of the Alfvén mode for zA > zm and ρ� 1 is dominated by the
peak in z2W(z). For the case ρ = 1 shown in figure 7, the Alfvén mode consists of a
thin loop, with the higher-frequency and lower-frequency portions joining at a turnover
that corresponds to the peak at z= zm in the RPDF. The maximum frequency of the
Alfvén mode decreases with increasing θ approximately along the line z = zm. For
ρ ≈ 1/〈γ 〉� 1 the loop becomes narrower with decreasing ρ. The format adopted in
figures 6 and 7 makes it increasingly difficult to illustrate the dispersive properties due
to the curves being strongly concentrated near z= 1.

An alternative format is used in figure 8 to show the dispersion curves near z= 1:
we plot ω/ωp on a log scale as a function of (1 − z)/ρ2 for ρ = 0.1, with βA ≈

1.2× 102 and γA ≈ 87, and 0.01, with βA ≈ 1.2× 103 and γA ≈ 8.7× 102, where γA

is defined by (A 12). The solid curves correspond to the L mode for θ = 0 and the
solid vertical line is the dispersion curve z = zA for the A mode. The curves to the
left of (1 − zA)/ρ

2 correspond to the O mode and the curves to the right of (1 −
zA)/ρ

2 correspond to the Alfvén mode. Each of 1 − zA ≈ 1/2β2
A, 1 − zm and 1 − z0

is proportional to ρ2
≈ 1/〈γ 〉2 as discussed in § 3.3, so that the locations of the left

asymptote, the peak and the right asymptote of the Alfvén mode all scale with ρ2 and
so coincide in the two figures.

The Alfvén mode (for θ 6= 0) exists only for z< zA or γφ <γA ≈ βA. Its dispersion
relation, given by (5.5) with a(z) > 0, becomes

ω2
A(z, θ)=

ω2
L(z)

1+ a(z)θ 2
, a(z)≈

β2
Aγ

2
φ

β2
A − γ

2
φ

. (5.9a,b)

The Alfvén mode is in the range where Landau damping is non-zero. Assuming that
the waves are weakly damped only for γ 2

φ & γ
2
m, the approximations zm≈ 1− 0.013ρ2,

given by equation table 1, and 〈γ 〉 ≈ 1/ρ imply that the waves are weakly damped
for γφ & 6 〈γ 〉.

5.4. Condition for reconnection of modes
The dispersion curves for parallel propagation, ω=ωL(z) and z= zA, do not necessarily
cross in a relativistic plasma. There are three possibilities:

(i) zA > zm: the line z = zA crosses the higher-frequency portion of the L mode
dispersion curve ω = ωL(z) in the range 1 < z < zm; reconnection in this case
is similar to that in the cold-plasma limit. The peak in the dispersion curve is in
the (reconnected) Alfvén mode.

(ii) zm > zA > z0: the line z = zA crosses the higher-frequency portion ω = ωL(z) in
the range zm > zA > z0.

(iii) zA < z0: the line z= zA does not cross ω=ωL(z).

Simple estimates for a pulsar magnetosphere suggest very large values, βA� 1, but
before concentrating on this case we comment on the second and third cases.

5.4.1. Case zm > zA > z0

Examples of the dispersion curves for zm> zA> z0 are shown in figure 9 for ρ= 0.1
and ρ = 0.01. For θ = 0, the solid curve corresponds to the L mode, and the solid
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(a)

(b)

FIGURE 8. Dispersion curves for θ = 0 (black solid), 0.25ρ rad (black dashed), 0.5ρ rad
(black dotted), 0.75ρ rad (red solid) and 0.1ρ rad (red dashed): (a) ρ = 0.1 with βA ≈

1.2 × 102, (b) ρ = 0.01 with βA ≈ 1.2 × 103. The black solid curve corresponds to the
L mode, the solid vertical line at z= zA corresponds to the A mode with the O mode to its
upper left and the Alfvén mode to its lower right. The Alfvén mode exists between z= zA,
which is very close to zero in the figure with γA≈ 87 for ρ = 0.1 and γA= 8.7× 102 for
ρ = 0.01, and z= z0. The maximum in the dispersion curve occurs near z= zm.

vertical line corresponds to the A mode at z= zA. The maximum in the solid curve is
at z= zm, to the left of z= zA. This peak leads to a maximum and a minimum in the
O mode dispersion curve for small θ . The maximum and minimum become smoothed
out with increasing θ , and the dispersion curves are then qualitatively similar to those
for zA> zm when z2

A+ b tan2 θ > z2
m. As θ increases the Alfvén mode moves downward,

with asymptotes at z= zA and z= z0 remaining fixed. Only the branch with z≈ zA is
Alfvén like, and we refer to the branch that links the asymptotic forms as the turnover
branch. Landau damping becomes important in the range zm> z> z0, and this damping
needs to be taken into account in a more detailed discussion of this case.
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(a)

(b)

FIGURE 9. Similar to figure 8 but for zm > zA > z0 and as a function of angle in steps
of 0.0625ρ rad: (a) ρ = 0.1 with βA ≈ 36 and γA ≈ 25, (b) ρ = 0.01 with βA ≈ 3.6× 102

and γA ≈ 2.5× 102.

