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Abstract Explicit expressions are derived for the inverses of operators of a particular class that includes
the operator corresponding to a system of coupled integral equations having weighted difference kernels.
The inverses are expressed in terms of a finite number of functions and a systematic way of generating
different sets of these functions is devised. The theory generalizes those previously derived for a single
integral equation and an integral-equation system with pure difference kernels. The connection is made
between the finite generation of inverses and embedding.
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1. Introduction

Let A be a given invertible linear operator on a Hilbert space H equipped with the inner
product (φ, ψ). Suppose that an operator V can be found with the property

VAφ + AV∗φ =
M∑

j=1

(φ, b(j))a(j) (φ ∈ H), (1.1)

where M is finite, a(j) and b(j) are given elements of H and the asterisk denotes the
adjoint. It follows that

V∗A−1φ + A−1Vφ =
M∑

j=1

(φ, d(j))c(j) (φ ∈ H), (1.2)

where
Ac(j) = a(j), A∗d(j) = b(j). (1.3)

Therefore, provided that (1.2) can be solved for A−1, the inverse operator is expressible
in terms of just the elements c(j) and d(j) obtained by solving the 2M equations (1.3).
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This ‘finite generation’ of inverses was first identified in the context of integral equa-
tions by Gohberg and Feldman [6], who investigated the equation

(I − K)φ ≡ Aφ = f,

where K is a compact operator with a difference kernel k(x − t), by mimicking a parallel
structure in the theory of Toeplitz matrices. They showed that A−1 is generated by the
solutions of Aψ = k and A∗χ = l, where l(x) = k(−x).

For the same problem, Sakhnovich [13] identified a structure of the form (1.1) by
recognizing the connection between the operator I −K and the particular Volterra oper-
ator V representing indefinite integration, and he derived an alternative pair of solutions
that generate the inverse operator. A generalization of Sakhnovich’s work by Porter [11]
included the previous generating solutions and derived connections between them and
others, dispelling the impression suggested by (1.2) and (1.3) that the functions which
determine A−1 are fixed by the representation (1.1). The fact that many pairs of generat-
ing solutions may be constructed was established through the development of a structured
framework by Porter and Stirling [12], who applied their results to the case in which K is
compact and to the non-compact operator K generated by the Cauchy singular difference
kernel.

Another generalization, by Kon [9], extended the theory of Sakhnovich [13] to include
kernels k(x, t) satisfying

∂k

∂x
+

∂k

∂t
=

n∑
j=1

Mj(x)Nj(t), (1.4)

which are finite-rank departures from difference kernels. Such kernels had previously been
investigated by Kailath et al . [7]. Koltracht et al . [8] considered a similar generalization
in which the kernel is derived from an integral of a particular form also involving 2n
given functions.

Mullikin and Victory [10] extended the original work of Gohberg and Feldman [6]
to the case of matrix-valued difference kernels. More recently, Feldman et al . [5] have
also considered a system of integral equations with difference kernels and related the
generation of the inverse operator to the factorization of a 2 × 2 matrix containing the
Fourier transform of the kernel.

The present work is concerned with systems of integral equations generated by weighted
difference kernels. That is, the kernel of the general operator Kmn in the system is
κmn(wmx − wnt) (with 0 � x, t � 1), where wm and wn are real positive constants. It
therefore includes matrix-valued operators with pure difference kernels as a special case.
The investigation also generalizes that of Porter and Stirling [12] for a single integral
equation with a difference kernel by exploring how different forms of the inverse operator
may be constructed. This aspect, which has evidently not been examined for a system,
even in the pure difference kernel case, is achieved by devising a general transformation
between sets of functions that generate the inverse. One particular transformation that
is developed to illustrate the theory shows that the inverse operator corresponding to
the system of integral equations under consideration is generated by solutions in which
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the forcing terms are the ‘boundary values’ of the matrix kernel, that is, the values of
the kernel at x = 0, 1 and at t = 0, 1. This extends to the weighted difference case
corresponding results for pure difference kernels given by Gohberg and Feldman [6] for
a single equation and by Mullikin and Victory [10] for a system.

The finite generation of the inverses of integral operators described above is related
to so-called embedding properties of the operators. Embedding is a remarkable feature
possessed by certain problems containing a parameter, in which the solution for an arbi-
trary value of that parameter can be expressed in terms of the solutions for finitely
many parameter values. This property leads to considerable computational economy
when the solution is required across an extended parameter range. Embedding is a par-
ticular application of the finite generation of solutions of an integral equation or integral-
equation system, but it may be exploited without investigating the formation of the
inverse operator. Indeed, embedding formulae can exist for operators that are not invert-
ible. Sakhnovich [13] refers briefly to embedding for systems of equations with weighted
difference kernels in his extended account of integral equations with difference kernels,
using a different approach to that presented here.

Weighted difference kernels may appear to be rather artificial. However, they can arise
in the context of certain linear boundary-value problems which, following an applica-
tion of Green’s function theory, lead to sets of coupled integral equations holding on
the union of finitely many parallel line segments in the plane, each of finite length. A
structured system of equations with weighted difference kernels follows by transforming
each of these line segments onto the same (unit) interval. Biggs and Porter [2] encoun-
tered such a system in the problem of wave diffraction by a duct, developing and using
embedding formulae for this example. It is shown later that a particular choice of the
generating functions in the present investigation recovers the formulae derived in the
earlier work.

The plan of the paper is to derive the counterparts of (1.1)–(1.3) in the present context
and establish various relationships that play a part in the ensuing development of § 2.
For example, it is clear from (1.3) that the adjoint of A is significant and it will satisfy
an identity like (1.1). In § 3, the construction of A from the appropriate formulae of
the type (1.1) is developed—a step that explicitly identifies the class of operators under
consideration. The construction method is applied to A−1 in § 4, where the general trans-
formation giving different versions of the inverse is devised. The integral-equation system
is used to provide concrete examples of the theory in § 5, including a comparison with
existing results in the case of pure difference kernels.

2. Formulation

Our starting point is the integral-equation system

λmφm(x) = fm(x) +
N∑

n=1

∫ 1

0
kmn(x, t)φn(t) dt (0 � x � 1, m = 1, 2, . . . , N), (2.1)
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which is to be solved for the functions φ1(x), φ2(x), . . . , φN (x). It is assumed that the
kernels have the forms

kmn(x, t) = κmn(wmx − wnt),

for some real constants wm > 0 and some functions κmn(x).
We may write (2.1) in the matrix form:

Λφ(x) = f(x) + (Kφ)(x) (0 � x � 1), (2.2)

where φ = (φ1, φ2, . . . , φn)T, f = (f1, f2, . . . , fn)T and Λ = diag(λ1, λ2, . . . , λn). Here K
denotes the matrix of operators with m, n entry given by Kmn, where

(Kmnφ)(x) =
∫ 1

0
kmn(x, t)φ(t) dt (0 � x � 1).

In the special case wm = w (m = 1, 2, . . . , N), (2.1) corresponds to a system of
equations with pure difference kernels. Weighted difference kernels with distinct wm were
encountered recently by Biggs and Porter [2] in the context of wave-scattering theory.
More generally, the integral equation

λφ(x) = f(x) +
∫ b

a

k(x − t)z(t)φ(t) dt (a � x � b), (2.3)

in which z is piecewise constant, can be transformed into (2.1) by translating each subin-
terval on which z is a fixed constant onto the unit interval. Chandler-Wilde et al . [4]
recently considered the numerical treatment of an equation of the form (2.3) and an
application to acoustic scattering.

