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Abstract

Given two absolutely continuous nonnegative independent random variables, we define
the reversed relevation transform as dual to the relevation transform. We first apply
such transforms to the lifetimes of the components of parallel and series systems under
suitably proportionality assumptions on the hazard rates. Furthermore, we prove that the
(reversed) relevation transform is commutative if and only if the proportional (reversed)
hazard rate model holds. By repeated application of the reversed relevation transform
we construct a decreasing sequence of random variables which leads to new weighted
probability densities. We obtain various relations involving ageing notions and stochastic
orders. We also exploit the connection of such a sequence to the cumulative entropy and
to an operator that is dual to the Dickson-Hipp operator. Iterative formulae for computing
the mean and the cumulative entropy of the random variables of the sequence are finally
investigated.
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1. Introduction

In this paper we introduce the reversed relevation transform and study some properties of a
new weighted cumulative distribution function and its connection with the cumulative entropy.
The considered stochastic model is dual to the weighted tail distribution studied by Kapodistria
and Psarrakos [18]. Specifically, we construct a sequence of stochastically decreasing random
variables {Xn» n ~ I}. In this sequence, X1 is nonnegative and absolutely continuous, and the
(n + 1)th random variable of the sequence is inductively defined through the following relation:

[X n+ l I x; = t] ~ [X n I x; :s t], n = 1,2, ... , for t > O. Here, as usual, [X I B] denotes a
random variable having the same distribution of X conditional on B, and ,~, denotes equality
in distribution.

Roughly speaking, {Xn , n ~ I} is suitable to describe an iterative process involving a
sequence of tasks, where X; is the random time required to perform the nth task. For instance,
we refer to a training procedure based on iterative learning or a working system based on
replacements or repairs of failed items. Starting from the sequence {Xn- n ~ I}, we derive some
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Extension of the past lifetime 1157

properties of a new weighted cumulative distribution via stochastic orders, and its connection
with covariance and cumulative entropy. Our investigation is also devoted to disclosing iterative
rules that allow us to compute the mean and the cumulative entropy of the random variables of
the sequence, whose computational efficiency is illustrated by some numerical examples.

We recall that [18] constructed a stochastically increasing sequence of random variables,
whose iterative rule involved the residual lifetime of X n , i.e.

D
[Xn+ l - x, I x, = t] = tx, - t I x; > t], n 2: 1, t > O.

They obtained some results on this sequence and its connections to the cumulative residual
entropy. Their process may describe the successive failures of a component, which, on failure,
is replaced by a component of equal age, but the lifetime distribution of the nth component is
assumed to be identical to the distribution of the time until the nth failure; see [18] for more
details. A simpler case was studied by Baxter [3], who considered a stochastic process generated
by the successive failures of a component which on failure is replaced by a component of equal
age.

This paper is organized as follows. In Section 2 we present the reversed relevation transform
with a preliminary result based on the usual stochastic order and an application to parallel
systems involving the proportional reversed hazard rate model (PRHRM). Some dual results
for the relevation transform are then provided. We also address the problem of determining
necessary and sufficient conditions such that the reversed relevation transform and the relevation
transform are commutative. The new weighted distributions and their characteristics based on
stochastic orders and ageing properties are discussed in Section 3, where the new notion of
decreasing reversed hazard rate (DRHR) in a length-biased sense is also considered. In Section 4
various kinds of entropy such as Shannon entropy, cumulative entropy, and dynamic cumulative
entropy are examined. Then the connections between the earlier mentioned entropies and
several functions of the given sequence are discussed. Specifically, we also obtain some iterative
results for the involved quantities. These include a new probabilistic meaning for the cumulative
entropy, which can be expressed as a difference of means of consecutive random variables of
the considered sequence. Finally, in Section 5 we define an integral operator and we discuss
its properties related to the previous results. Also, various numerical examples are presented
to shed further light on the characteristics of the studied sequence.

2. Background and preliminary results

Let X be an absolutely continuous nonnegative random variable with probability density
function (PDF) f(t), cumulative distribution function (CDF) F(t) = JP>(X ~ t), and survival
function F(t) = 1 - F(t), so that X may be viewed as the random lifetime of a system or
a component or a living organism. Assume that F(t) > 0 for all t > O. We recall that the
reversed hazard rate function of X is defined by

d f(t)
r(t) = -log F(t) = -,

dt F(t)
t > O.