5.4.2. Case zA < z0

Examples of the dispersion curves for zA< z0 are shown in figure 10 for ρ=0.1 and
ρ = 0.01. For parallel propagation the two dispersion curves do not cross. Equations
(4.5) continue to apply, with ω2

L(z) < 0. As θ increases the L mode curve, including
the peak, moves upward and to the left. The A mode dispersion curve moves to the
left. The two curves meet at ω =∞ at the angle determined by z2

0 = z2
A + b tan2 θ .

Further increase in θ leads to the O mode curve continuing to move upward and to
the left, with the Alfvén mode curve moving downward, between asymptotes at z= z0

and z= zA.
It is questionable whether the reconnected mode in this case should be referred to

as the Alfvén mode. It may also be regarded as an intrinsically new mode (Melrose
& Gedalin 1999). The argument for this is as follows. The dispersion equation for
oblique propagation in the form (4.5) gives ω2 in terms of three factors, z2W(z),
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(a)

(b)

FIGURE 10. Similar to figure 8 but for zA < z0 and as a function of angle in steps of
0.45ρ rad: (a) ρ = 0.1 with βA≈ 7.1 and γA≈ 5, (b) ρ = 0.01 with βA≈ 71 and γA≈ 50.

z2
− z2

A and z2
− z2

A− b tan2 θ . Real ω2 requires that either all three factors are positive
or that one is positive and two are negative. For z > z0, the O mode corresponds
to z2W(z) > 0 and z2 > z2

A + b tan2 θ > z2
A and the Alfvén mode corresponds to

z2W(z)> 0 and z2 < z2
A < z2

A+ b tan2 θ . For z< z0, with z2W(z)< 0 implying ω2
L(z)< 0,

this additional mode exists in the range z0 < z< zA but only for sufficiently oblique
propagation, specifically, for b tan2 θ > z2

0 − z2
A.

6. Properties of resonant L mode waves

The wave properties of the (parallel) L mode in a pulsar plasma are of particular
interest when considering beam-driven instabilities. The L mode is the nearest
counterpart to the Langmuir mode in a non-relativistic plasma, but its properties
have major differences from those of Langmuir waves. In this section we discuss
some of these properties.
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FIGURE 11. The function ρ2/RL(z) is plotted over (1 − z)/ρ2 for ρ = 0.1 (solid) and
0.01 (dashed). The two curves are indistinguishable over the scale shown. The thin dotted
vertical line indicates the light line.

6.1. Ratio of electrical to total energy
In general the energy in waves in a specific mode in a dispersive medium may be
separated into electric, magnetic and kinetic contributions, with the kinetic contribution
attributed to the perturbations in the motion of particles forced by the wave (e.g.
Melrose & McPhedran 1991, chap. 15). The total energy, which is the sum of the
three, is determined by the dispersion theory, allowing one to infer the kinetic energy
contribution. The magnetic energy is zero in a longitudinal wave. The ratio of the
electric to total energy, denoted as RL(z) for the L mode, is relevant because the rate
at which work is done by any source term involves only the electric energy, but the
energy that appears in waves is the total energy.

The ratio RL(z) is evaluated in terms of W(z) in appendix C. Using the form (A 8)
for the RPDF, this gives

RL(z)=−
W(z)

z dW(z)/dz
=

1
2z2

〈
z2
+ β2

γ 3(z2 − β2)2

〉〈
z2
+ 3β2

γ 3(z2 − β2)3

〉−1

, (6.1)

which is strictly valid only for superluminal waves, z > 1. For z� 1 and z→ 1 (6.1)
gives

RL(z)≈
1
2
−

3z2
+ 1

2z2(z2 + 3)
, RL(1)≈

〈γ 〉

4〈γ 3〉
≈

1
24〈γ 〉2

, (6.2a,b)

respectively, where the final approximation applies for a Jüttner distribution, 〈γ n
〉 =

n!〈γ 〉n for 〈γ 〉 � 1. One finds that RL(z) decreases with decreasing z, from 1/2 in
the limit z→∞, to 1/24〈γ 〉2 at z = 1. For z in the range 1 & z > zm ≈ 1 − 0.13ρ2

it is convenient to plot the inverse, 1/RL(z), rather than RL(z) itself, as illustrated
in figure 11. The form of 1/RL(z) ∝ 1/ρ2

