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OPEN ENGEL MANIFOLDS ADMITTING COMPACT
CHARACTERISTIC LEAVES

TAKASHI INABA

We give an example of an Engel structure on the 4-dimensional Euclidean space
which admits a compact characteristic leaf. We also show that every Engel structure
on an open 4-manifold can be modified so that the resulting structure has a compact
characteristic leaf.

1. INTRODUCTION

An Engel structure is a 2-plane field on a 4-manifold which is "most non-integrable".
Given an Engel structure V, there uniquely exists a certain line field £(D) tangent to
V, called the characteristic line field of V. We are interested in how rich the dynamics
of C(V) can be. In this paper we mainly consider Engel structures on the 4-dimensional
Euclidean space R4. For the standard Engel structure VQ on R4, the leaves (integral
curves) of the characteristic line field are parallel straight lines. In [3] and [4], Gershkovich
modified Vo in several ways and produced some "exotic" Engel structures on R4. But
none of them has a compact characteristic leaf. So, in [3], he posed the following question:
Does there exist an Engel structure on R4 whose characteristic line field has a compact
leaf? In this paper we shall answer the question by constructing a simple concrete
example. We also show that by a similar construction we can modify a given Engel
structure on an open 4-manifold so as to have a compact characteristic leaf.

2. STATEMENT OF THE RESULT

Let M be a 4-dimensional manifold and V a 2-plane field on M. Then V is an Engel
structure on M if the Lie bracket V2 = [V, V] is a 3-plane field and [T>, V2] = TM. (Here,
we have identified a plane field with the sheaf of local vector fields which are tangent to
the plane field.) A manifold with an Engel structure is called an Engel manifold.
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Any Engel structure V has a canonical line field C(V) C V characterised by the
property that [C{V),V2] is contained in V2. The line field £{T>) is called the char-
acteristic line field of T>, and integral curves of £(2?) are called characteristic leaves of
V.

In [5], Golubev shows that if T>t, 0 ^ t ^ 1, is a smooth family of oriented Engel
structures on a closed oriented 4-manifold M such that C{Vt) = £(T>0) for all t, then
there exists a smooth family of diffeomorphisms <pt of M such that (<Pt),T>o — T>t for
all t. Thus if we want to investigate perturbations of Engel structures it is essential to
understand the behaviour of the associated characteristic line fields.

The most naive question on this line may be the following.

QUESTION. Given a line field £ on a 4-manifold M, can one find an Engel structure V
whose characteristic line field coincides with £?

There are some necessary conditions that £ should satisfy: The normal bundle of
£ must be trivial and £ must admit both a transverse contact structure and a leafwise
projective structure ([2, Proposition 3.4], [8]). But the complete answer is not known.
(See the introduction of [9].)

In [3], Gershkovich studied various properties of Engel structures and constructed
many examples. Then he asked, among others, if there exists an Engel structure on
R4 with a compact characteristic leaf. The main purpose of this paper is to give the
following.

THEOREM 1. There exists an Engel structure on R4 which admits a compact
characteristic leaf.

We shall also construct analogous examples on other open 4-manifolds. (See Theo-
rem 2 in Section 4 for the precise statement.)

3. CONSTRUCTION ON R4

We shall prove Theorem 1 by an explicit construction.
First of all we recall a basic method of constructing an Engel structure. Let N be

a 3-manifold and £ a paralellisable contact structure on N. This means that there exist
two vector fields £ and TJ on N such that £ is spanned by them at each point of N. Then
we construct an Engel structure on N x R (or on N x S1) as follows: Define vector fields

on N x R (or on N x Sl) by X = — and Y = (cos0)£ + (sm9)r) {6 G R or 51). Let
ua

V = V(£,T)) denote the 2-plane field spanned by X and Y. Then one can easily check
that V is an Engel structure. Moreover, one sees that the characteristic line field £(X>)
of this Engel structure is spanned by X. For convenience, hereafter we call T>(£,rj) the
Engel structure obtained from (£, 77) by the basic method.

Now we shall construct a desired Engel structure on R4 by gluing three pieces to-
gether.
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The first piece (A,VA) is simply defined as follows: Let A = D2 x [—1,1] x S1

= {(x,y,z,0) e R 3 x S1 | x2 +y2 ^ 1, - 1 ^ z ^ l } , and give on it an Engel structure

by the basic method. Namely, put £0 = w~ + z-z- and T]0 = — for (x, y, z) G R 3 . Then
ox ay az

£o and 770 span a standard contact structure £Q on D2 x [—1,1]. We define the Engel
structure VA on A by T>A = T>(£0,r}0). Here we make an obvious remark that all the
characteristic leaves of T>A are compact.