There are several papers on applications of the reversed hazard rate function in the literature;
see, e.g. Block et al. [4], Di Crescenzo [10], Gupta and Nanda [17], Kijima and Ohnishi [19],
and the references therein. For the random lifetime X, we define X[t] = [r - X I X ~ t],
t > 0, which is termed the inactivity time. Indeed, X [t] describes the length of the time interval
occurring between the failure time X and an inspection time t, given that at time t the system
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1158 A. DI CRESCENZO AND A. TOOMAJ

has been found failed. For t > 0, the mean inactivity time of X is given by

jl(t) = lE[t - X I X :s t] = _1_ t F(x) dx.
F(t) 10

It is known that the CDF of the past lifetime [X I X ~ t], t > 0, is given by

(

F(x) °< x < t
lP'(X ~ x I X ~ t) = F(t) , - -,

1, x > t,

(1)

so that the PDF of the past lifetime is f (x) / F (t) for all °< x < t.
Hereafter, we consider two nonnegative absolutely continuous and independent random

variables X and Y with the CDFs F(t) and G(t), respectively.

Definition 1. The reversed relevation transform of X and Y is defined by

x > 0,

~ (oo{ F(x) }
G#F(x) = 10 F(t) l/o~xg)+ l/x>t ) dG(t)

100 1
= G(x) + F(x) - dG(t),

x F(t)
(2)

where lA is the indicator function of the set A, i.e. lA (x) = 1 if x E A, and lA (x) = °if
x E A C

•

Generally, the inactivity time of X at a random time Y, denoted by X[y], is defined as

X[y] ~ [Y - X I X ~ Y]; see, e.g. [18]. Moreover, let X[Y] ~ [X I X .s Y] denote the total
time of X given that it is less than an independent random inspection time Y. Therefore, the
CDF of X[Y] is given by

lP'(X[Y] ~ x) = G#F(x), (3)

where the symbol # is defined in (2). If random variables X and Y are independent and
identically distributed (i.i.d.), then

where

JP>(X[Y] :s x) = F#F(x) = F(x)[l + T(x)], x > 0,

(4)T(x) = -log F(x) = 100

r(u) du, x > 0,

denotes the cumulative reversed hazard rate function of X; see, e.g. [10].

Example 1. (a) Let X and Y be independent nonnegative random variables having CDFs
F(x) = exp( -ax-Y ) , x > 0, and G(x) = exp(-cx-Y ) , x > 0, respectively, with a, c, y > 0.
From (2) and (3), we have

~ (_I_(cexp(-ax-Y)-aexp(-cx-y)), x>O,a:!=c,
lP'(X[Y] ~ x) = G#F(x) = c - a

(1 + cx-Y ) exp( -cx-Y ) , x > 0, a = c.
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(b) If F(x) = e-a/(eX-l), X > 0, and G(x) = e-c/(eX-l), x > 0, with a, C > 0, then

{

_l_(ce-a/(ex_l) - ae-c/(ex_l))~ x > 0, a i= c,
~ c-a

JP>(X[y] :s x) = G#F(x) = ( c) x

1 +-- e-c/(e -1), x > 0, a = c.
eX - 1

1159

Ageing notions and stochastic orders have many applications in various areas of science such
as reliability and survival analysis, economics, insurance, actuarial and management sciences,
and coding theory; see Shaked and Shanthikumar [32] for a detailed account. In the following,
we review some notions that are used in the sequel. Note that here and throughout this paper,
the terms 'increasing' and 'decreasing' are used in a nonstrict sense, and lR denotes the set of
real numbers.

Definition 2. If X is an absolutely continuous random variable with support ilx, u x), CDF F,
PDF f, and reversed hazard rate function r(t) = f(t)1 F(t), then

• X is said to have the increasing likelihood ratio (ILR) property if f (x) is log-concave or,
equivalently, the function I' (x) II (x) is decreasing in x E (Ix , U x );

• X is said to have the decreasing likelihood ratio (DLR) property if I(x) is log-convex
or, equivalently, the function f' (x) / f (x) is increasing in x E (Ix, U x);

• X has the DRHR if r (z) is decreasing in t E (Ix . U x) or, equivalently, T (x) = - log F (x)
is convex.

Moreover, if Y is an absolutely continuous random variable with support Ur . uy), CDF G, and
PDF g, then

• X is smaller than Y in the usual stochastic order (denoted by X :Sst Y) if F(t) :s G(t)
for all t E lR or, equivalently, F(t) ::: G(t) for all t E JR;

• X is smaller than Y in the likelihood ratio order (denoted by X :SIr Y) if I(x)g(y) :::
I(y)g(x) for all x :s y, with x, y E (lx, ux) U iiv ;uy);

• X is smaller than Y in the up-shifted likelihood ratio order (denoted by X :SIrt Y) if
X - x :SIr Y for all x :::: °or, equivalently, for each x :::: 0, we have g(t)ll(t + x)
is increasing in t E (Ix - x, ux - x) U Uv .uy), where alO is taken to be equal to 00

whenever a > 0.

Proposition 1. If X and Yare independent nonnegative random variables, then

X[Y] :Sst min{X, Y}.

Proof. Due to (2) and (3), for x > 0, we have

100 1
lP'(X[Y] :s x) = G(x) + F(x) - dG(t)

x F(t)

2: G(x) + F(x)100

dG(t)

= G(x) + F(x) - F(x)G(x).