≈ 〈γ 〉2 scales with (1 − z)/ρ2, increasing
with decreasing z through its value ≈ 24〈γ 〉2 at z = 1 to a maximum ≈ 38〈γ 〉2 at
z≈ 1− 0.004ρ2, and then decreasing with decreasing z, passing through zero at z= zm
and becoming negative in the region z< zm; as already remarked, we do not consider
solutions in the region z< zm where Landau damping is strong.
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FIGURE 12. The function ρ2/[1−βg(z)] is plotted over (1− z)/ρ2 for ρ= 0.1 (solid) and
0.01 (dashed). The two curves are indistinguishable over the scale shown. The thin dotted
vertical line indicates the light line.

6.2. Group speed
The velocity of energy propagation of waves in a dispersive medium may be identified
as the ratio of the energy flux to the energy density, which is the group velocity,
written here as βgc. It is shown in appendix C that βg for the L mode is given by

βg =
d[z2W(z)]/dz
z dW(z)/dz

= z[1− 2RL(z)]. (6.3)

Approximations for z� 1 and z= 1 are

βg(z)≈
1
z

3z2
+ 1

z2 + 3
, βg(1)≈ 1−

1
12〈γ 〉2

, (6.4a,b)

respectively. Thus, the group speed is zero at the cutoff frequency ωx (where z→∞),
and it increases with decreasing z > 1, approaching unity, but remaining subluminal
(βg < 1) for z→ 1. For 1> z� zm the final expression in (6.3), and the form of RL(z)
shown in figure 11, imply that βg gets closer to unity with decreasing z, reaching
its maximum value at the maximum of RL(z); it then decreases to zero at z= zm, as
shown in figure 12. It follows from the scaling in the figure that (1− βg)/(1− z) is
approximately independent of ρ for ρ� 1.

We do not discuss the region z< zm in detail, but remark that (6.3) has properties
that preclude the interpretation of βg as the speed of (wave) energy propagation for
z < zm: it becomes negative for z < zm, singular at the zero of dW(z)/dz, where it
changes sign to very large (superluminal group speed) and positive for smaller z.

6.3. Wave properties for 1 > z� zm

The only waves that can satisfy the resonance condition for a beam-driven instability
in a pulsar plasma have properties that are quite different from those of Langmuir
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waves that can be beam driven in a non-relativistic plasma. Here we comment briefly
on three unusual properties of the parallel-propagating waves in the L mode: the
dispersion relation, the ratio of electric to total energy and the group speed.

In is convenient to write the condition z=βb for resonance with a beam with speed
βb in terms of the corresponding Lorentz factor γφ = γb. For beam-driven growth to
overcome Landau damping in the background plasma requires γφ � γm, with γm ≈

6〈γ 〉 for ρ . 1. In the example shown in figure 8, this corresponds to a tiny range of
the solid black dispersion curve: to the right of (1− z)/ρ2

= 0 and to the left of the
peak in the curve at z= zm. Over this range ωL(z) is a rapidly decreasing function of
z, with

1
ωL(z)

dωL(z)
dz
=

1
2z2W(z)

d[z2W(z)]
dz

=
1
z

[
1−

1
2RL(z)

]
≈−

1
2RL(z)

, (6.5)

where the approximation applies for γφ� γm. With 1/2RL(z) ranging between 12〈γ 〉2
and 19〈γ 〉2 for z < 1, cf. figure 11, it follows that the frequency ωL(z) is a very
strong function of z over the tiny range of z where resonant wave growth is possible.
This is quite different from Langmuir waves, for which the frequency is only a weak
function over a wide range of phase speeds. It is also quite different from ion (or
electron) acoustic waves, for which the phase speed is approximately equal to the ion
(or electron) sound speed.

A second feature that is not ‘Langmuir like’ is that the ratio of electric to total
energy RL(z) is very small for L mode waves in the range 1 > z� zm. In contrast,
for Langmuir waves the ratio is approximately 1/2, corresponding to approximate
equipartition between electric energy and kinetic energy of forced motions in the wave.
The very small value of RL(z) is unusual when compared with Langmuir waves, but
not when compared with ion acoustic waves, which have RL ≈ k2λ2

De� 1, where k is
the wavenumber and λDe is the electron Debye length.

The group speed for L waves is only marginally subluminal, 1− βg(z)� 1, in the
relevant range, 1 > z� zm. The small group speed for Langmuir waves implies that
the wave energy that grows in a given region due to a beam-driven instability remains
localized to that region as the beam propagates through it. However, βg(z)≈ 1 for the
relevant L mode waves implies that the wave energy propagates away at nearly the
speed of light, impeding any wave growth.