In the problem considered by Biggs and Porter [2], a particular version of the system
(2.1) arises in which λm = 0 for m = 1, 2, . . . , N ,

fm(x) ≡ f (m)
α (x) = e−iαwmx (α ∈ R), (2.4)

and the kernels have the additional property kmn(x, t) = knm(t, x), corresponding to
κmn(x) = κnm(−x) in the present notation. Furthermore, kmm(x, t) = κmm(wm(x − t))
is logarithmically singular for each m, all others kernels being continuous functions of
both variables. Biggs and Porter [2] developed embedding formulae relating solutions of
the system corresponding to different values of α, which led to significant economy in the
computational methods used to solve the scattering problem.

Here we seek to examine (2.1) from a different point of view and in greater generality.
We suppose that κmn is integrable for m, n = 1, 2, . . . , N , that fm ∈ L2(0, 1) and that
Λ �= 0. These assumptions allow us to consider (2.2) via the equation

Λφ = f + Kφ in H, (2.5)

where H = L2((0, 1), CN ), taking ΛI − K to be invertible. In fact, we shall shortly
extend the investigation to a wider class of equations of which (2.5) may be regarded as
the prototype.
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For the moment, however, we consider (2.5) and, as in Biggs and Porter [2], we make
use of the N × N matrix operator Vα with mth diagonal entry given by

(V(m)
α φ)(x) = wm

∫ x

0
f (m)

α (x − t)φ(t) dt (0 � x � 1),

the kernel being defined by (2.4). With respect to the inner product

(φ,ψ) =
∫ 1

0
ψ∗(x)φ(x) dx (2.6)

on H, in which ψ∗ = ψ̄T, the adjoint operator V∗
α satisfying (Vαφ,ψ) = (φ,V∗

αψ) is also
diagonal. Its mth diagonal entry is

(V(m)∗
α φ)(x) = wm

∫ 1

x

f (m)
α (x − t)φ(t) dt (0 � x � 1),

V(m)∗
α being the adjoint of V(m)

α with respect to the scalar counterpart of (2.6). We note
that Vα and V∗

α are related by
UVα = V∗

αU , (2.7)

where the matrix operator U is defined by

(Uφ)(x) = φ(1 − x).

That is, U is the diagonal operator in which each diagonal component is the scalar
‘reflection–conjugation’ operator.

The vector VαKφ+KV∗
αφ is at the core of our approach. Its mth component evaluated

at x ∈ [0, 1] is

N∑
n=1

∫ 1

0
φn(t)wm

∫ x

0
e−iαwm(x−s)κmn(wms − wnt) ds dt

+
N∑

n=1

∫ 1

0
φn(t)wn

∫ t

0
eiαwn(t−s)κmn(wmx − wns) ds dt

=
N∑

n=1

∫ 1

0
φn(t)

∫ wmx

−wnt

e−iα(wmx−wnt−u)κmn(u) du dt

=
N∑

n=1

∫ 1

0
φn(t)

{
wne−iαwmx

∫ t

0
eiαwn(t−s)kmn(0, s) ds

+ wmeiαwnt

∫ x

0
e−iαwm(x−s)kmn(s, 0) ds

}
dt,

from which we deduce that

VαKφ + KV∗
αφ =

N∑
n=1

{(φ,VαT (n))f (n)
α + (φ,f (n)

α )VαS(n)} (2.8)
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in H. Here we have introduced the vectors

S(n)(x) = (k1n(x, 0), . . . , kNn(x, 0))T, T (n)(x) = (kn1(0, x), . . . , knN (0, x))T, (2.9)

together with
f (n)

α (x) = (0, . . . , f (n)
α (x), . . . , 0)T,

the non-zero element occurring in the nth component.
Using the identity

Vαφ + V∗
αφ =

N∑
n=1

wn(φ,f (n)
α )f (n)

α (φ ∈ H), (2.10)

we see that the operator A ≡ ΛI − K arising in (2.5) satisfies

VαAφ + AV∗
αφ =

N∑
n=1

{(φ, wnλ̄nf (n)
α − VαT (n))f (n)

α − (φ,f (n)
α )VαS(n)}. (2.11)

Thus VαA + AV∗
α is an operator of rank 2N and this is its key property.

A similar calculation gives the complementary formula

V∗
αAφ + AVαφ =

N∑
n=1

{(φ, wnλ̄nUf (n)
α − V∗

αQ(n))Uf (n)
α − (φ,Uf (n)

α )V∗
αP (n)}, (2.12)

showing that V∗
αA + AVα also has rank 2N . The new quantities arising here are

P (n)(x) = (k1n(x, 1), . . . , kNn(x, 1))T, Q(n)(x) = (kn1(1, x), . . . , knN (1, x))T.

(2.13)
The vectors P (j), Q(j), S(j) and T (j) are related through an integral identity which
arises because their components are expressed in terms of the functions κmn. A direct
calculation shows that

wm(e−iαwnP (n) − S(n),f (m)
α ) + wn(f (n)

α , e−iαwmQ(m) − T (m)) = 0, (2.14)

for m, n = 1, 2, . . . , N .
Equations (2.11) and (2.12) are also related, since

(V∗
αA + AVα)φ + (VαA + AV∗

α)φ =
N∑

n=1

wn{(φ,A∗f (n)
α )f (n)

α + (φ,f (n)
α )Af (n)

α } (2.15)

follows from (2.10). The adjoint of A is given by A∗ ≡ Λ̄I − K∗ with K∗, satisfying
(Kφ,ψ) = (φ,K∗ψ), having m, n component K∗

nm, where

(K∗
nmφ)(x) =

∫ 1

0
knm(t, x)φ(t) dt (0 � x � 1).

https://doi.org/10.1017/S0013091503000269 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000269


Systems of integral equations with weighted difference kernels 211

The connection (2.15) between (2.8) and (2.12) can be confirmed by evaluating Af
(n)
α

and A∗f
(n)
α to give

wnAf (n)
α = wnλnf (n)

α − VαS(n) + e−iαwnVαP (n) − wn

N∑
j=1

(f (n)
α ,T (j))f (j)

α ,

wnA∗f (n)
α = wnλ̄nf (n)

α − VαT (n) + e−iαwnVαQ(n) − wn

N∑
j=1

(f (n)
α ,S(j))f (j)

α .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.16)

The relationship (2.14) can be used with (2.10) and (2.16) to produce alternative forms
of Af

(n)
α and A∗f

(n)
α .

We now generalize the investigation by considering the class of bounded operators A
in H for which VαA + AV∗

α is of finite rank, that is,

VαAφ + AV∗
αφ =

M∑
j=1

(φ, b(j))a(j), (2.17)

for some given vectors

a(j) = (a(j)
1 , a

(j)
2 , . . . , a

(j)
M )T and b(j) = (b(j)

1 , b
(j)
2 , . . . , b

(j)
M )T

in H and some M ∈ N. We suppress the dependence of a(j) and b(j) on α, for clarity. It
follows at once from (2.15) that if (2.17) holds, then

V∗
αAφ + AVαφ =

M ′∑
j=1

(φ,d(j))c(j), (2.18)

for some
c(j) = (c(j)

1 , c
(j)
2 , . . . , c

(j)
N )T and d(j) = (d(j)

1 , d
(j)
2 , . . . , d

(j)
N )T

in H (depending on α) and some M ′ ∈ N such that M ′ � 2N + M . Since the converse
also holds, A satisfies (2.17) if and only if it satisfies (2.18).