The second piece (B,T>B) is also quite simple. Let T>0 be an Engel structure on
R4 defined by Vo = Z>(£o,»7o)> where £0 and 7?0 are as above. Then, we dig a hole
H = {(x,y,z,6) 6 R4 I x2 + y2 < 4, - 2 < z < 2, 9 > - l } in R4, and define B by
B = R4 - H and VB to be the restriction of Vo to B.

The third piece (C,VC) is constructed as follows: Set C = {(x,y,z,9) € R 3 x 51 |
1 ^ x2 + y2 ^ 4, —1 < z ^ 1, — e < 9 ^ e(mod27r)}, where e is a small pos-
itive number. We shall construct an Engel structure T>c by modifying the one ob-
tained by the basic method. Denote by (p, tp) the polar coordinates for (x, y). Namely,
x = pcosip and y = psinip. Let A be a smooth function defined on the closed in-
terval 1 ^ p < 2 such that X(p) = 0 near p = 1, that X(p) = 1 near p = 2, and
that 0 s$ A(p) ^ 1 for all p. Let $ : C -> {(a;,j/,z,fl) € R3 x 5 1 | 1 ^ x2 + y2

^ 4 , — 1 ^ 2 $ C l } b e a map defined by $>(pcos(p, psin<p,z,9) = (pcosip, psinip, z, 9+<p).

Now, following the basic method, set X — —— and Y = (cos#)£0 + (sin 0)770, where £0

ov
and 770 are the vector fields defined above. Then we modify Y and make a new vector
field Y = \{p)Y + ( l - A(/9)) ($- 1 |$ ( c ) ) ,F . Our plane field Vc is defined to be the one
spanned by X and Y.

LEMMA 1 . We have the following.

(1) Vc is an Engei structure.

(2) Y = Y near p = 2 .

(3) <b$ = Y near p = 1 .

PROOF: (2) and (3) are obvious. Let us prove (1). A direct computation shows that

Y = JA(p)cos0+ (l-X(p))cos(9 + (p)\to+ (A(p)sin0+ (l - A(p)) sin(0 + <?)}%

l-A(p) .. . . , 9
H ^^cos^ + ^j^sin^- zcos^)—.

p 00

We put Z = [X, Y]. Then, one can easily check that L(X, Y, Z) = L(£o, 770, ^ r ) at every

point of C, where L( ) means the linear span. Moreover, we see that [Y, Z] does not
belong to L(X, Y, Z) at any point of C. In fact, a direct computation shows that

[Y, Z] = {\(p)2 + (1 - A(p))2 + 2A(p)(l - A(p)) cos V
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, ~^z)> anc* the right hand side of this equality never vanishes. This implies

that T>c is an Engel structure, completing the proof. D

Now we shall glue these three pieces together. Denote the two connected components
of dC by diC = {p = 1} and d2C = {p = 2}. First, we paste C and B by <,, where
i : d-iC —»• dB is the inclusion map. Next, paste C and A by $, where we regard $ as
the map $ : d\C —> 9̂ 4 denned by <J>(cosy>,sin</?,z,9) = (cos</?,siny?,z,0 + </?). Denote
the resulting space by W:

w = A\JC\JB.

Then, one can check that the Engel structures on the pieces match and produce a well-
defined Engel structure on W. Obviously, the characteristic line field of this Engel struc-
ture has compact leaves in A. Finally, take the interior of W and denote it by M. Then,
M is diffeomorphic to R4. In fact, this can be seen as follows: Let 7 and 6 be, respec-
tively, the longitudinal loop (that is, the loop defined by <p — 0) and the diagonal loop
(that is, the loop defined by <p = 9) of dD2 x S\ where tp 6 3D2 and 6 € S1 are the
angular coordinates. Then, there exists a diffeomorphism h of D2 x S1 to itself such that
h(<y) = 6. It follows easily from this observation that A (J C is diffeomorphic to A \J C

(the manifold obtained from A and C by pasting d\C to dA via 77), where 77: d\C —> dA
is the map defined by 7?(cosip, sin<p, z, 6) = (cos(-0),sin(-0), z, tp). Thus we have

is

a disk D such that dD = a

Figure 1
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as desired, where « means diffeomorphic. The Engel structure induced on M has a
compact characteristic leaf in Int A. This completes the construction and Theorem 1 is
established.

Following the referee's advice, we would like to give here a picture (Figure 1) for
visualisation of our manifold M. Let a = < ((1 — e) cos 6, (1 — e) sin 9,0,6) \ 6 £ Sl> C A,

where 0 < e < 1. The figure indicates how a bounds a disk in M. Here we put
Ao = An (R2 x {0} xSl),B0 = Bn (R2 x {0} x R ) and Co = Cn (R2 x {0} x R) .