7. Discussion and conclusions
We discuss wave dispersion in a pulsar plasma, defined as a strongly magnetized

pair plasma with a 1-D Jüttner distribution. We find that the relativistic plasma
dispersion function (RPDF) scales in a characteristic way with inverse temperature in
the highly relativistic case, ρ� 1. The favoured case ρ≈ 1 is more closely analogous
to the highly relativistic case than to the non-relativistic case, ρ� 1.

Wave dispersion in the rest frame of a pulsar plasma is strongly modified compared
with wave dispersion in more familiar non-relativistic plasmas. One difference is due
to the Alfvén speed, βAc, being highly relativistic βA � 1. It is well known that
the displacement current then plays an important role, and that the phase speed of
Alfvén and magnetoacoustic waves (in a cold plasma) is determined by β0= βA/(1+
β2

A)
1/2 < 1 rather than βA. The parameter zA used here is approximately equal to β0

in a highly relativistic plasma, cf. (A 11). Another difference is that the relativistic
plasma dispersion function (RPDF) becomes extremely sharply peaked, compared with
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its non-relativistic counterpart, and this has a large effect on some aspects of the wave
dispersion. A third difference concerns the cross-over between the dispersion curves
for the L and A mode. A cross-over necessarily occurs in the cold-plasma case, and
it leads to a resonance (N2

→∞, z→ 0) in the Alfvén mode. In the relativistic case,
the cross-over occurs only for zA > z0 or βA >γ0� 1, which condition is satisfied for
plausible pulsar parameters. Then there is a turnover, rather than a resonance, in the
Alfvén mode. We note that for zA< z0 there is no cross-over for θ = 0; in this case the
modes reconnection for b tan2 θ = z2

0 − z2
A, forming (the O mode and) an intrinsically

oblique Alfvén-like mode (which we do not discuss in this paper).
A motivation for the investigation reported here was an argument that beam-driven

RPE is the most plausible emission mechanism for the nanoshots from the Crab
pulsar (Eilek & Hankins 2016). This suggestion is based on the assumption that the
beam causes Langmuir-like waves to grow to a very high level in a localized region,
with some nonlinear plasma process partly converting the wave energy into escaping
radio emission (Weatherall 1997, 1998). It is implicit in this model that Langmuir-like
waves exist in the plasma, and that they are relatively slowly propagating, such that
their group speed is small compared with the beam speed. Similar assumptions were
made in most early models of RPE, where Langmuir-like waves were simply assumed
to exist. However, none of the wave modes discussed in the present paper satisfy
all the requirements for ‘Langmuir-like’ waves implicit in these models, specifically
waves that can grow due to resonance with a beam and that are slowly propagating
compared with the beam. Such resonance requires γφ = γb, where γφ and γb are the
Lorentz factors corresponding to the phase speed of the wave and the beam speed,
respectively. The only relevant subluminal waves are the O mode at sufficiently
small angles θ , which has γφ > βA, and the Alfvén mode which has γφ ≈ βA at low
frequencies and turns over at higher frequencies, where γφ decreases from ≈ βA to of
the order of 〈γ 〉, as shown in figure 8. The nearest approximation to a ‘Langmuir-like’
mode is the Alfvén mode near the turnover at z= zm, where its group speed is zero.
Although beam-driven growth of Alfvén waves has been discussed as a possible pulsar
emission mechanism (Tsytovich & Kaplan 1972; Lominadze et al. 1982; Melrose &
Gedalin 1999; Lyutikov 2000), the role that this turnover might play has not been
discussed.

A discussion of the implications of these results for pulsar radio emission requires
detailed estimates of the plasma parameters, which we propose to give elsewhere.
However, simple estimates suggest that RPE encounters serious difficulties. The
conditions γb = γφ and γφ > βA can be satisfied only for an extremely high-energy
beam, due to βA being extremely large in a pulsar magnetosphere. For example,
consider an estimate of β2

A = Ω2
e /ω

2
p〈γ 〉 with Ωe evaluated for a magnetic field

B= 108 T and the plasma frequency given by ω2
p ≈ κΩeΩ∗/γs, with κ the multiplicity

(ratio of number density to the corotation charge density/e), Ω∗ = 2π/P the rotation
frequency of the star and γs the Lorentz factor of the transformation between the rest
frame and the pulsar frame. This gives β2

A of order 1019βsP/κ〈γ 〉 near the surface
of the star. For values P= 1 s, κ = 105, γs = 103, 〈γ 〉 = 10 this implies β2

A of order
1015. For a dipolar magnetic field B ∝ 1/r3 one has β2

A ∝ 1/r3, but βA remains very
large, except perhaps near the light-cylinder radius, rL = Pc/2π. The most energetic
beams considered plausible have Lorentz factors of order 106–107 in the pulsar frame,
and hence of order 103–104 in the rest frame. We conclude that for the O mode,
the resonance condition fails to be satisfied by many orders of magnitude for a
source near the star. Moreover, O mode waves are not Langmuir like in that their
group speed is not slow but is close to the speed of light, and as they propagate the
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angle θ increases due to the curvature of the field lines, so that γφ increases and the
waves quickly move out of resonance and become superluminal. We conclude that
the assumption that the energy in these waves remains localized and builds up due
to the beam propagating through the location is not justified.