If we now suppose that A is an invertible operator satisfying (2.17), then a simple
rearrangement gives

V∗
αA−1φ + A−1Vαφ =

M∑
j=1

(φ,A∗−1b(j))A−1a(j), (2.19)

which is of the form (2.18) and therefore A−1 also satisfies (2.17) for some vectors and
some M . This observation forms the basis of the investigation and dictates the strategy
we use in the following sections. We establish methods of reconstructing A from (2.17)
and (2.18) which may then be applied to (2.19) or the equivalent equation expressed in
the form (2.17). This process will lead to formulae for A−1 which require a knowledge
of finitely many particular vectors, A−1a(j) and A∗−1b(j) for j = 1, 2, . . . , M in the case
of (2.19).
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From this description it would appear that the particular inverses needed to construct
A−1 are fixed by the vectors occurring in the representation (2.17), but this is not the
case as it is possible to transform the representation and thereby produce different forms
for the inverse. We defer this aspect until later, however, as it is more direct to apply
transformations when we have formulae available for the inverse.

3. The construction of A

Our immediate objective is to determine A from both (2.17) and (2.18). A crucial ingre-
dient in this step is the knowledge that the homogeneous versions of these equations have
only the trivial solution, and this property is established first. We concentrate attention
on (2.17) and infer the corresponding results for (2.18).

3.1. The homogeneous case

Suppose that A satisfies VαA+AV∗
α = 0 and consider the general component equation

V(m)
α Amn + AmnV(n)∗

α = 0, (3.1)

where Amn denotes the m, n element of A.
Let

(E(m)
α φ)(x) = e−iαwmxφ(x),

so that

(E(m)∗
α φ)(x) = eiαwmxφ(x),

and thus
E(m)

α E(m)∗
α = I and V(m)

α = E(m)
α VmE(m)∗

α ,

where we have written Vm = V(m)
0 . Therefore, (3.1) can be expressed in the form

E(m)
α {Vm(E(m)∗

α AmnE(n)
α ) + (E(m)∗

α AmnE(n)
α )V∗

n}E(n)∗
α = 0,

whence VmBmn + BmnV∗
n = 0, where Bmn = E(m)∗

α AmnE(n)
α . Now Bmn = 0 implies

Amn = 0, since E(m)
α and E(n)∗

α are invertible. It therefore suffices to establish the result
in the case α = 0 and consider the simpler equation

VmAmn + AmnV∗
n = 0 (3.2)

in place of (3.1).
Suppose first that Amn is generated by a continuous kernel amn(x, t) having continuous

first-order derivatives. Then (3.2) implies that

wm

∫ x

0
amn(s, t) ds + wn

∫ t

0
amn(x, s) ds = 0 (0 � x, t � 1),
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and by differentiating this equation with respect to x and t we see that

wn
∂amn

∂x
+ wm

∂amn

∂t
= 0 (0 � x, t � 1), amn(x, 0) = amn(0, x) = 0 (0 � x � 1).

It follows that amn(x, t) = 0 in [0, 1] × [0, 1] and therefore Amn = 0 in this case.
Now consider a general bounded operator Amn satisfying (3.2), which implies that

Vm(Vp
mAmnV∗p

n ) + (Vp
mAmnV∗p

n )V∗
n = 0, (3.3)

for p = 0, 1, . . . . Since VmAmnV∗
n is generated by an L2 kernel, V3

mAmnV∗3
n is generated

by a continuous kernel with continuous first derivatives. Applying (3.3) with m = n = 3
and appealing to the earlier result, we conclude that V3

mAmnV∗3
n = 0. It follows that

Amn = 0 as Vm and V∗
n are injective. This establishes that if A is a bounded operator

satisfying VαA + AV∗
α = 0, then A = 0.

In a similar way, V∗
αA + AVα = 0 implies that A = 0.

3.2. The inhomogeneous case

In order to solve (2.17) in its inhomogeneous form, we shall make use of the matrix
operator P with m, n component defined by

(Pmnφ)(x) =

{
wmφ(wmx/wn) for 0 � x � min(wn/wm, 1),

0 otherwise.

It is easily verified that P = P∗.
Now the identity∫ min(wmx/wn,1)

0
e−iα(wmx−wnt)φ(t) dt

+
∫ 1

min(wmx/wn,1)
e−iα(wmx−wnt)φ(t) dt = (φ, f (n)

α )f (m)
α (x)

can be rearranged in the form

wm

wn

∫ min(x,wn/wm)

0
e−iαwm(x−t)φ(wmt/wn) dt

+
∫ 1

min(wmx/wn,1)
e−iαwn(wmx/wn−t)φ(t) dt = (φ, f (n)

α )f (m)
α (x).

Expressed concisely, this is

V(m)
α Pmnφ + PmnV(n)∗

α φ = wmwn(φ, f (n)
α )f (m)

α ,

and replacing φ by φn and summing over n establishes the mth component of

VαPφ + PV∗
αφ = (φ, Wfα)Wfα (φ ∈ H), (3.4)

where the matrix W = diag(w1, w2, . . . , wN ) and fα = (f (1)
α , f

(2)
α , . . . , f

(n)
α )T.
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Now consider (2.17), namely,

VαA + AV∗
α = F , Fφ =

M∑
j=1

(φ, b(j))a(j). (3.5)

Then

VαFV∗
αφ =

M∑
j=1

(φ,Vαb(j))Vαa(j) =
M∑

j=1

(φ,B(j)Wfα)A(j)Wfα, (3.6)

where A(j) and B(j) are the diagonal operators on H whose mth diagonal components
are defined, respectively, by the convolutions

(A(j)
m φ)(x) =

∫ x

0
a(j)

m (x − t)φ(t) dt, (B(j)
m φ)(x) =

∫ x

0
b(j)
m (x − t)φ(t) dt,

for j = 1, 2, . . . , M . We shall use the notation

A(j)φ = a(j) ∗ φ, B(j)φ = b(j) ∗ φ

to represent the convolutions of vectors defined in this way and note in particular that
Vαφ = (Wfα) ∗ φ = φ ∗ (Wfα).

Thus, employing (3.4) in (3.6), we have

VαFV∗
αφ =

M∑
j=1

(B(j)∗φ, Wfα)A(j)Wfα =
M∑

j=1

{A(j)VαPB(j)∗φ + A(j)PV∗
αB(j)∗φ},

and since A(j) and B(j) commute with Vα (all being diagonal convolution operators), it
follows that

VαFV∗
α = Vα

{ M∑
j=1

A(j)PB(j)∗
}

+
{ M∑

j=1

A(j)PB(j)∗
}

V∗
α. (3.7)

Hence, using (3.5) to replace F ,

Vα

{
VαAV∗

α −
M∑

j=1

A(j)PB(j)∗
}

+
{

VαAV∗
α −

M∑
j=1

A(j)PB(j)∗
}

V∗
α = 0,

and, as we have shown that the homogeneous equation of this form has only the trivial
solution,

VαAV∗
α =

M∑
j=1

A(j)PB(j)∗. (3.8)

Conversely, if (3.8) holds, then

Vα{VαAV∗
α} + {VαAV∗

α}V∗
α = Vα

{ M∑
j=1

A(j)PB(j)∗
}

+
{ M∑

j=1

A(j)PB(j)∗
}

V∗
α

= VαFV∗
α

by (3.7) and VαA + AVα = F follows.
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We have so far reduced (3.5) to (3.8) and the final step in obtaining a representation
of A requires the removal of the operators Vα and V∗

α from the left-hand side of the latter
equation. This is immediate if there exist bounded operators Ã(j) and B̃(j) such that

A(j) = VαÃ(j), B(j) = VαB̃(j) (j = 1, 2, . . . , M), (3.9)

for then (3.8) can be written in the form

Vα

{
A −

M∑
j=1

Ã(j)PB̃(j)
}

V∗
α = 0,

from which we deduce that

A =
M∑

j=1

Ã(j)PB̃(j). (3.10)

The converse, that (3.9) and (3.10) together imply (3.8), is trivial. We note that Ã(j)

and B̃(j) are diagonal operators which therefore commute with Vα. The case in which
operators Ã(j) and B̃(j) satisfying (3.9) do not exist and (3.8) has to be solved for A less
directly will not be pursued.