4. CONSTRUCTION ON OTHER OPEN MANIFOLDS

In this section, we shall show that the same construction as in the previous section
can in fact be applied to modifying any Engel structure on any open 4-manifold to create
a compact characteristic leaf. Here, by an open manifold we mean a C°° non-compact
(paracompact, Hausdorff) manifold without boundary. We have the following.

THEOREM 2 . Let M be an open 4-manifold and V an Engel structure on M.
Then one can modify V to obtain a new Engel structure on M whose characteristic line
field has a compact leaf.

P R O O F : Let M and V be as above. Take an arbitrary point p of M. Then,
since the Darboux theorem holds for Engel structures (see [1]), we can find a com-
pact neighbourhood N of p such that there exists a diffeomorphism ip : {(x,y,z,9)
G R4 | x2 + y2 < 4, - 2 < z ^ 2, - 1 ^ 6 < 1} -> N and that the Engel struc-
ture V restricted to N is just ip,T>(^o,Tio), where I>(£o,»7o) is the Engel structure de-
fined in Section 3. Next, we shall take a smooth proper simple curve 7 : [0,00) -» M
such that 7(0) = tp(0,0,0,1) and that 7((0,00)) C M - N, where proper means, as
usual, that for each compact set K of M the set ^~X(K) is also compact. Such a
curve can be constructed, for instance, in the following way. Take a Morse function
f on M such that / - 1 ( (—00, t]) is compact for all t € R (see [7, Corollary 6.7]) such
that every non-negative integer is a regular value of / , that / (7(0) ) = 0, and that
JV C /~1((—00,0]). Let {{/„} be a decreasing sequence of codimension 0 submanifolds
of M such that Un is a non-compact connected component of /~1([n, 00)) for each n.
Then, one can construct a simple smooth curve j n : [n, n + 1] -> Un - Int Un+i such that
7n(n) € dUn, 7n(n + 1) G dUn+\ and 7n(n + 1) = 7 n + i (n + 1), and that the combined
curve 7n*7n+i : [n, n + 2 ] —* Un-lntUn+2 is still simple and smooth. Now, one can define
a desired curve 7 : [0,00) -> M by setting j(t) = jn(t) for t G [n, n + 1]. We then take
a smooth proper embedding j : D3 x [0,00) -> M such that j | ({0} x [0,00)) = 7 and
that j I (JD

3x[0,oo))nA^ = j(£»3x{0}) C i>[{{x,y,z,\) \ x2+y2 ^ 4, - 2 O < 2 } ) .
(Such an embedding can be constructed by considering a tubular neighbourhood of the
image of 7.)
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Now, let H be the interior of the union of iV and the image of j , and put B = M — H.
Denote by T>B the restriction of V to B. The rest of the construction is the same as in the
previous section. Let (A, VA) and (C, Vc) be the pieces denned in Section 3. By pasting
A, B and C via $ : dxC -» dA and i: d2C ->• cW(c 35) just as in Section 3, and taking
the interior of the resulting manifold, we obtain an open manifold M diffeomorphic to
the original manifold M, and the Engel structure of M induced from those of A, B and
C admits a compact characteristic leaf. Theorem 2 is proven. D

5. REMARKS

REMARK 1. Compact characteristic leaves of Engel structures constructed in this pa-
per are all null-homotopic. Thus, we have actually shown that every open 4-manifold
admitting an Engel structure admits an Engel structure with null-homotopic compact
characteristic leaf. The author does not know if the same is true for compact 4-manifolds.
The only one example of a compact Engel manifold with null-homotopic characteristic
leaves the author knows so far is the following. (This is communicated to him by Y.
Mitsumatsu.) Let £' be a contact structure on S2 x S1 which is homotopic to % © 0,
where ~H is a vector bundle on S2 whose unit circle bundle is diffeomorphic to S3. The
existence of such a contact structure is guaranteed by Lutz' existence theorem for con-
tact structures ([6]). Take a prolongation (see [8]) of £' and a fiberwise double cover
P£' of the projectivisation P£ ' of £'. Then we obtain an Engel structure on P£', whose
characteristic leaves are all null-homotopic circles, as desired.

REMARK 2. (We use the notation in Section 3.) By Montgomery's deformation theorem
in [8, Theorem 4], we can modify our examples so that the resulting characteristic line
fields have various holonomies (Poincare maps): Let h be an arbitrary contact diffeomor-
phism of the standard contact manifold (D2 x [—1, l],£o) which is C°°-near the identity
and is the identity near the boundary d(D2 x [—1,1]). Then by Montgomery's theorem
we obtain an Engel structure VA on A = D2 x [—1,1] x Sl such that C(DA) is transverse
to D2 x [—1,1] x {0} for each 6 G S1, and that the holonomy of C{VA) coincides with
h. Since VA = VA near dA, in the construction of the previous sections we can replace
the piece (A, VA) with the new piece [A, VA) and thus obtain various, mutually distinct
examples.
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