It is possible in principle for waves in the Alfvén mode to grow. However, for
Alfvén waves at low frequencies, which satisfy the dispersion relation z ≈ zA, the
resonance condition is γb ≈ βA and the foregoing discussion of the O mode also
applies to such Alfvén waves: the resonance condition cannot be satisfied under
plausible conditions anywhere in the pulsar magnetosphere. At higher frequencies,
as shown in figure 8, the dispersion relation turns over, with the turnover frequency
decreasing with increasing θ ; with (1 − z)/ρ2

≈ 〈γ 〉2/2γ 2
φ , the turnover occurs at

γφ ≈ 6 〈γ 〉, and Landau damping becomes important at about this and smaller γφ .
It follows that near the turnover, a beam with γb ≈ 6 〈γ 〉 can cause Alfvén waves
to grow. Moreover, the group speed is small near the turnover, where ∂ω/∂z passes
through zero, favouring energy in these waves building up rather than propagating
away. The properties of Alfvén waves near the turnover frequency were not taken
into account in earlier models for beam-driven growth of Alfvén waves in a pulsar
plasma (Tsytovich & Kaplan 1972; Lominadze et al. 1982; Melrose & Gedalin 1999;
Lyutikov 2000).

The discussion of the wave dispersion in this paper applies to waves in the rest
frame of a pulsar plasma at frequencies well below the electron cyclotron frequency.
Our choice of the rest frame of the plasma is convenient for formal purposes, but the
relevant frame from an observational viewpoint is the pulsar frame, in which the pair
plasma is streaming outward with Lorentz factor γs. In Part 2 we discuss the Lorentz
transformation to the pulsar frame, and consider various aspects of the wave dispersion
in that frame and in other frames where there are relative streaming motions between
different distributions of particles.
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Appendix A. Dispersion equation

Here we present the derivation of non-zero components of Λij(ω, k), defined
in (A 10), and discuss our assumptions.

A.1. Dielectric tensor
Consider a plasma that is composed of electrons, ε=−1, and positrons, ε=+1. The
general form for the dielectric tensor derived using kinetic theory involves a sum over
ε=±1. For a 1-D distribution it is convenient to replace the conventional distribution
function, fε(p⊥, p‖), and the integral over 2πdp‖dp⊥ p⊥ by the 1-D distribution gε(u)
with p⊥= 0, p‖=mcu, u= γβ and the integral over du. The dielectric tensor is given
by (Melrose 2008, 2013)

K ij(ω, k)= δij +
Πij(ω, k)
ω2

, Πij(ω, k)=−
∑
ε

ω2
pε

〈
Aij(ω, k; β)

γ

〉
ε

, (A 1a,b)
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with Aij(ω, k; β) → Aij given by (A 4) below, and with plasma frequency ω2
pε =

e2nε/ε0m, where nε is the number density of electrons or positrons in the plasma rest
frame. The average 〈Q〉 of any function Q of u is written as

nε〈Q〉ε =
∫

du Q gε(u), (A 2)

which defines the number density, nε , for Q= 1.
With the magnetic field along the 3-axis and the wave vector in the 1–3 plane, we

introduce the notation

k= (k⊥, 0, k‖)=
ω

zc
(tan θ, 0, 1), with z=

ω

k‖c
. (A 3)

The components of the tensor Aij in (A 1) are

A11 =
ω2

0

ω2
0 −Ω

2
, A12 = iε

ω0Ω

ω2
0 −Ω

2
, A23 =−iε

ωΩ

ω2
0 −Ω

2

β tan θ
z

A33 =
ω2

γ 2ω2
0
+

ω2

ω2
0 −Ω

2

(
β tan θ

z

)2

, A13 =
ω0ω

ω2
0 −Ω

2

β tan θ
z

,

 (A 4)

with A22 = A11, A31 = A13, A21 = −A12, A32 = −A23, ω0 = ω − k‖v‖ = ω(z − β)/z and
Ω =Ωe/γ , where Ωe = eB/m is the electron cyclotron frequency.