To give a concrete form to these expressions we first evaluate the mth component of
the vector A(j)PB(j)∗φ and obtain

(VαAV∗
αφ)m(x)

=
N∑

n=1

wmwn

∫ min(x/wn,1/wm)

0
a(j)

m (x − wns) ds

∫ 1

wms

b
(j)
n (t − wms)φn(t) dt

=
N∑

n=1

wmwn

∫ 1

0
φn(t) dt

∫ �(x,t)

0
a(j)

m (x − wns)b(j)
n (t − wms) ds,

where 	(x, t) = min(x/wn, t/wm), for almost all x ∈ [0, 1], the second version following
from reversal of the integration order in the first.

Before making the corresponding calculation for Aφ using (3.10), we have to exam-
ine the forms of Ã(j) and B̃(j). For the bounded operator Ã(j) to exist satisfying
A(j) = VαÃ(j), it is sufficient that a(j) can be written in the form

a(j) = ∆jfα + Vαaaa(j), (3.11)

for some constant diagonal matrix ∆j and some vector aaa(j) ∈ H. This representation of
a(j) gives

A(j)φ = a(j) ∗ φ = ∆jfα ∗ φ + (Vαaaa(j)) ∗ φ = Vα{W−1∆jφ + aaa(j) ∗ φ},

which is of the desired form, on recalling that Vαφ = Wfα ∗ φ and verifying that
(Vαaaa(j)) ∗ φ = Vα(aaa(j) ∗ φ).
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The structure (3.11) holds in particular if the components of a(j) are continuous in
[0, 1] and have derivatives in L2(0, 1), in which case we can take

Ã(j)φ = W−1∆jφ + aaa(j) ∗ φ, aaa(j) = W−1a(j)′
+ iαa(j),

∆j = diag(a(j)
1 (0), a(j)

2 (0), . . . , a(j)
M (0)).

}
(3.12)

Assuming that b(j) satisfies the same hypotheses as a(j) and that B̃(j) therefore has
the corresponding representation to that in (3.12), we can evaluate the explicit version
of A given by (3.10). After some manipulation, we find that the mth component of the
vector Aφ is given by

(Aφ)m(x) =
N∑

n=1

{
emn(Pmnφn)(x) +

∫ 1

0
rmn(x, t)φn(t) dt

}
(3.13)

almost everywhere in [0, 1], where

emn = (wmwn)−1
M∑

j=1

a(j)
m (0)b(j)

n (0)

and

rmn(x, t) =
M∑

j=1

wmwn

∫ �(x,t)

0
a(j)

m (x − wns)b(j)
n (t − wms) ds

+
M∑

j=1

⎧⎨
⎩

a
(j)
m (0)b(j)

n (t − wmx/wn) (wmx < wnt),

b
(j)
n (0)a(j)

m (x − wnt/wm) (wmx > wnt),
(3.14)

for almost all x, t ∈ [0, 1] × [0, 1]. An alternative, more-succinct form for the kernels that
may be deduced from (3.14) avoids the need to form the components of aaa(j) and bbb(j).
This is

rmn(x, t) =
(

∂

∂x
+iαwm

)(
∂

∂t
−iαwn

) M∑
j=1

∫ �(x,t)

0
a(j)

m (x−wns)b(j)
n (t − wms) ds, (3.15)

also for almost all x, t ∈ [0, 1] × [0, 1]. We have therefore solved (2.17) for A and have
identified the class of operators that satisfy (2.17), subject to certain hypotheses. In
particular, it can be verified that the application of (3.13) to (2.11) recovers the particular
operator A = ΛI −K arising from the integral-equation system (2.1). However, the class
of operators A satisfying (2.17) includes those given by (3.13) for any a(j) and b(j) that
are continuous in [0, 1] and have derivatives in L2(0, 1). This observation makes it clear
that we are dealing with much more general operators than those generated by weighted
difference kernels.

We now deal with (2.18), that is,

V∗
αA + AVα = F ′, F ′φ =

M ′∑
j=1

(φ,d(j))c(j), (3.16)

https://doi.org/10.1017/S0013091503000269 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000269


Systems of integral equations with weighted difference kernels 217

by employing the following strategy. With the aid of (2.7) we write (3.16) as

Vα(UAU)φ + (UAU)V∗
αφ =

M ′∑
j=1

(φ,Ud(j))Uc(j), (3.17)

which has the form of (2.17). By identifying UAU , Uc(j), Ud(j) and M ′ with A, a(j),
b(j) and M , respectively, we directly obtain parallels of the results obtained for (2.17).
We deduce that

V∗
αAφ + AVαφ =

M ′∑
j=1

(φ,d(j))c(j) ⇐⇒ V∗
αAVα =

M ′∑
j=1

C(j)∗UPUD(j),

C(j)φ = (Uc(j)) ∗ φ, D(j)φ = (Ud(j)) ∗ φ.

⎫⎪⎪⎬
⎪⎪⎭ (3.18)

Here we have made use of (2.7) again, together with the properties

UC(j) = C(j)∗U and UD(j) = D(j)∗U .

If there are bounded (diagonal) operators C̃(j) and D̃(j) satisfying

C(j) = VαC̃(j) = C̃(j)Vα, D(j) = VαD̃(j) = D̃(j)Vα,

for j = 1, 2, . . . , N , we obtain an explicit expression for the solution A of (2.18) in the
form

A =
M ′∑
j=1

C̃(j)∗UPUD̃(j).

Otherwise, A has to be extricated from (3.18) less directly.
The counterpart of (3.13) for (2.18) requires that the components of c(j) and d(j) are

continuous in [0, 1] and have derivatives in L2(0, 1). In particular, the form corresponding
to (3.11) is

c(j) = ∆′
jfα + V∗

αccc(j), (3.19)

for some constant diagonal matrix ∆′
j and some vector ccc(j) ∈ H, and similarly for d(j).

Under these conditions, applying (3.13) to (3.17) we find that (2.18) implies

(Aφ)m(x) =
N∑

n=1

{
e′
mn(UPmnUφn)(x) +

∫ 1

0
r′
mn(x, t)φn(t) dt

}
(3.20)

almost everywhere in [0, 1], where

e′
mn = (wmwn)−1

M ′∑
j=1

c(j)
m (1)d(j)

n (1) (3.21)

and

r′
mn(x, t) =

(
∂

∂x
+ iαwm

)(
∂

∂t
− iαwn

) M ′∑
j=1

∫ �(1−x,1−t)

0
c(j)
m (x + wns)d(j)

n (t + wms) ds

(3.22)
(where 	(x, t) = min(x/wn, t/wm)) for almost all x, t ∈ [0, 1] × [0, 1]. Term-by-term
differentiation leads to an alternative form for r′(x, t) that parallels (3.14).
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4. The determination of A−1

We now apply the results of the preceding section to the determination of A−1. It is
convenient to retain the earlier notation as far as possible and this can be achieved
simply by setting aside the connection (2.15) between (2.17) and (2.18) and redefining
c(j) and d(j) as follows.

Suppose that Aφ = f in H, where A satisfies (2.17) and is invertible. Then

V∗
αA−1f + A−1Vαf = F ′f ≡

M∑
j=1

(f ,d(j))c(j), (4.1)

as anticipated in (2.19), where c(j) and d(j) are now defined by

Ac(j) = a(j), A∗d(j) = b(j) (j = 1, 2, . . . , M). (4.2)

As (4.1) is of the form (2.18), we may deduce A−1f by identifying M ′ with M and using
the derivation given in § 3.

