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Abstract

In this paper we consider Lévy processes without negative jumps, reflected at the origin.
Feedback information about the level of the Lévy process (‘workload level’) may lead
to adaptation of the Lévy exponent. Examples of such models are queueing models in
which the service speed or customer arrival rate changes depending on the workload
level, and dam models in which the release rate depends on the buffer content. We first
consider a class of models where information about the workload level is continuously
available. In particular, we consider dam processes with a two-step release rule and
M/G/1 queues in which the arrival rate, service speed, and/or jump size distribution
may be adapted depending on whether the workload is above or below some level K.
Secondly, we consider a class of models in which the workload can only be observed at
Poisson instants. At these Poisson instants, the Lévy exponent may be adapted based on
the amount of work present. For both classes of models, we determine the steady-state
workload distribution.
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1. Introduction

The basic process under consideration in this paper is a spectrally one-sided Lévy process
{X(), t = 0} [6], i.e. a Lévy process which has either no positive or no negative jumps.
Such processes are often studied in the applied probability literature, with applications to, for
example, queues, dams, storage processes, and finance. It is well known that we can write

E[e_wx([)] — e“f’(w);

¢ (w) is called the Lévy exponent. In particular, we will mainly consider Lévy processes without
negative jumps, reflected at the origin. The key feature of the paper is that the Lévy exponent
may change, depending on the level of the Lévy process (‘workload level’). For example,
consider the classical M/G/1 queue with service speed r, arrival rate A, and service requirement
distribution B(-) with Laplace—Stieltjes transform (LST) 8(-). The input process to the queue is
a compound Poisson process, which is a special case of a Lévy process, having Lévy exponent
—A(l — B(w)). Subtracting a deterministic drift of rate r, to take the service capacity into
account, yields a Lévy process with Lévy exponent rov — A(1 — B(w)). Information about the
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workload level may lead one to change the service speed r, the arrival rate A, and/or the service
requirement LST B(-), and, hence, the Lévy exponent.

There is a large literature about queueing models in which the server may work at different
speeds, depending on either the number of customers in the system or the amount of work in
the system. Models with service speed depending on queue length or workload arise naturally
as representation of congestion phenomena in, for example, manufacturing and healthcare
processes. Another bulk of papers is devoted to the (related) case in which the arrival rate
of customers depends on the state of the system. For example, feedback information signals
are being used in various communication systems to regulate the offered traffic volume in
accordance with the actual level of congestion. A prime example is the transmission control
protocol in the Internet. The case of service requirement distributions depending on the
workload level has received much less attention; see, e.g. [9] and [31]. We refer the reader
to [16] for an extensive survey, with 277 references, on queueing models with state-dependent
parameters.

Another application area of Lévy processes without negative jumps and state-dependent
exponents concerns the analysis of dam models, in which the level of the buffer content increases
(or decreases) gradually during stochastic amounts of time. Dams form a historically important
area of systems with state-dependent rates. The input process of a large class of dam processes
studied in the literature (see [11], [15], [30, Chapter 3], or [32]) is a nondecreasing Lévy
process. Information about the level of the Lévy process (which we call the workload) may
lead to adaptation of the release rate or, more generally, the Lévy exponent.

Lévy processes without positive jumps and with state-dependent exponents are also important
in finance, where they are sometimes called refracted Lévy processes (see [23]). In this area,
contrary to the queueing and dam applications, the processes are typically not reflected at O
and we are interested in first-exit problems instead of steady-state distributions. A typical
class of models falling into this framework are surplus processes in which dividends are paid
according to a generalized barrier strategy (also called a threshold strategy). According to such
a strategy, dividends are paid at a constant rate whenever the surplus is above the threshold and
no dividends are paid whenever the surplus is below the threshold; see [18], [19], and [26].