A.2. Low-frequency and non-gyrotropic approximations
The expression (A 1) with (A 4) is exact for a 1-D distribution, and simplifying
assumptions and approximations need to be made in applying it to a pulsar plasma.
One simplifying assumption is that there is a single distribution of pairs; this
assumption, which is made here, needs to be relaxed to discuss any beam-driven
instability. Two other simplifying approximations are made here: the low-frequency
limit and the non-gyrotropic approximation.

A.2.1. Low-frequency limit
Pulsar radio emission is thought to be generated in regions where the wave

frequency is much smaller than the cyclotron frequency. We assume the low-frequency
approximation in the form ω0�Ω . On expanding in ω0/Ω , the leading terms in the
non-gyrotropic components are, for a 1-D distribution,

A11 = A22 =−
γ 2ω2

Ω2
e

(
z− β

z

)2

, A13 = A31 =−
γ 2ω2

Ω2
e

z− β
z

β tan θ
z

,

A33 =

(
z

γ (z−β)

)2
−
γ 2ω2

Ω2
e

(
β tan θ

z

)2

.

 (A 5)

On averaging over the distribution function, the term ∝ 1/(z − β)2 leads to the
RPDF discussed below, and the other terms involve 〈γ 〉, 〈γβ〉, 〈γβ2

〉. A simplifying
assumption in the rest frame is that g(−u) = g(u) is an even function, implying
〈γβ〉= 0. One has 〈γβ2

〉= 〈γ 〉− 〈1/γ 〉≈ 〈γ 〉 for 〈γ 〉� 1. It follows that for 〈γ 〉� 1,
apart from the RPDF, the only important average is 〈γ 〉.
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A.2.2. Non-gyrotropic approximation
The gyrotropic terms, A12 =−A21, A32 =−A23, in the low-frequency approximation

are given by

A12 =−iε
γω

Ωe

z− β
z
, A23 = iε

γω

Ωe

β tan θ
z

. (A 6a,b)

After substitution into (A 1) these terms are summed over the electrons and positrons
giving contributions proportional to (n+ − n−) and (n+〈β〉+ − n−〈β〉−), that is to the
charge density and current density, respectively, both of which are non-zero in a
pulsar plasma. However, these terms may be regarded as of first order, in comparison
with the terms in (A 5), in an expansion in 1/κ , where κ = (n+ + n−)/|n+ − n−| is
the multiplicity, and then these terms contribute to the dispersion equation only to
second order in 1/κ . The non-gyrotropic approximation corresponds to neglecting the
gyrotropic terms. This is equivalent to assuming that the distribution functions for
the electrons and positrons are identical, g+(u)= g−(u). The subscript ε is redundant
in the non-gyrotropic approximation, and is omitted in the following discussion. It
is essential to relax the non-gyrotropic assumption in order to discuss the ellipticity
of the polarization of the natural modes (e.g. Luo, Melrose & Fussell 2002; Luo &
Melrose 2004; Beskin & Philippov 2012), but we do not do so here.

A.2.3. Dielectric tensor for pulsar plasma
With these assumptions, the non-gyrotropic components of the dielectric tensor in

the rest frame of a pulsar plasma reduce to, K ij(ω, k)→ K ij, (Melrose et al. 1999)

K 11 = K 22 = 1+
ω2

p

Ω2
e

1
z2
〈γ (z− β)2〉, K 13 = K 31 =

ω2
p

Ω2
e

tan θ
z2
〈γβ(z− β)〉,

K 33 = 1−
ω2

p

ω2
z2W(z)+

ω2
p

Ω2
e

tan2 θ

z2
〈γβ2
〉.

 (A 7)

The RPDF W(z) is defined by

W(z)=
1
n

∫
du

1
β − z

dg(u)
du

. (A 8)

In the rest frame of the plasma g(u) is an even function of β which then implies
that (A 7) may be expressed as

K 11 = K 22 = 1+
1
β2

A

(
1+

1β2

z2

)
, K 33 = 1−

ω2
p

ω2
z2W(z)+

1β2 tan2 θ

β2
Az2

,

K 13 = K 31 =−
1β2 tan θ
β2

Az2
, β2

A =
Ω2

e

ω2
p〈γ 〉

, 1β2
=
〈γβ2
〉

〈γ 〉
= 1−

〈γ −1
〉

〈γ 〉
,

 (A 9)

where we use 〈Q〉 = 0 for Q any odd function of β.