In particular, if the vectors c(j) and d(j) that satisfy (4.2) are continuous in [0, 1] and
have derivatives in L2(0, 1), then the formula (3.20) with A−1f replacing Aφ gives an
explicit expression for the components of A−1f . If A = ΛI − K, where K is a compact
operator, as envisaged in § 2, we can be sure that (3.21) simplifies to give A−1 = Λ−1I+R,
where R is also compact. In this case,

(A−1f)m(x) = λ−1
m fm(x) +

N∑
n=1

∫ 1

0
r′
mn(x, t)fn(t) dt, (4.3)

for almost all x ∈ [0, 1], r′
mn being given by (3.22) with M ′ replaced by M and with c(j)

and d(j) defined by (4.2). If the solutions of (4.2) are such that the formula (3.20) cannot
be applied, we have to return to (3.18) with A replaced by A−1 and extract the latter
less directly.

The direct approach to the determination of A−1f is therefore to solve the 2M equa-
tions (4.2) for c(j) and d(j). We note that these vectors satisfy the reciprocal relations

(b(j), c(i)) = (d(j),a(i)), i, j = 1, 2, . . . , M.

4.1. Transformations of c(j) and d(j)

There are, however, alternative versions of A−1f in which some or all of c(j) and
d(j) are replaced by other vectors that may be more directly relevant to a particular
application or preferable in some other way. Vectors of the form (3.19) that admit the
representation (4.3) are desirable, for example. We now investigate how different versions
of F ′ and therefore of A−1 may be constructed.

There may seem to be little scope for creating significantly different representations of
F ′, as F ′f is in the fixed subspace of H spanned by c(1), . . . , c(M) and, similarly, F ′∗f
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is in the subspace spanned by d(1), . . . ,d(M). This impression is misleading, however, as
every vector in H can be mapped onto these subspaces by using (4.1) and its adjoint

V∗
αA∗−1f + A∗−1Vαf = F ′∗f ≡

M∑
j=1

(f , c(j))d(j). (4.4)

We may therefore generate transformations in the following way.
Suppose that we seek to replace c(j) and d(j) for j = 1, 2, . . . , M . We choose any

vectors g(j) and h(j) in H for j = 1, 2, . . . , M and define the replacements by

ĉ(j) = V∗
αA−1g(j) + A−1Vαg(j)

d̂(j) = V∗
αA∗−1h(j) + A∗−1Vαh(j)

}
(j = 1, 2, . . . , M). (4.5)

These are linear combinations of the vectors c(j) and d(j), respectively, by virtue of (4.1)
and (4.4), namely

ĉ(i) =
M∑

j=1

(g(i),d(j))c(j), d̂(i) =
M∑

j=1

(h(i), c(j))d(j) (i = 1, 2, . . . , M). (4.6)

The relationships between the vectors c(j) and d(j) and their replacements can therefore
be expressed in the concise forms

(c(1), . . . , c(M))G = (ĉ(1), . . . , ĉ(M)), (d(1), . . . ,d(M))H = (d̂(1), . . . , d̂(M)), (4.7)

where G and H are the M×M matrices having i, j components (g(j),d(i)) and (h(j), c(i)),
respectively. We will assume that the vectors g(j) and h(j) are chosen so that G and H

are non-singular.
Moreover, (4.6) implies that

(h(k), ĉ(i)) = (g(i), d̂(k)) =
M∑

j=1

(g(i),d(j))(h(k), c(j)),

the first equality being a reciprocal principle for (4.5), and hence

Ĥ = Ĝ∗ = G∗H, (4.8)

where Ĝ and Ĥ are M × M matrices with i, j components (g(j), d̂(i)) and (h(j), ĉ(i)),
respectively. Since

((f , d̂(1)), . . . , (f , d̂(M)))T = H∗((f ,d(1)), . . . , (f ,d(M)))T

follows from (4.7), and

F ′f = (c(1), . . . , c(M))((f ,d(1)), . . . , (f ,d(M)))T,
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we have

F ′f = (ĉ(1), . . . , ĉ(M))Ĝ−1((f , d̂(1)), . . . , (f , d̂(M)))T. (4.9)

We note that Ĝ is determined by the transformed vectors ĉ(j) and d̂(j) together with
the generating functions g(j) and h(j), and the revised form (4.9) of F ′ is therefore
independent of the original vectors c(j) and d(j). The structure of (4.1) is restored in
(4.9) by absorbing Ĝ−1 into either the matrix (ĉ(1), . . . , ĉ(M)) or the vector

((f , d̂(1)), . . . , (f , d̂(M)))T.

Thus it is clear that A−1f is expressible entirely in terms of the new vectors ĉ(j) and
d̂(j). As these are formed from the 4M components A−1g(j), A−1Vαg(j), A∗−1h(j) and
A∗−1Vαh(j) for j = 1, 2, . . . , M , compared with the 2M vectors needed by the direct
approach, this general transformation is not attractive, however. The requirement reduces
if Vαg(j) can be expressed in terms of g(1), . . . , g(M) for each j, and similarly for each
Vαh(j). There are several choices of g(j) and h(j) for which this situation arises and an
illustration is given of one particular example shortly.

Variants of the transformation given may be formulated in a similar way. For example,
if it is convenient to retain some of the original vectors c(j) and d(j), the transforma-
tion matrices in (4.8) can be expressed in block form, with identity and zero matrices
occupying appropriate blocks. Furthermore, vectors requiring fewer than the 4M inverses
needed for the general transformation or those having the structure (3.19) may be sought.
We remark that if, for a given A, particular vectors ĉ(j) and d̂(j) satisfying (3.19) can
be found for j = 1, 2, . . . , M , then the vectors in all other representations of F ′ must be
continuous in [0, 1] and have derivatives in L2(0, 1), through the transformation process.

Rather than attempting to express these variations of the basic transformation in
general terms, we return to the integral-equation system of § 2 which allows us to give
explicit illustrations.

5. The integral-equation system

The system (2.1) leads to (2.11), which may be aligned with the notation in (2.17) by
taking M = 2N and

a(j) = f (j)
α , a(N+j) = −VαS(j)

b(j) = wj λ̄jf
(j)
α − VαT (j), b(N+j) = f (j)

α

}
(j = 1, 2, . . . , N).

The direct approach to forming the solution φ = (ΛI −K)−1f of (2.2) therefore requires
the determination of the 4N vectors

c(j) = A−1f (j)
α , c(N+j) = −A−1VαS(j)

d(j) = wj λ̄jA∗−1f (j)
α − A∗−1VαT (j), d(N+j) = A∗−1f (j)

α

}
(j = 1, 2, . . . , N).

(5.1)
Two alternative transformation strategies are suggested by this structure.
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One is to express F ′ and hence A−1 entirely in terms of solutions of

Aφ(j)
α = f (j)

α , A∗ψ(j)
α = f (j)

α (j = 1, 2, . . . , N). (5.2)

The motivation for this approach is that 2N of the vectors needed to construct A−1 are
already of the required form. Some saving is therefore possible compared with the general
case, as we can retain c(j) and d(N+j) for j = 1, 2, . . . , N and replace only the remaining
members of the two sets defining F ′. The second transformation is complementary to
this, in the sense that we can retain c(N+j) and d(j), and replace c(j) and d(N+j) for
j = 1, 2, . . . , N ; in this case we also aim to take advantage of the presence of Vα and
target the structure of (3.19).

5.1. A transformation

First, we show that A−1f can be expressed in terms of solutions of (5.2). To achieve
this we choose the generating functions

g(N+j) = i(β − α)f (j)
β , h(j) = i(γ − α)f (j)

γ (j = 1, 2, . . . , N),

where β and γ are real parameters, different from α. Since

Vαf
(j)
β = i(β − α)−1(f (j)

β − f (j)
α ) (5.3)

is easily verified (and is an example of a relationship between the set Vαg(j) and the set
g(j)), the transformed vectors given by (4.5) are

ĉ(N+j) = φ(j)
α − Wβ,αφ

(j)
β , d̂(j) = ψ(j)

α − Wγ,αψ(j)
γ (j = 1, 2, . . . , N),

where
Wβ,α = I − i(β − α)V∗

α.