In the present study we restrict ourselves to two classes of models in which the determining
factor is whether the workload is above or below a certain level K. First we briefly consider
a class of models where information about the level of congestion (workload) is continuously
available. In particular, we consider dam processes with a two-step release rule (corresponding
to the service speed) and M/G/1 queues with adaptable arrival rate, service speed, and/or service
requirement distribution, depending on whether the workload is above or below level K. The
drawback of these models is that frequent changes in the adaptable parameters are not excluded.
In the second class of models, the workload can only be observed at Poisson instants, and then
the adaptable parameters can be changed based on the amount of work present. This is the
main model class of the paper and we refer to it as the Poisson observer model.

The main goal of the paper is to derive the steady-state distribution of the workload of the
reflected Lévy process. We develop a solution procedure that can be used to determine such
steady-state behavior for a large class of reflected Lévy processes with two Lévy exponents.
The machinery used includes Laplace transforms (building upon a technique developed in [17]
(see also [4])), martingales, and various properties of Lévy processes.

This paper is organized as follows. Section 2 contains descriptions of the dam (and M/G/1
queue) and the model with a Poisson observer, and some preliminary results on reflected Lévy
processes without negative jumps. In Section 3 we give an outline of a five-step procedure to
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determine the steady-state behavior of various queueing systems with two service rates or, more
generally, reflected Lévy processes with two Lévy exponents. In Sections 4-6 we apply this
procedure to several models. In Section 4 we present the steady-state workload analysis of the
dam and M/G/1 system that has different arrival rates, service speeds, and service requirements
when the workload is above or below K. As an example, we derive the steady-state workload
distribution in a dam with two release rates (service speeds) in Subsection 4.1. In Subsection 4.2
we consider the general M/G/1 queue where, in addition to the service speed, the arrival rate
and service requirements can also be adapted based on the workload. The model of a reflected
Lévy process with a Poisson observer is analyzed in Sections 5 and 6. In this analysis a key
role is played by so-called alternating Lévy processes reflected at the origin. These processes
are studied in Appendix A.

2. Models and preliminaries

In this section we introduce the two models considered in the paper. Moreover, we give
some preliminary results on reflected Lévy processes without negative jumps.

First some notation. For some process, denote the value of that process at time 7 by X and
let X correspond to its steady state version (if it exists). We specifically consider Lévy processes
without negatlve (]umps {X; ® , t >0}, i =1,2. For convenience, we exclude cases in which
the processes { t>0},i= 1 2, have monotone paths (A similar approach can however
be applied to the case where X isa subordmator or X ) is the negative of a subordinator.)
Denote by ¢; (-) the Lévy exponent of {X ,t>0},1ie.

Elexp{—oX{"}] = explrg; ().

Let Z(I) Z(O) + X([) + L(t) t > 0, starting at Z(O) > 0, where L() —info<s</ [Z +

(S)]_ ie. Z; o ; is the reﬂected Lévy process. In terms of dams or queues, Z; " constitutes the
content or Workload process. Throughout, we assume that the system is stable For the models
discussed below, this means that ¢é ) > 0.

Model 1. (Dams and M/G/1 queues.) The study of queueing models with continuously adapt-
able service speed r(Z®)) goes back to the M/G/1 dam. In such a dam, the output equals r;
when the content of the dam is in (0, K) and equals r; when the content of the dam exceeds
level K. In terms of queueing models, this corresponds to a queue with workload-dependent
service speed. We consider an extension of the classical M/G/1 dam. In addition to the service
speed (output rate), the arrival rate and service requirement distribution may also depend on
the amount of work present. In terms of Lévy processes, this corresponds to a reflected process
where the Lévy exponent depends on the amount of work present. In particular, the Lévy
exponent equals ¢ (-) when the workload is smaller than K (with reflection in 0) and it is ¢ (-)
otherwise. For the general M/G/1 queue, the Lévy process is a compound Poisson process
with an additional negative drift. For this special case, we denote the arrival rate by A;, the
mean and LST of the service requirement by §; and §; (-), respectively, and the service speed
by ri, i = 1, 2. Hence, the Lévy exponent reads ¢; (w) = riw — A; + A; Bi (w).