A.3. Dispersion equation for a pulsar plasma
The dispersion equation for waves in a plasma is given by setting the determinant
of the matrix form of Λij to zero. The non-zero components of Λij are obtained
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using (2.1) and (A 7) as

Λ11 = 1−
1
z2
+
ω2

p

Ω2
e

1
z2
〈γ (z− β)2〉, Λ13 =

tan θ
z2

[
1+

ω2
p

Ω2
e

〈γβ(z− β)〉

]
,

Λ22 =Λ11 −
tan2 θ

z2
, Λ33 = 1−

ω2
p

ω2
z2W(z)−

tan2 θ

z2

[
1−

ω2
p

Ω2
e

〈γβ2
〉

]
,


(A 10)

with Λ31 = Λ13. Noting that 〈Q〉 = 0 if Q is an odd function of β allows us to
write (A 10) as

Λ11 = a−
b
z2
, Λ22 =Λ11 −

tan2 θ

z2
, Λ33 = 1−

ω2
p

ω2
z2W(z)−

b tan2 θ

z2
,

Λ13 =
b tan θ

z2
, a= 1+

1
β2

A
, b= 1−

1β2

β2
A
, z2

A =
b
a
=
β2

A −1β
2

1+ β2
A
.

 (A 11)

The parameter zA may be interpreted as the relativistic Alfvén speed. The Lorentz
factor corresponding to this speed is γA, given by

γ 2
A =

1
1− z2

A
=

1+ β2
A

1+1β2
, (A 12)

with γA ≈ βA in the highly relativistic limit. Equation (A 11) reproduce expressions
given by Melrose et al. (1999), except for the correction of an error in Λ22 (− sin2 θ

is replaced by + tan2 θ ).
In the cold-plasma limit, ρ→∞ and 〈γ 〉→ 1, and infinite magnetic field, Ωe→∞

and βA→∞, the expressions in (A 11) may be approximated as

Λ11 = a−
1
z2
, Λ22 =Λ11 −

tan2 θ

z2
, Λ33 = 1−

ω2
p

ω2
−

tan2 θ

z2
,

Λ13 =
tan θ

z2
, a= 1, b= 1, z2

A = 1,

 (A 13)

where we use z2W(z)→ 1 in the cold-plasma limit.

Appendix B. RPDF for |z|6 1

We may write the RPDF (A 8) as

W(z) = lim
δ→0

(∫ z−δ

−1
+

∫ z+δ

z−δ
+

∫ 1

z+δ

)
dβ

1
β − z

dg(u)
dβ

(B 1)

= iπ
k‖
|k‖|

dg(u)
dβ

∣∣∣∣
β=z

+ lim
δ→0

(∫ z−δ

−1
+

∫ 1

z+δ

)
dβ

1
β − z

dg(u)
dβ

, (B 2)
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where, as per the Landau prescription, we integrate below the singularity at β = z in
the complex β plane. The integral over z− δ 6 β 6 z+ δ is performed in a positive
sense and contributes iπ times the residue. The remaining integrals may be partially
integrated to give

lim
δ→0

(∫ z−δ

−1
+

∫ 1

z+δ

)
dβ

1
β − z

dg(u)
dβ

= lim
δ→0

{
−2

g(u)|β=z

δ
+

(∫ z−δ

−1
+

∫ 1

z+δ

)
dβ

g(u)
(β − z)2

}
, (B 3)

where we use g(u)|β=z±δ ≈ g(u)|β=z for sufficiently small δ. Noting that

℘

∫ 1

−1
dβ

1
(β − z)2

=−2γ 2
φ + lim

δ→0

2
δ
, (B 4)

then gives (3.2).

Appendix C. Group velocity

Let the dispersion equation, K 33 = 0, for the L mode be written K = 0 with

K = 1−
ω2

L(z)
ω2

, ω2
L(z)=ω

2
pz2W(z). (C 1a,b)

The chain rule implies

∂ω

∂k‖

∣∣∣∣
K

∂k‖
∂K

∣∣∣∣
ω

∂K
∂ω

∣∣∣∣
k‖

=−1,
∂ω

∂k‖

∣∣∣∣
K

=−
∂K
∂k‖

∣∣∣∣
ω

/
∂K
∂ω

∣∣∣∣
k‖

, (C 2a,b)

to be evaluated at K = 0. Using z=ω/k‖c and equation (C 1) one finds

∂K
∂k‖

∣∣∣∣
ω

=
ω2

p

ω2

cz2

ω

d[z2W(z)]
dz

,
∂K
∂ω

∣∣∣∣
k‖

=−
ω2

p

ω2

z3

ω

dW(z)
dz

. (C 3a,b)

The ratio of electric to total energy becomes

RL =

[
ω
∂K
∂ω

∣∣∣∣
k‖

]−1

=−
ω2

ω2
pz3 dW(z)/dz

=−
W(z)

z dW(z)/dz
. (C 4)

The group speed becomes

βg =
d[z2W(z)]/dz
z dW(z)/dz

= z[1− 2RL(z)]. (C 5)
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Appendix D. Approximation of z2W(z)

For z� 1 we may write

z2

γ 3(β − z)2
=

1
γ 3

∞∑
s=0

(s+ 1)(β/z)s, (D 1)

which implies, after swapping the order of integration and summation,

z2W(z)=
∞∑

s=0

(s+ 1)
〈βs/γ 3

〉

zs
, (D 2)

with

〈βs/γ 3
〉 =


k∑

j=0

k!(−1)j

(k− j)!j!