Referring to (4.7) and writing G and H in terms of the N × N block matrices Gmn

and Hmn, for m, n = 1, 2, we have

G =

(
I G12

0 G22

)
, H =

(
H11 0
H21 I

)
,

which ensure that

ĉ(j) = c(j) = φ(j)
α and d̂(N+j) = d(N+j) = ψ(j)

α

for j = 1, 2, . . . , N , as required. Thus the transformation (4.7) can be written in the
present case as

(c(1), . . . , c(2N)) = (Φα, Φα − Wβ,αΦβ)G−1,

(d(1), . . . ,d(2N)) = (Ψα − Wγ,αΦγ , Ψα)H−1,

}
(5.4)

where
Φα = (φ(1)

α ,φ(2)
α , . . . ,φ(N)

α ), Ψα = (ψ(1)
α ,ψ(2)

α , . . . ,ψ(N)
α ),

are N × N matrices.
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The matrix Ĝ occurring in (4.9) is given here by

Ĝ = H∗G =

(
Ĝ11 Ĝ12

0 Ĝ22

)
,

where
Ĝ11 = H∗

11, Ĝ12 = H∗
11G12 + H∗

21G22 and Ĝ22 = G22.

The i, j components of the relevant matrices are

(Ĝ11)ij = (c(j),h(i)), (Ĝ12)ij = (g(N+j), d̂(i)), (Ĝ22)ij = (g(N+j),d(N+i)).

Substituting for the vectors in the inner products and using (5.3) to simplify the Ĝ12

term, we can conveniently express all of these components in terms of the quantity

gij(α, β) = i(β − α)(f (j)
β ,ψ(i)

α ) = i(β − α)(φ(j)
β ,f (i)

α ),

where the reciprocal relations

(f (j)
α ,ψ

(i)
β ) = (φ(j)

α ,f
(i)
β ) (i, j = 1, 2, . . . , N)

for (5.2) have been used. Thus we find that

(Ĝ11)ij = gij(γ, α), (Ĝ12)ij = gij(α, β)−gij(γ, β)+gij(γ, α), (Ĝ22)ij = gij(α, β).

It follows that Ĝ = Ĝ(α, β, γ) can be evaluated from a knowledge of φ
(j)
α and φ

(j)
β for

j = 1, 2, . . . , N .
Referring to (5.4), we deduce that F ′ is determined in this case by the 4N vectors

φ
(j)
α , ψ

(j)
α , φ

(j)
β and ψ

(j)
γ for j = 1, 2, . . . , N , for any chosen parameter values of α, β and

γ with α �= β; the choice β = γ is not excluded. This transformation therefore does not
increase the number of vectors required to form the inverse of A, partly because 2N of
the original vectors remain intact and partly because of the choice of g(j) and h(j). From
a practical viewpoint, there is the extra saving that only the 2N equations (5.2) need to
be solved, albeit for two different parameter values. The equivalent economy, which also
applies in the general case when the corresponding transformation is used, is the reason
for incorporating the free parameter α into the overall structure.

A particular application of this transformation is the evaluation of φ
(j)
δ = A−1f

(j)
δ for

any real value δ not used in the determination of A−1f . However, a relationship between
the solutions of (5.2) for different parameter values can be found directly, without recourse
to the inverse operator. This is achieved by noting that the first equation in (5.4) implies
that

(c(N+1), . . . , c(2N))G22(α, β) = (Φα − Wβ,αΦβ) − ΦαG12(α, β),

when the dependence of the matrices Gmn on the parameters is made explicit. Now
G12(α, β) and (c(N+1), . . . , c(2N)) are not expressed in terms of the solutions of (5.2)
and must therefore be eliminated from the proceedings. Using a second parameter value,
which we again denote by γ, we first remove the matrix (c(N+1), . . . , c(2N)) to give

ΦαE(α, β, γ) = Wγ,αΦγG−1
22 (α, γ) − Wβ,αΦβG−1

22 (α, β), (5.5)
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where

E(α, β, γ) = G−1
22 (α, γ) − G−1

22 (α, β) − G12(α, γ)G−1
22 (α, γ) + G12(α, β)G−1

22 (α, β).

Multiplying both sides of (5.5) by the matrix (f (1)
−ω, . . . ,f

(N)
−ω ), for some ω, and integrating

results in the formula

G22(ω, α)E(α, β, γ) = G22(ω, γ)G−1
22 (α, γ) − G22(ω, β)G−1

22 (α, β), (5.6)

in which (5.3) has been used to show that

(Wβ,αφ
(j)
β ,f (i)

ω ) = (α − ω)−1{(β − ω)(φ(j)
β ,f (i)

ω ) − (β − α)(φ(j)
β ,f (i)

α )}.

Setting ω = γ and ω = β in (5.6) in turn and using the property G22(β, β) = 0 we
obtain two alternative, equivalent versions of E that do not contain G12, namely,

E(α, β, γ) = −G−1
22 (γ, α)G22(γ, β)G−1

22 (α, β)

= G−1
22 (β, α)G22(β, γ)G−1

22 (α, γ).

When these are used in (5.5) they give

Φα = Wγ,αΦγG−1
22 (β, γ)G22(β, α) + Wβ,αΦβG−1

22 (γ, β)G22(γ, α) (5.7)

and (5.6) becomes

G22(ω, α) = G22(ω, γ)G−1
22 (β, γ)G22(β, α) + G22(ω, β)G−1

22 (γ, β)G22(γ, α). (5.8)

Equations (5.7) and (5.8) are examples of embedding formulae for the system if their
right-hand sides can be constructed independently of φ

(1)
α , . . . ,φ

(N)
α , and this is indeed

possible. Thus (5.7) expresses φ
(j)
α for each j and any α in terms of φ

(j)
β , φ

(j)
γ , ψ

(j)
β and

ψ
(j)
γ for j = 1, 2, . . . , N , provided that β �= γ. The same solutions are required in (5.7) to

determine G22(ω, α), with i, j component i(α − ω)(φ(j)
α ,f

(i)
ω ), for any α and any ω �= α.

Such projections of φ(j) are often significant in practical examples of the system (2.1).
The situation described above is typical of embedding results, for example those

obtained recently by Biggs et al . [3] and Biggs and Porter [1, 2] for specific integral-
equation systems. On making the necessary notational adjustments and specializing to
the case considered by Biggs and Porter [2], it can be verified that (5.7) and (5.8) coincide
with formulae derived in that paper. The embedding results obtained here apply to the
general equation (2.5), of course, and they are special cases of the present investigation
in that they avoid the need to invoke a formula for A−1.

5.2. A different transformation

We now examine the alternative transformation of the vectors c(j) and d(j) indicated
earlier. Our objective here is to retain the vectors S(j) and T (j) and to replace c(j) = φ

(j)
α

and d(N+j) = ψ
(j)
α . However, rather than use c(N+j) and d(j) as they stand, we also seek
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a representation of A−1 in which the vectors satisfy (3.19). This further objective can
also be achieved by adapting the basic generating formulae (4.5).

Setting g(j) = S(j) and h(j) = T (j) for j = 1, 2, . . . , N , those formulae give

ĉ(j) = −λjwj c̃
(j) − c(N+j), d̂(j) = d̃(j) + wj λ̄jd

(N+j) − d(j), (5.9)

using the notation of (5.1), where the new vectors

c̃(j) = −(λjwj)−1V∗
αA−1S(j), d̃(j) = V∗

αA∗−1T (j) (5.10)

have the desired structure. The form of c̃(j) has been chosen for later algebraic conve-
nience.