The proof thus follows recalling that the last term is the CDF ofmin{X, Y}.
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1160 A. DI CRESCENZO AND A. TOOMAJ

Let us now consider a stochastic model that extends both cases treated in Example 1. Let
X and Y be absolutely continuous nonnegative random variables with CDFs F(x) and G(x),
and reversed hazard rate functions t x (x) and ry (x), respectively. These variables satisfy the
PRHRM with proportionality constant () > 0 if rr (x) = ()t x (x) for all x > 0 or, equivalently,
if

G(x) = [F(x)]8, x > o. (5)

The parent distribution function can be expressed as F(x) = e-T(x), x > 0, where T(x) is
defined in (4). The model (5) was first proposed by Lehman [23] in contrast to the proportional
hazard rate model. It is more flexible to accommodate both monotonic as well as nonmonotonic
failure rates even though the baseline failure rate is monotonic. For more details on the
applications and properties of the proportional hazard rate model see, e.g. [10], [15], [16],
[26], and [27], among others.

Proposition 2. Under the PRHRM (5), we have

for () > 0, () 1= 1.

Proof Under the PRHRM (5), we can verify that

100 1 ()
- dG(t) = --(1 - e-(8-l)T(x»),

x F(t) () - 1

This identity and (2) thus yield (6).

x > 0,

x > o.

(6)

Note that the assumptions of Proposition 2 are satisfied by the cases (a) and (b) shown in
Example 1, for a 1= c.

Example 2. Let Xm:m = max{X1, ... , Xm } be the lifetime of the parallel system consisting
of m components with absolutely continuous i.i.d. lifetimes Xl, ... , Xm having the common
CDF F. Moreover, suppose that Xi, i = 1, ... , m, and Y satisfy the PRHRM with proportion­
ality constant (), as in (5). Then after some calculations, from (2) we can express the CDF of
X m :m [Y] as the following generalized mixture:

x > 0,

for () 1= m.

In the following theorem we investigate the commutative property for the reversed relevation
transform.

Theorem 1. The reversed relevation transform ofX and Y is commutative ifand only if X and
Y satisfy the PRHRM.

Proof If X and Y satisfy the PRHRM as specified in (5), then (2) yields

~ ~ ()F(x) - G(x)
G#F(x) = F#G(x) = () _ 1 ' x > 0,
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for f:) > 0, f:) 1= 1, and the desired result follows. To prove the converse, we assume that, for all
x> 0,

100 1 100
1G(x) + F(x) - dG(t) = F(x) + G(x) - dF(t).

x F(t) x G(t)

Differentiating both sides of (7), we have

100 1 100
1f(x) - dG(t) = g(x) - dF(t),

x F(t) x G(t)

(7)

(8)

where f and g denote the PDFs of X and Y, respectively. Again, differentiating both sides of
(8), we obtain

f'(x) roo _1_ dG(t) _ f(x)g(x) = g'(x) roo _1_ dF(t) _ f(x)g(x). (9)
l, F(t) F(x) l, G(t) G(x)

From (7)-(9) and some algebraic simplification, we obtain

i.e.

f'(x) f(x)
-----
f(x) F(x)

g'(x) g(x)

g(x) - G(x)'
x > 0,

~ In f(x) = ~ In g(x) , x > 0.
dx F(x) dx G(x)

Integration on both sides yields

f(x) g(x)
In -- = In -- + constant, x > 0,

F(x) G(x)

or
f(x) = f:) g(x) ,
F(x) G(x)

x > 0,

where f:) is a positive constant. Thus, we obtain G (x) = [F (x)]8 ,x > 0, which completes the
proof.

Hereafter, we analyse some results that are dual to those given above. Let X and Y
be absolutely continuous nonnegative random variables with survival functions F(x) and
G(x), and hazard rate functions hx(x) = -(djdx) log F(x) and hy(x) = -(djdx) log G(x),
respectively. Then X and Y satisfy the proportional hazard rate model with proportionality
constant f:) > 0, if hy(x) = f:)hx(x) for all x > 0. This is equivalent to the model

f:) > 0, (10)

where F(x) = e- A(x) ,x > 0, is the parent survival function and A (x) = - log F(x) denotes
the hazard function; see, e.g. [15]. Let X (Y) denote the total time of X given that it exceeds
an independent random inspection time Y, i.e. X (Y) = [X I X > Y]. Then we have

lP'(X(Y) > x) = G#F(x) = G(x) + F(x) r -2- dG(t),Jo F(t)
x > 0, (11)

where the symbol # denotes the relevation transform introduced by Krakowski [20]. Equation
(11) was discussed in [18]; see also [6] and [30] and the references therein.
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The following result is analogous to Proposition 1 and, thus, the proof is omitted.

Proposition 3. IfX and Yare independent nonnegative random variables, then

X(Y) ~st max{X, Y}.

Let us now see the analog of Proposition 2.