〈
1

γ 2j+3

〉
, for s= 2k,

0, for s= 2k+ 1.

(D 3)

These then give the first case in (5.1).
Expansion about z= 1 gives

z2

γ 3(β − z)2
= γ (1+ β)2

[
1+

∞∑
s=1

γ 2s(1− z)s(2β + (s− 1)β2)(1+ β)s
]

(D 4)

= γ (1+ β)2
[

1+
∞∑

s=1

γ 2s(1− z)s(2β + (s− 1)β2)

s∑
k=0

s!βk

(s− k)!k!

]
, (D 5)

which implies

z2W(z)= 2〈γ 〉 − 〈1/γ 〉 +
∞∑

s=1

s∑
k=0

s!(1− z)s

(s− k)!k!
〈γ 2s+1(2β + (s− 1)β2)(1+ β)2βk

〉. (D 6)

The average quantity may be expressed as

j+1∑
r=0

(−1)r( j+ 1)!
( j+ 1− r)!r!

{
2(s+ 1)〈γ 2(s−r)+1

〉 − (s− 1)〈γ 2(s−r)−1
〉, for k= 2j,

2(s+ 1)〈γ 2(s−r)+1
〉 − 2s〈γ 2(s−r)−1

〉, for k= 2j+ 1.
(D 7)

Each term inside the sum in (D 6) is then, to highest order in 〈γ 〉� 1, equal to

s!(2s+ 2)!
(s− k)!k!

(1− z)s〈γ 〉2s+1, (D 8)

where we use 〈γ n
〉 = n!〈γ 〉n for 〈γ 〉 � 1. The series appears to have a radius of

convergence of zero. This leads us to suggest that the approximation given in (5.1)
for the case |1− z| � 1 is at best questionable and that it should not be used.
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Appendix E. List of notations

Symbol Description

〈Q〉 Average value of quantity Q
a Parameter a= 1+ 1/β2

A
b Parameter b= 1−1β2/β2

A
B Magnetic field strength
β Particle velocity
βA Alfvén speed: β2

A =Ω
2
e /ω

2
p〈γ 〉

βg Group velocity
1β2 Parameter 1β2

= 〈γβ2
〉/〈γ 〉 = 1− 〈1/γ 〉/〈γ 〉

e, ei, ej Polarization vector e= (e1, e2, e3)

g(u) Particle distribution function
γ Lorentz factor γ = (1− β)−1/2 where βc is the particle speed
γA Lorentz factor evaluated at β = zA

γs Streaming Lorentz factor of the distribution
γφ Lorentz factor evaluated at β = z for |z|6 1
k, k⊥, k‖ Wave vector k= (k⊥, 0, k‖).
K ij(ω, k) Dielectric tensor
κ Multiplicity
Λij(ω, k) Wave equation tensor
n Number density in the plasma rest frame
N Refractive index N = 1/z cos θ
ω Wave frequency
ω1 Wave frequency where ωL(z) crosses the light line z= 1
ωco Cross-over frequency: wave frequency where ωL(z) crosses the A mode

at z= zA

ωL(z) Dispersion relation of the L mode
ωp Plasma frequency in the rest frame of plasma
ωx Cutoff frequency: ωx =ωL(∞)

Ωe Electron cyclotron frequency
P, Ṗ Period and period derivative of the pulsar, respectively
r, rL Radial distance and light-cylinder radius: rL = Pc/2π

RL(z) Ratio of electric to total energy
ρ Inverse temperature in units of energy: ρ =mc2/T
T Plasma temperature in units of energy
T(z, ρ) Relativistic plasma dispersion function
θ Wave propagation angle
u= γβ Particle 4-speed
V Thermal velocity with ρ = c2/V2

W(z) Relativistic plasma dispersion function
z Phase velocity: z=ω/ck‖
zA Dispersion relation of the A mode: z= zA with z2

A = b/a
zImin, ze1,2 Value of z where z2ImW(z) is minimum, and where |z2ImW(z)| = |z2ReW(z)|,

respectively
zm, z0, zmin Value of z where z2ReW(z) is maximum, zero and minimum, respectively

TABLE 3. List of common symbols and parameters. The values each parameter takes
may vary depending on the context.
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