Model I1I. (Poisson observer.) Again, we consider a reflected Lévy process without negative
jumps and with two different Lévy exponents. An observer sees the amount of work present
at Poisson instants, occurring at rate &, independent of the processes {X; ® , >0}, i=1,2.
The observer regulates the workload process in the following way. When the workload at the
observer instant is larger than some fixed value K > 0, then the process with Lévy exponent
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¢2(+) is chosen until the subsequent observer instant. If the observer sees a workload smaller
than or equal to K then the process with Lévy exponent ¢ (-) is taken.

More precisely, define 7y := 0, and let #,, n = 1,2, ..., be the nth observer epoch. Let
Xi(n) = {Xl.(t)(n), t >0}, i=1,2and n > 0, be the Lévy input process with exponent ¢; (-)
during the interval between the nth and (n 4 1)th observations. For fixed i = 1, 2, we assume
that X;(n), n > 0, are independent and identically distributed Lévy processes without negative
jumps. The workload process {Z(), t > 0} is now defined recursively by Z® = 0 and

0 Z0 4 XUy 4 LY () ifr € (1, tai] and Z0) < K,
|z + X 0y + LT () it € (ty, tyga] and 20 > K

where L (n) = —info<s<,[Z0) + X ()]~ fori = 1,2,n > 0, and 1 € (1, tp41]. Simi-
larly, we define recursively L@ = 0 and

o L+ L™ ) ift € (ty, tyy1] and Z0) < K,
LY =
L 4 L8 () it € (ty, tyr1] and Z > K.

We also consider the process embedded at observer instants. Let V,, denote the workload
at time #,, n > 0. Using the PASTA (Poisson arrivals see time averages) property, it follows
that the steady-state distribution of V,, equals the steady-state distribution of the workload at
an arbitrary instant. Let Z denote this steady-state random variable. To describe the one-step
transition probabilities of V;,, we need to determine the distribution and LST of the workload
of a Lévy process with exponent ¢; (-), i = 1, 2, after an exponential time (see Theorem 2.2,
below).

Let T denote a generic (exponential) interobservation time. Then

zZD1z9=v, foro<V, <K,
VnJr] = 2.1

"1 z0 =v, forv,>K.

2.1. Preliminaries on Lévy processes

In this subsection we present some results on reflected Lévy processes with Lévy exponent
¢ (+) and only positive jumps, excluding the case that the process has monotone paths.

We first introduce the family of so-called scale functions. Scale functions often appear in the
study of first-exit times and exit positions; see, e.g. [2], [6]-[8], [24], [27], and [28]. However,
we frequently use scale functions to describe the (steady-state) workload behavior. Define, for
s € R, n(s) :=sup{w > 0: ¢(w) = s} as the largest root of the equation ¢ (w) = s.

Definition 2.1. For ¢ > 0, the g-scale function W@, (—00,00) — [0, 00) is the unique
function whose restriction to [0, 0o) is continuous and has Laplace transform

/ooe_“’XW(q)(x) dx = _ for w > n(q)
0 p(w) —q

and W@ (x) =0 forx < 0.

We will frequently restrict ourselves to the case in which ¢ = 0. In this case, W(-) :=
W (.), which is also often referred to as the scale function. The scale function can be explicitly
determined in various special cases. In this paper we restrict ourselves to providing examples
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for the compound Poisson process with negative drift (in which case W (-) can be related to
the waiting time distribution in the M/G/1 queue) and Brownian motions. These examples
are further discussed in Section 5. We refer to, for example, [20] and [25] for other examples
where the scale function is known in explicit form and to [34] for numerical methods. In the
remainder, the subscript i is added to the scale function when it is associated with exponent
$i(), i = 1,2, ie. we write W9 () and W; ().