Natural replacements for c(j) and d(N+j) are P (j) and Q(j) (j = 1, 2, . . . , N), the
counterparts of S(j) and T (j) in (2.12). Indeed, if A−1 is determined by taking (2.12) as
the starting point, rather than (2.11), then P (j) and Q(j) will clearly play a prominent
part in the calculation. Here we are exploiting the interplay between (2.11) and (2.12),
which are related through (2.15) and (2.16). We therefore complete the transformation
by choosing g(N+j) = e−iαwj P (j) and h(N+j) = e−iαwj Q(j) for j = 1, 2, . . . , N , noting
that

A−1{e−iαwj VαP (j)} = wjf
(j)
α − wjλjc

(j) − c(N+j) + wj

N∑
i=1

(f (j)
α ,h(i))c(i),

A∗−1{e−iαwj VαQ(j)} = wjf
(j)
α − d(j) + wj

N∑
i=1

(f (j)
α , g(i))d(N+i)

follow from (2.16) and (5.1).
These equations suggest that we take

c̃(N+j) = (λjwj)−1{e−iαwj V∗
αA−1P (j) + wjf

(j)
α }

d̃(N+j) = e−iαwj V∗
αA∗−1Q(j) + wjf

(j)
α

}
(j = 1, 2, . . . , N) (5.11)

to parallel (5.10) and complete the transformation and, using (4.5), we find that

ĉ(N+j) = λjwj(c̃(N+j) − c(j)) − c(N+j) + wj

N∑
i=1

(f (j)
α ,h(i))c(i),

d̂(N+j) = d̃(N+j) − d(j) + wj

N∑
i=1

(f (j)
α , g(i))d(N+i),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.12)

for j = 1, 2, . . . , N .
The transformation we now envisage is from c(j) and d(j) into the sets of vectors c̃(j)

and d̃(j). It is implemented through Equations (5.9) and (5.12), which may be written
in matrix form as

(ĉ(1), . . . , ĉ(2N)) = (c̃(1), . . . , c̃(2N))J − (c(1), . . . , c(2N))G1,

(d̂(1), . . . , d̂(2N)) = (d̃(1), . . . , d̃(2N)) − (d(1), . . . ,d(2N))H1,

}
(5.13)
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where

J =

(
−WΛ 0

0 WΛ

)
, G1 =

(
0 WΛ − F1W

I I

)
, H1 =

(
I I

−WΛ̄ −F2W

)
.

Here F1 and F2 are the N ×N matrices with i, j components (f (j)
α ,h(i)) and (f (j)

α , g(i)),
respectively. The matrices W = diag(w1, w2, . . . , wN ) and Λ = diag(λ1, λ2, . . . , λN ) have
been used earlier.

Now (5.13) can be expressed as

(c(1), . . . , c(2N))(G + G1)J−1 = (c̃(1), . . . , c̃(2N)),

(d(1), . . . ,d(2N))(H + H1) = (d̃(1), . . . , d̃(2N))

}
(5.14)

by invoking (4.7), and therefore the counterpart of (4.9) is

F ′f = (c̃(1), . . . , c̃(2N))G−1((f , d̃(1)), . . . , (f , d̃(2N)))T, (5.15)

in which G = (H + H1)∗(G + G1)J−1 has to be evaluated to complete the transforma-
tion.

We readily deduce from (5.13) that

Ĥ = J∗H̃ − G∗
1H, Ĝ = G̃ − H∗

1G, (5.16)

where G, H, Ĝ and Ĥ are defined in § 4.1. The new matrices G̃ and H̃ are obvious
extensions of the earlier notation, having i, j components (g(j), d̃(i)) and (h(j), c̃(i)),
respectively. However, a relationship between G̃ and H̃ does not follow from the trans-
formation structure of the previous section and has to be evaluated at this stage. Now

(g(j), d̃(i)) = (S(j),V∗
αA∗−1T (i)) = (A−1VαS(j),T (i)) = (ĉ(j) + wjλj c̃

(j),h(i)),

for i, j = 1, 2, . . . , N . When this and similar calculations encompassing i, j = 1, 2, . . . , 2N

are used with (5.13) and (2.14), we find that

G̃ + H̃∗J = Ĥ∗ + J − H∗
1G1.

Eliminating G̃ and H̃ between this equation and (5.16) and recalling that Ĥ∗ = Ĝ =
H∗G, it follows that

{H + H1}∗{G + G1} = J

and therefore G = I. Thus, (4.1) and (5.15) imply that

V∗
αA−1f + A−1Vαf = F ′f =

2N∑
j=1

(f , d̃(j))c̃(j), (5.17)

showing that the form of (4.1) is invariant under the particular transformation devised
here. The factors ±(λjwj)−1 introduced into c̃(j) anticipated this outcome; without them
G is diagonal and a later scaling achieves (5.17).
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It follows from (5.10) and (5.11) that the vectors defining this transformed version of
F ′ are given in terms of

s(j) = A−1S(j), p(j) = A−1P (j), t(j) = A∗−1T (j), q(j) = A∗−1Q(j) (5.18)

as

c̃(j) = −(λjwj)−1V∗
αs(j), c̃(N+j) = (λjwj)−1{e−iαwj V∗

αp(j) + wjf
(j)
α },

d̃(j) = V∗
αt(j), d̃(N+j) = e−iαwj V∗

αq(j) + wjf
(j)
α ,

}
(5.19)

for j = 1, 2, . . . , N . Once again there is no increase in the overall number of vectors
needed to construct A−1f . The particular significance of the set of vectors (5.19) is that
it is formed through (5.18) from the ‘boundary values’ of the kernels occurring in (2.1),
as reference to (2.9) and (2.13) shows.

By construction, c̃(j) and d̃(j) satisfy (3.19) and therefore an explicit version of A−1f

having the form of (3.20) is guaranteed. Substituting (5.19) into that equation confirms
that (4.3) applies for components of A−1f . Term-by-term differentiation of the corre-
sponding version of (3.22) gives the components of the resolvent kernel as

r′
mn(x, t) = z′

mn(x, t) −
N∑

j=1

wmwn

wjλj

∫ �(1−x,1−t)

0
{s(j)

m (x + wnσ)t(j)n (t + wmσ)

− p(j)
m (x + wnσ)q(j)

n (t + wmσ)} dσ,

(5.20)

where

z′
mn(x, t) =

⎧⎨
⎩λ−1

m q
(m)
n (t + wm(1 − x)/wn) (wm(1 − x) < wn(1 − t)),

λ−1
n p

(n)
m (x + wn(1 − t)/wm) (wn(1 − t) < wm(1 − x)),

for almost all x, t ∈ [0, 1] × [0, 1].
We now know that the transformed vectors constructed in § 5.1 are continuous in [0, 1]

and have derivatives in L2(0, 1) since they are expressible in terms of c̃(j) and d̃(j) through
two successive transformations. More generally, the original vectors c(j) and d(j) and all
other transformations of them have these properties.

The identity (2.15) may be used to provide a different type of transformation of the
vectors needed to construct A−1, as we can illustrate in the present context. It can be
rearranged as

(VαA−1 + A−1V∗
α)f + (V∗

αA−1 + A−1Vα)f

=
N∑

j=1

wj{(f ,f (j)
α )A−1f (j)

α + (f ,A∗−1f (j)
α )f (j)

α }, (5.21)

showing that a representation of (VαA−1 + A−1V∗
α)f can be deduced from each repre-

sentation of (V∗
αA−1 + A−1Vα)f . In particular, we can determine the representation

(VαA−1 + A−1V∗
α)f ≡ Ff =

2N∑
j=1

(f , b̃(j))ã(j), (5.22)
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which is implied by (5.17). To evaluate ã(j) and b̃(j), we note that

A−1f (j)
α = φ(j)

α = c(j) and A∗−1f (j)
α = ψ(j)

α = d(N+j)

in the notation of (5.1). Thus (5.17) and (5.21) give

Ff =
N∑

j=1

wj{(f ,f (j)
α )c(j) + (f ,d(N+j))f (j)

α } −
2N∑
j=1

(f , d̃(j))c̃(j).