Proposition 4. Under the proportional hazard rate model (10), we have

for e > 0, e i= 1.

Proof. Since

l
x 1 e

-_- dG(t) = --(1 - e-(8-l)A(x)),
o F(t) () - 1

x > 0,

x > 0,

the proof follows from (11).

Example 3. Suppose that X l:m = min{X1, ... , Xn} is the lifetime of the series system con­
sisting of m components with absolutely continuous i.i.d. lifetimes Xl, ... , Xm , having the
common CDP F. Also, suppose that Xi, i = 1, ... , m, and Y satisfy the proportional hazard
rate model with proportionality constant e, as in (10). By means of some calculations, from
(11) we obtain the survival function of X l:m (Y), which is expressed as a generalized mixture:

for () :/= m.

_ _ epm(x) - mp8(x)
G#Fl:m(X) = -----­

e-m
x > 0,

The relevation transform is not always commutative. Indeed, in the following theorem we
give a necessary and sufficient condition leading to such a property. Being similar to Theorem 1
we provide only a sketch of the proof.

Theorem 2. The relevation transform ofX and Y is commutative if and only if X and Y satisfy
the proportional hazard rate model.

Proof. Let X and Y satisfy the proportional hazard rate model as in (10). From (11), we
thus have

x > 0,

for e > 0, e i= 1, and then the relevation transform is commutative. To prove the converse, we
assume that, for all x > 0,

- - l x
1 - - l x

1G(x) + F(x) --- dG(t) = F(x) + G(x) --- dF(t).
o F(t) 0 G(t)

Differentiating both sides and after some calculations, we obtain

f'ex) f(x) g'(X) g(x)
--+--=--+--
f(x) F(x) g(x) G(x)'

x > 0,
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so that
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x > 0.~ln ~(x) = ~ln ~(x),
dx F(x) dx G(x)

Such a relation implies that G(x) = [F(x)t),x > 0, for () > 0, thus completing the proof.

The characterization of distributions based on the relevation transform has been the object
of various investigations; see, e.g. Lau and Prakasa Rao [21] and [22]. We point out that
[14, Theorem 9] states that the relevation transform of two i.i.d. nonnegative continuous random
variables is identically distributed to their convolution, i.e. F#F (x) = F *F (x) for all x ~ 0,
if and only if they have exponential distribution. However, due to Proposition 1, a similar result
cannot hold for the reversed relevation transform.

3. Sequence of weighted distributions

Let X be an absolutely continuous nonnegative random variable with PDF !(x) and CDF
F(x). Based on X, we construct a sequence of random variables {Xn , n ~ I} as

or, equivalently,

[Xn+ l I x, = t] ~ rx, I x, ~ t], n ~ 1

n ~ 1,

(12)

(13)

where X~ is an independent copy of Xn . It is easy to show that the corresponding CDFs
F; (x) = P(Xn ~ x) are given as, for all x > 0,

F, (x) = F(x), n ~ 1, (14)

where

Tn(x) = -log Fn(x) =100

Tn(u)du,

denotes the cumulative hazard function of Xn , and

x > 0, (15)

!n(U)
r (u) ---n - Fn(u) , u > 0, (16)

is the reversed hazard rate of X n . From (14), we can see that the corresponding densities are
given by, for x > 0,

!1(x) = f tx),

Due to (15), for x > 0, we have

!n+l(X) = Tn(x)!n(x), n ~ 1. (17)

Tn+l (x) = -log Fn+l (x) = Tn (x) - 10g(1+ Tn (x)),

and, thus, from (17), we obtain

n ~ 1,

n

!n+l(X) = Tn(x)!n(x) = Tn(x)Tn-l (X)!n-l (x) = ... = 01i(x)!(x),
i=1

n ~ 1. (18)
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x E~,

From (18), we see that fn+l (x) is a sequence of weighted PDFs. We recall that, given an
absolutely continuous random variable X having density f and a nonnegative real function w,
the associated weighted random variable X W has the PDF

W w(x)f(x)
I (x) = JE[w(X)) ,

provided that 0 < lE[w(X)] < 00. See [25], [29], and [2] for some recent papers on weighted
distributions.

The sequence of random variables {Xn- n ~ I} is suitable to describe an iterative process,
where X n denotes the random time required to perform a task at the nth stage. For instance,
consider a training procedure where, given that the nth learning time X; has duration t, the
(n + l)th random time is identically distributed to Xn conditional on Xn :::: t. In some sense,
(12) expresses that the information collected at each stage allows the next step of the procedure
to have a stochastically smaller duration. Alternatively, {Xn , n ~ I} may be viewed as the
sequence of lifetimes of an item that is repaired instantaneously after each failure, such that
after each repair the duration of the next lifetime is stochastically smaller than the previous,
due to imperfect repairs and weakening caused by wear.