Now, consider the steady-state workload (denoted by V') of the reflected Lévy process. The
formula for its LST is also known as the generalized Pollaczek—Khinchine formula and is
presented in the following theorem; see, e.g. [1, Corollary IX.3.4] or [8] and [22].

Theorem 2.1. Consider a Lévy process without negative jumps and with negative drift, i.e. 0 <
¢’ (0) < oo. Then, for v > 0,
o)
¢ ()
The distribution of the steady-state amount of work may be expressed in terms of the scale
function. Using Definition 2.1 and partial integration, we obtain

Ele V] = ¢'(0)

o]

@ _ a)/ooe_“’xW(x)dx = W(0) +/ e~ dW (x).
¢ (w) 0 o+

Hence, the transform in Theorem 2.1 may be readily inverted, providing
P(V <x)=¢'(0O)W(x). (2.2)

In fact, a similar result holds in the case where there is reflection at both 0 and some level K > 0.
In the M/G/1 setting this model is often referred to as the finite dam. Note that reflection at K
implies that ‘customers’ are admitted according to partial rejection; customers arriving at the
system that cause an overflow over K are only partly accepted such that the workload equals K.
Denote by VX the steady-state workload. In [28] it was shown that, in the case of a Lévy
process without negative jumps, a similar proportionality result holds as for the finite dam, that
is, for x € (0, K1,

w
pOVE <y = WO
W(K)
Finally, in the model with a Poisson observer, we also need to determine the level of the
process after an exponential time; see, e.g. (2.1). Let T ~ exp(&). Starting at v at time 0, the
LST of the workload after 7 can be found in, for example, [8, Theorem 4b] or [10, Theorem 2].

2.3)

Theorem 2.2. For w > 0, we have

Elexp{—wZ T} | 22 = v] = L(ewv xR (é)v})ﬁ
§—¢i(0) ni (€)

where n; (§) is the unique positive zero of § — ¢; ().

Remark 2.1. The result of [8] is in fact in terms of the LST of the transient behavior of
a reflected process, which is however directly related to the LST of the workload after an
exponential time. This follows from the observation that E[exp{—a)Zl.(T)}] corresponds to &
times the double transform of the transient workload behavior, where we take & for the parameter
of the transform with respect to time. Thus, in the special case of the M/G/1 queue, the above
result can also be obtained from, for example, [29, Equation (2.62)]. Similar to [29, Section 2.3],
we also have P(Z{") =0 | 2 = v) = & exp{—mi (§)v}/ (m; (E)ry).
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A useful relation between the steady-state workload during an exponential interval and the
amount of work after an exponential time follows from PASTA; see also [10, Equation (3.4)].
In particular, fori = 1, 2,

1 T
Elexp{-0Z "} | 20 = v] = ﬁE[ / exp{—wZ "} ds
N

z© = v:|. (2.4)

The distribution of the workload after an exponentlal time startm% from v > 0 can also
be expressed in terms of scale functions. Let W )(x P(Z ) <x| Z(O =) and
define W (x) fo q (y)dy, fori =1, 2. Applymg Laplace inversion, we obtain from
Theorem 2 2, for x > 0

exp{—ni(&)v}  —@)

Wl-(T)(x; v) = W,-(g)(x)%' 6 —EW (x —v) 1(x > v), (2.5)

where 1(-) denotes the indicator function.

3. Solution procedure

In this section we outline the solution procedure that can be generally used to determine
the steady-state behavior of systems with two service rates or Lévy exponents. We apply this
procedure to various models in Sections 4-6.

Let Z denote the random variable of interest (in our examples, the workload), with LST

{(w) = /00 e “*dP(Z < x). 3.1
0

The procedure for determining the distribution of Z builds upon techniques applied in [13],
[14, p. 556], and [17], where the workload in an M/G/1 queue with continuously adaptable
service speed is studied. The formal outline presented below is based on [4].