We can replace c(1), . . . , c(N) by c̃(1), . . . , c̃(2N) and d(N+1), . . . ,d(2N) by d̃(1), . . . , d̃(2N)

and using the established properties of the matrices occurring in (5.14), we find after
some manipulation that

ã(j) = (λjwj)−1{Vαs(j) + wjf
(j)
α }, ã(N+j) = −(λjwj)−1e−iαwj Vαp(j),

b̃(j) = Vαt(j) + wjf
(j)
α , b̃(N+j) = e−iαwj Vαq(j).

}
(5.23)

The representation of F given by (5.22) and (5.23) can alternatively be deduced by
taking (2.12) as the starting point for the investigation of the integral-equation system,
rather than (2.11), and implementing the procedure which led to (5.20). The significance
of (5.22) is that it has the form (2.17) and therefore leads to a formula for the components
of the resolvent different from (5.20). Inevitably, the vectors (5.23) are examples of the
structure (3.11). Thus (3.13) applies, giving

(A−1f)m(x) = λ−1
m fm(x) +

N∑
n=1

∫ 1

0
rmn(x, t)fn(t) dt,

for m = 1, 2, . . . , N , where

rmn(x, t) = zmn(x, t) −
N∑

j=1

wmwn

wjλj

∫ �(x,t)

0
{p(j)

m (x − wnσ)q(j)
n (t − wmσ)

− s(j)
m (x − wnσ)t(j)n (t − wmσ)} dσ, (5.24)

where

zmn(x, t) =

⎧⎨
⎩λ−1

m t
(m)
n (t − wmx/wn) (wmx < wnt),

λ−1
n s

(n)
m (x − wnt/wm) (wnt < wmx),

for almost all x, t ∈ [0, 1] × [0, 1].
Although we have preserved the earlier notation for clarity, r′

mn(x, t) and rmn(x, t) are,
of course, different representations of the same functions.

5.3. Special cases

If wn = 1 for n = 1, 2, . . . , N , (2.1) reduces to a system of equations with pure difference
kernels. This permits a more concise notation to be used than in the general case, in which
the vectors s(j) defined in (5.18) are gathered into the N × N matrix

S = (s(1), . . . , s(N)),

with corresponding definitions of P , T and Q.
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The resolvent matrix R′(x, t) with m, n component given by (5.20) can therefore be
written as

R′(x, t) = Z ′(x, t) −
∫ min(1−x,1−t)

0
{S(x + σ)Λ−1T ∗(t + σ) − P (x + σ)Λ−1Q∗(t + σ)} dσ,

where

Z ′(x, t) =

{
Λ−1Q∗(1 + t − x) (t � x),

P (1 + x − t)Λ−1 (x < t).

(The asterisk here denotes the Hermitian transpose.)
The alternative form (5.24) of the resolvent similarly condenses to

R(x, t) = Z(x, t)−
∫ min(x,t)

0
{P (x−σ)Λ−1Q∗(t−σ)−S(x−σ)Λ−1T ∗(t−σ)} dσ, (5.25)

with

Z(x, t) =

{
Λ−1T ∗(t − x) (x < t),

S(x − t)Λ−1 (t < x).

If we write the matrix kernel of the integral operator K in (2.2) in this case as K(x−t),
we readily find that Equations (5.18) can be replaced by the matrix forms

(AS)(x) = K(x), (AP )(x) = K(x − 1),

(A∗T )(x) = K∗(−x), (A∗Q)(x) = K∗(1 − x),

}
(5.26)

holding for almost all x ∈ [0, 1].
If the further restriction is made that K(x) = K(−x) almost everywhere in [0, 1], it

follows from (5.26) that P (x) = S(1 − x) and Q(x) = T (1 − x), for almost all x ∈ [0, 1].
Using this information and putting Λ = I, we find that the version (5.25) of the resolvent
coincides with that derived by Mullikin and Victory [10].

In the simplest case N = 1 of a single integral equation with a difference kernel (not
necessarily even), Equations (5.26) imply that Q(x) = S(1 − x) and P (x) = T (1 − x),
almost everywhere in [0, 1]. The resulting versions of both R′(x, t) and R(x, t) were given
by Porter [11].

6. Conclusions

We have extended the class of operators whose inverses are known to be finitely generated,
that is, expressible in terms of finitely many functions. The class is exemplified by an
operator representing a system of coupled integral equations with weighted difference
kernels and such systems arise in linear boundary-value problems of a particular type.

The theory develops by considering those operators that satisfy a particular algebraic
relationship, which ensures that they and their inverses are finitely generated. The actual
form of the operators that are included is obtained by solving the defining relationship
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under certain hypotheses that are suggested by the particular example of the integral-
equation system. By deducing the solution of a related operator equation, explicit forms
for the inverses of the class of operators under consideration are also determined. More-
over, the structure developed permits a transformation to be constructed which leads to
different forms for the inverse operator.

We have illustrated the theory, and the transformation technique in particular, by
reference to the original integral-equation system. In particular, it has been shown that
the inverse operator can be expressed in this case in terms of the solutions of a set of
integral-equation systems in which the free terms are formed from the boundary values
(that is, the values on x = 0, 1 and t = 0, 1) of the kernels. This generalizes a result
for systems with pure difference kernels as noted in § 5.3. The connection between the
present approach and embedding has also been made, producing a link with Biggs and
Porter [2].

The theory can be generalized in a number of ways. For example, it is not surprising
that the finite-rank operator defined by

KF φ =
P∑

p=1

(φ,N (p))M (p),

where M (p) and N (p) are given vectors, falls into the category that we have considered.
Thus, if the operator K generated by weighted difference kernels and defined in § 2 is
replaced by K − KF , then (2.11) is amended by the addition of

P∑
p=1

{(φ,N (p))VαM (p) + (φ,VαN (p))M (p)},

and therefore A = ΛI − K + KF satisfies (2.17).
A different finite-rank perturbation arises by returning to (3.15), a formula that defines

the kernels of the operators A satisfying (2.17), subject to the requirements that a
(j)
n and

b
(j)
n are continuous in [0, 1] and have derivatives in L2(0, 1). Differentiating the expres-

sion (3.15) for rmn with respect to x and t in turn, integrating by parts and using the
notation of (3.12), we find that

(
wn

∂

∂x
+ wm

∂

∂t

)
rmn(x, t) = wmwn

M∑
j=1

a(j)
m (x)b(j)

n (t) (6.1)

holds for almost all x, t ∈ [0, 1] × [0, 1], a(j)
m and b(j)

n being elements of L2(0, 1). Now the
homogeneous equation

wn

(
∂kmn

∂x

)
+ wm

(
∂kmn

∂t

)
= 0

has general solution kmn(x, t) = κmn(wmx − wnt), the weighted difference kernel used
to introduce the class (2.17) of operators. We now see that the class includes operators
A = ΛI −K in which the kernels of K are finite-rank departures from weighted difference
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kernels, in the sense of (6.1). That equation generalizes the starting point (1.4) taken by
Kon [9], who investigated a finite-rank perturbation of a difference kernel in the scalar
case. In the framework developed here, the generalization is represented by (3.14) and
its consequences and we have resorted to (6.1) only for the purpose of comparison with
the earlier work.
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