From (14), since Tn(x) ~ 0 for all x > 0 and n ~ 1, we derive that Fn+l (x) ~ Fn(x) for
all x > O. Hence, we conclude that Xn ~st Xn+l for all n ~ 1. In the following theorem, we
obtain the same result for a stronger stochastic order.

Theorem 3. Consider the sequence of random variables {X n , n ~ I} as defined in (13). For
all n = 1, 2, ... , we have

n ~ 1.

Proof. From the definition of the likelihood ratio order and (17), we conclude that

fn+l (x) = 1: (x)
fn(x) nvr- )»

The right-hand side of (19) is decreasing in x > 0 and, hence, the claimed result follows.

Theorem 4. Let n ~ 1. Ifx, is ILR then

(19)

(20)

x, ~lrt Xn+l .

Proof. From the definition of the up-shifted likelihood ratio, it is sufficient to prove that the
function fn+l (x + t)/fn(x) is decreasing in x for all t > O. First, from (17), we observe that

In+! (x + t) = Tn (x + t) In (x + t).
fn(x) fn(x)

On the other hand, recalling (15), we have

~{Tn(X + t)ln(x + t)}
ax fn(x)

[-Tn (x + t)fn (X + t) + Tn(x + t)f~ (x + t)]fn (x) - Tn (x + t)fn (x + t)f~ (x)
=

f;(x)

Tn(x + t)[f~(x + t)fn(x) - fn(x + t)f~(x)]

:::: f;(x) .
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The last expression in (20) is negative since, by assumption, X n is ILR, i.e.

f~(x) f~(x + t)
-- > for all 0 < x :s t + x.
fn(x) - fn(x + t)

The proof is thus completed.

Remark 1. If X is DRHR, i.e. rex) is decreasing, then T(x) is convex.

Theorem 5. Let n ~ 1. Ifx, is DLR then Xn+l is DLR.

Proof From (17), we need to show that

10gfn+I(X) = logfn(x) + log Tn(x)

1165

(21)

is convex for all x > O. If X n is DLR then log fn(x) is convex. On the other hand, it is well
known that if Xn is DLR then Xn is DRHR and, hence, Tn(x) is convex due to Remark 1.
Since the function Iog'(-) is convex and increasing, log Tn(x) is convex. From (21), we have
that log fn+ I(x) is the sum of two convex functions and then the desired result follows.

Remark 2. If Xn is ILR then Xn+l is not necessarily ILR. To show this fact, consider the
following example.

Example 4. Suppose that Xl has CDF F(x) = x(l, 0 < X < 1 (a > 0). It is easy to see that
rex) = alx and T(x) = -a log x, 0 < x < 1. It follows that

f{(x)
=

flex)

a-I

x
o < x < 1,

is decreasing in x E (0, 1) for all a ~ 1 and, hence, X 1 is ILR. (Note that T (x) is convex
according to Remark 1.) On the other hand, we have

f~(x)

f2(X)

1 + (a -1)logx

x logx
o< x < 1. (22)

It is easy to show that the right-hand side of (22) is not decreasing in x for all a ~ 1 and, thus,
X2 is not ILR.

Proposition 5. Let q (x) be a nonnegative function of x > O. If q (x) rl (x) is a decreasing
function ofx > 0 then q (x) rn (x) is also a decreasing function ofx > 0 for all n = 1, 2, ....

Proof We just show that under the hypothesis, the function q(x)r2(x) is a decreasing
function of x > O. From (14) and (17), we have

f2(X) TI (X)fl (x) Tl (x)
q(x)r2(x) = q(x) F2(X) = q(x) (1 + Tl (X»Fl (x) = q(x)rl (x) 1 + Tl (x) . (23)

Since x / (x + 1) is an increasing function of x > 0 and the function TI (x) is decreasing with
respect to x > 0, then the function Ti(x)/(1 + Ti(x)) is decreasing with respect to x > O.
From (23), we thus obtain that q(x)r2(x) is a decreasing function of x > O. The rest of the
proof follows by induction.
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Corollary 1. IfXI is DRHR then x, is DRHRfor all n ~ 2.

Proof. The proof follows from Proposition 5 by taking q (x) = 1 for all x > o.
Let us now consider the following property.

Definition 3. Let X be an absolutely continuous random variable with support il x, uX ). We say
that X has theDRHRin a length-biased sense (LBDRHR) if xr(x) is decreasing inx E il«, ux).

We remark that a necessary and sufficient condition such that X is LBDRHR has been given
in terms of stochastic comparison of quantile-based distributions in [13]. Other results on the
characterization given in Definition 3 will be the subject of a future investigation.

Corollary 2. IfXI is LBDRHR then x, is LBDRHRfor all n ~ 2.

Proof. The proof follows from Proposition 5 by taking q (x) = x for all x > o.
Consider now the following stochastic order from [31].

Definition 4. Let X and Y be absolutely continuous random variables with reversed hazard
rates rx(x) and ry(x), respectively. The random variable X is said to be smaller than Y in
relative reversed hazard rate order (denoted by X ::::RRH Y), if ry (x) / t x (x) is an increasing
function of x.

For instance, let X and Y denote the lifetimes of two components; given that the components
have been found to be failed at the same time, then X ::::RRH Y states that Y has been lived
longer than X or, equivalently, X aged faster than Y.

Proposition 6. The sequence ofrandom variables defined in (13) satisfies X; ~RRH Xn+ l for
all n ~ 1.

Proof. From (14), (16), and (17), we have

r n+ l (x)

rn(x)

We can see that the function Tn (x) / (1 + T; (x)) is decreasing with respect to x > 0 for all
n ~ 1, which completes the proof.

We remark that the results stated in Theorem 3 and Proposition 6 are not related to each
other, since likelihood ratio order does not imply RRH rate order and vice versa.

Theorem 6. Consider the sequence of random variables {X n , n ~ I} as defined in (13) with
the reversed hazard rate functions defined in (16), and let Y be an absolutely continuous
nonnegative random variable with the reversed hazard rate function ry (x), x > O. IfX1 and Y
satisfy the PRHRM with G(x) = [Fl (x)]8, x > 0, then X n ::::RRH Y for all n = 1,2, ....

Proof. Since rl (x)/ry(x) = e-l , x > 0, from (5), we have

r2(x)

ry(x)

rl (x) Tl (x) = 0- 1 Tl (x)

ry(x) 1+ T; (x) 1+ Ti (x)

The function Ti (x) / (1 + Tl (x)) is decreasing with respect to x > 0 and, hence, X2 :SRRH Y.
The rest of the proof follows by induction.
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4. Connection with entropy and covariance

In this section we obtain some results about the connection between the entropy and the
inactivity time of the new weighted distribution function considered in the previous section.
One of the most important measures of uncertainty is the differential entropy introduced by
Shannon [33]. For an absolutely continuous nonnegative random variable X having PDF f,
the differential entropy is defined by

(24)H(X) = -100

f(x) log f(x) dx,

where 'log' means natural logarithm and, by convention, 0 log 0 = O. The entropy H (X)
gives the expected uncertainty contained in f (t) about the predictability of an outcome of the
random variable X. It is known that in many realistic situations, such as in survival analysis and
reliability, one has information about the past time, i.e. the time elapsed after failure till time t,
given that the unit has already failed. The entropy (24) applied to a conditioned random variable
is useful in order to measure uncertainty in such situations. Di Crescenzo and Longobardi [11]
indeed considered the entropy for the past lifetime, called past entropy at time t of X, denoted
by

H(t) = - r f(x) 10 f(x) dx, t > 0;10 F(t) g F(t)

see also [28]. Furthermore, the concept ofdynamic cumulative entropy as an alternative measure
of uncertainty for the inactivity time was introduced in [12] and is defined as

(25)t > 0,

i t F(x) F(x)
e8(X; t) = - --log-- dx

o F(t) F(t)

= __1_ t F(x)logF(x)dx - T(t)j1,(t),
F(t) 10

where jl(.) and T (.) are defined in (1) and (4), respectively. Note that

e8(X) = lim e8(X; t) = - roo F(x) log F(x) dx = roo F(x)T(x) dx, (26)
t-+oo 10 10

where e8(X) is called the cumulative entropy of X. Di Crescenzo and Longobardi [12] also
showed that the dynamic cumulative entropy and the mean inactivity time are connected as

e8(X; t) = lE[jl(X) I X :s t], t > 0

and, thus,

e8(X) = lE[jl(X)]. (27)

Now, we extend the results of [18] to the case of past time. Based on Xl ~ X, we consider
the sequence of random variables {X n , n ::::: I} with the corresponding distributions Fn (x) as
defined in (14), and denote by

JLn (t) = lE[Xn I x; :s t], t > 0, (28)

the mean past lifetime of Xn , n ::::: 1. Hereafter, we obtain the main results and connections
between the dynamic cumulative entropy and the reversed hazard rate function.
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Theorem 7. For any t > 0, and for all n = 1, 2, ... , we have

Proof. For t > 0 and n 2: 1, we have

where the last equality is obtained from (25). To prove the second expression, it is easy to
show that the random variable Tn(Xn) is exponentially distributed with unity mean and, hence,
JE[Tn(Xn)] = 1. Now, consider the following expression for t > 0:

cov[X n , t; (Xn) I x, ~ t] = JE{[Xn - JE(Xn)][Tn(Xn) - JE(Tn(Xn))] I x, ~ t}

= IE[Xn t; (Xn ) I x, ::s t] - ~n (t)

- JE(Xn)JE[Tn(Xn) I x; ::s t] + JE(Xn ) . (30)

We have

(31)

(32)

Also, we see that

Integrating by parts, we can derive

and by using (25) and after simplification, we obtain

(33)

Substituting (31) and (33) into (30), the desired result (29) finally follows.
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From Theorem 7, the following corollary is derived.

Corollary 3. Under the conditions ofTheorem 7, we have, for n ~ 1,

lim lE[Tn(Xn) Ix, ~ t] = lE[Tn(Xn)] = e8(Xn),
t~oo in (X n) in (X n)

lim cov[Xn, r; (Xn ) I x, ~ t] = cov(Xn, t; (Xn ) ) = -eeix.;
t~oo

1169

Remark 3. Note that the initial random variable was arbitrarily selected. Therefore, for any
absolutely continuous nonnegative random variable X, the following identities hold:

lE(T(X)) = e8(X),
i(X)

Moreover, for all t > 0, we have

cov(X, T(X)) = -e8(X).

lE[ T(X) ] = e8(X; t) + [l(t)T(t),
reX) I X ~ t

cov[X, T(X) I X ~ t] = T(t)[JL(t) -lE(X)] - e8(X; t),

where JL(t) = lE[X I X ~ t], t > 0, denotes the mean past lifetime of X.

Remark 4. Consider the sequence of random variables as defined in (13). From (14), we have,
for n ~ 1,

x > o.
Hence, recalling (26), we obtain the following iterative expression for the mean of Xn :

n ~ 1, (34)

which also gives a new probabilistic meaning for the cumulative entropy.

Theorem 8. For all n = 1, 2, ... , we have

Proof. From (1) and (28), we have JL(t) = t - [let), and then

JE[XnXn+l I X; = t] = tJE[Xn+l I X; = t] = tlE[Xn I X; ~ t] = t{t - [In(t)} for t > O.

Hence,

(36)

Moreover, from (34) and (36), we have

cov(Xn, Xn+l ) = lE[X~] -lE[XniLn(Xn)] - JE2[Xn] + lE[Xn]e8(Xn)
= var[Xn] - cov(Xn, iLn(Xn))
= cov(Xn, Xn - [In(X n)).

The second equality follows from e8(Xn) = lE[[ln (X n)], due to (27). The desired result then
follows.
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Now we use the probabilistic mean value theorem (see [9]) to obtain an iterative result for
e8(Xn+l ). We first recall the following result (see [12, Equation (12)]).

Lemma 1. The derivative of the mean inactivity time of X, given in (1), can be expressed in
terms of the reversed hazard rate function (when existing) as

iL'(t) = 1 - r(t)iL(t), t > 0: F(t) > o. (37)

Theorem 9. For the sequence of random variables {X n, n ~ I} defined in (13) andfor all
n = 1, 2, ... , we have

(38)

where iL~+1(z) can be obtainedfrom (37) and Z is an absolutely continuous nonnegative random
variable having PDF

z > O. (39)

Proof. Since Xn+l Sst Xn and e8(Xn+l ) = lE[iLn+l (Xn+l )], the desired result immedi­
ately follows from [9, Proposition 3.1 and Theorem 4.1]. Note that the PDF in (39) is obtained
from (14) and (34).

For the sequence of random variables defined in (13), we can verify that, for t > 0,

n = 1,2, .... (40)

Hence, from (40), we can write (38) as

n = 1,2, ....

t > 0,

5. An integral operator

Stimulated by some results shown in [18, Section 4], we now define a new operator which is
dual of the T, operator introduced bY""Dickson and Hipp [8]. It is known that the Dickson-Hipp
operator for any s E lR, denoted by T,f (t), is defined by

Tsf(t) = [00 e-s(x-t) f(x) dx,

where f (x) is an integrable function. Applications and properties of the T, op~rator can be
found in [7], [8], and [24], among others. For simplicity, we define an operator T, f(x) for an
integrable function f and for s E lR, by

Tsf(t) =1t
e-s(t-x) f(x) dx, t > O. (41)

We can see that, for t > 0, the two operators are related by the following identity:

"" sfT-sf(t) + Tsf(t) = e cLs[f], s ~ 0,
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where

1171

s ~ 0,£s[f] =100
e-SXf(x)dx,

denotes the Laplace transform of the function f . Note that (41) recalls a generalized Hardy
operator, similar to that considered in [5, Definition 2]. Moreover, T, f(t) can be viewed as a
convolution-type operator; see [1]. For instance, if s > °and f(x) is a PDF then, due to (41),
(ljs)Ts f(t) is the convolution between f(x) and an exponential PDF with parameter s.

Suppo~ that X is an absolutely continuous nonnegative random variable with the CDF F.
Then the T, operator of F is defined by

TsF(t) = l t
e-s(t-x)F(x)dx,

Integrating by parts, from (41) and (42), it follows that

I"J I"J

Tsf(t) = F(t) - sTsF(t),

t > 0, s E JR.

t > 0.

(42)

If X is an arbitrary absolutely continuous random variable with PDF f then, from (41), we
have

Hence, (41) can be written in terms ofthe moment generating function of X when t goes to 00.

Now, we have an iterative result for TsFn(t).

Theorem 10. Let {Xn, n ~ I} be a sequence of absolutely continuous nonnegative random
variables with the corresponding CDFs defined in (14) and let TsFn(t) be defined as in (42).
Then, for t > 0,

I"J I"J I"J

Ts Fn+ l (r) = [1 + Tn(t)]TsFn(t) + Tsqn (s, t),

where qn(s, t) = Tn (t)TsFn(t).

Proof. From (14) and (42), we have

n ~ 1, s E JR, (43)

TsFn+l (t) =l t
e-s(t-x) Fn(x) dx + l t

e-s(t-x) t, (x)Fn(x) dx

= TsFn(t) +l t
e-s(t-x) [100

in(u)du]Fn(X)dX

= TsFn(t) +lt
e-s(t-X)[l

t
in(u)du]Fn(X)dX

+l t
e-s(t-x) [[00 in(u)du]Fn(X)dX

= [1 + Tn(t)]TsFn(t) + l t
e-S(t-U)i

n(U)[l U
e-S(U-X) Fn(x) dx ] du

= [l + Tn(t)]TsFn(t) + l t
e-s(t-U)in(u)TsFn(u) du,

and the proof is completed.
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The following corollary can be obtained from (27) and (43) by setting s = o.
Corollary 4. Under the conditions ofTheorem 10, we have,for t > 0,

n 2: 1. (44)

5.1. Computational results

We conclude this paper with a few illustrative examples which shed some light on the
behavior of the sequences of random variables defined in (13).

Example 5. Let X 1 be uniformly distributed on [0, 2]. Then we have T, (z) = -log t /2,
ill (t) = t /2, and e8(X1; t) = t /4, 0 < t < 2 (see [12]), so that

(
t, (X1) ) __ t t t

IE = e8(XI; t) + ~I(t)TI(t) = - - -log-,
reX1) I Xl ::s t 4 2 2

and
2 - t t t

cov(X1, Tl (X 1) I Xl ::s t) = t, (t)[JLl (t) - IE(X1)] - e8(X1; t) = -2- log 2 - 4·
From (35), we obtain

COV(Xl, X2) = COV(Xl, Xl - fll(Xl)) = ! var(Xl) = ~.

Finally, from (44), we obtain

I">J t2 [3 t]ToF2(t) = Fl(t)[fll(t)(1 + TI(t)) + e8(Xl; t)] ="4 2 -log 2 forO < t < 2.

It is difficult to obtain neat analytical results for the sequence of random variables {Xn- n 2: 1}
and, therefore, we are forced to proceed via numerical computations. To this aim, in Figure 1 we
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FIGURE 1: COFs of Xl, X2, ... , Xs when X I follows the distributions given in Table 1.
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TABLE 1: Starting distribution functions.

(a) F(x) = x/2, 0 < x < 2
(b) F(x) = e-x -

2
, x > 0

(c) F(x) = e-3/ (e
x

_ l) , x > 0
(d) F(x) = 1 - e-x , x > 0
(e) F(x) = 1 - e-x 2

, x > 0
(f) F(x) = 1 - e-x

/
2(1 + x/2 + x 2/8), x > 0

TABLE 2: The mean of the starting distribution given in Table 1.

(a) (b) (c) (d) (e) (f)

lE(Xl) 1.00000 1.77245 1.93791 1.00000 0.88622 6.00000
lE(X2) 0.50000 0.88662 1.15166 0.35506 0.50659 3.35935
lE(X3) 0.18066 0.60680 0.73945 0.10492 0.26035 1.82059
lE(X4) 0.04713 0.46975 0.51103 0.02483 0.11826 0.94489
lE(Xs) 0.00906 0.38774 0.37544 0.00459 0.04717 0.46617

TABLE 3: The cumulative entropy of the starting distribution given in Table 1.

(a) (b) (c) (d) (e) (f)

e8(Xl) 0.50000 0.88623 0.78625 0.64494 0.37963 2.64065
e8(X2) 0.31934 0.27935 0.41221 0.25014 0.24624 1.53876
e8(X3) 0.13353 0.13712 0.22842 0.08009 0.14209 0.87570
e8(X4) 0.03807 0.08201 0.13559 0.02024 0.07109 0.47572
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show plots of the cumulative distribution of the random variables Xl, X2, ... , X5 for different
starting distribution functions that are listed in Table 1. In the figure, the solid line corresponds
to the COP of Xl, the long-dashed line corresponds to the COP of X2 and so on. Moreover, we
compute numerically the mean of the recursive random variables as well as the corresponding
cumulative entropy; see Tables 2 and 3, respectively. Recalling (34), the cumulative entropy is
computed as the difference of two consecutive means. As expected, the mean of X; decreases
when n increases, whereas the cumulative entropy decreases when n increases. According to
the numerical findings, we expect that the cumulative entropies are decreasing for any given
starting distribution function.
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