Step 0. Determine two sets of equations for {(w); one involving ¢(w) and the incomplete
LST f I?O ~“*dP(Z < x), and the other involving ¢(w) and the incomplete LST
[ e dP(Z < x):

{(w) = Fi1(w) + Gl(a))/ e “*dP(Z < x), 3.2)
K

K
£(@) = Fa(@) + G2 (@) f e dP(Z < x), (33)
0

for functions F;(-) and G; (), i = 1, 2. The precise forms depend on the specific model.

Step 1. Rewrite (3.2) such that G (w) f,?o e ®*dP(Z < x) is the sum of an LST with mass
only on [K, co) and an LST that depends only on P(Z < x) for x > K through a
constant.

Step 2. Apply Laplace inversion to the reformulated (3.2) resulting from step 1, to determine
P(Z < x) forx € (0, K].

Step 3. Calculate fOK e~ “*dP(Z < x) using step 2 and substitute into (3.3), yielding ¢ (w).
Applying Laplace inversion again, we determine P(Z < x) for x > K.

Step 4. Find the remaining constants by normalization.
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The easiest application of this solution procedure is to the M/G/1 queue where the service
speed is continuously adapted based on the workload. This model was analyzed in, for instance,
[13], [14, Section II1.5.10], and [17]. We rederive their result in Subsection 4.1 in the context
of dams with nondecreasing Lévy input and two output rates to demonstrate the basic features
of each step in the solution procedure.

While focusing in this paper on reflecting Lévy processes with only positive jumps, we
believe that a similar procedure can also be applied to derive steady-state results and first-exit
probabilities for Lévy processes with two exponents and only negative jumps. This may be
relevant for financial models; see, e.g. [1, Chapter XIV] or [2], [18], [19], [23], [26], [30], and
the references therein. The solution procedure then has to be slightly adapted. Intuitively, it
should be clear that the process on the interval (K, oo) is affected only by the behavior of the
process on (0, K] through a constant. Hence, in step 2 we should first apply Laplace inversion
on (K, 0o) and then use that result in step 3 to determine the behavior on (0, K], i.e. steps 2
and 3 are reversed. Accordingly, in step 1, G2 (w) fOK e “Y dP(Z < x) should be rewritten as
the sum of an LST with mass only on (0, K] and an LST that does depend only on P(Z < x)
for x < K through a constant.

4. Dam processes and M/G/1 queues

In this section we consider (a generalization of) the classical M/G/1 dam. First, we derive
the steady-state workload distribution for the dam with two release rates (service speeds).
This concerns an instructive application of the solution procedure, giving insight into the
fundamentals of each step. Second, we consider a general M/G/1 queue, where the service
speed, arrival rate, and service requirement distribution may depend on the amount of work
present.

For dam processes, the input is a nondecreasing Lévy process (a subordinator); see, e.g. [11],
[15], [30, Chapter 3], or [32]. Therelease rate here depends on the content of the dam determined
by asingle threshold (ModelI). Before considering the two separate models, we start by deriving
two sets of equations for dams and the general M/G/1 queue.

Step 0: Determining the equations. For dams and M/G/1-type models, we consider down-
crossings of level K as regeneration epochs. Let Z(¥) = K. Define 7| := inf[r > 0: Z() >
K] as the first upcrossing of level K and 1, := inf[r > 71: Z®¥) = K] as the subsequent
downcrossing. It then follows directly from [32] that 0 < 7| < 72 (almost surely). The content
process can thus be considered as a regenerative process, and has a stationary distribution. We
interpret this model as a regenerative alternating Lévy process, as described in Appendix A.

Since there is no reflection during the second part of the cycle, E[Lgn_f‘)] = 0. Note
that E[exp{—wZ™)}] = E[exp{—wZ@}] = e=®X. According to the theory of regenerative

processes,
K ] 12!
/ e dP(Z < x) = EU exp{—wz“‘)}ds}
0 E[z] s=0

o] 1 (2
[ e dP(Z < x) = —— E|:/ exp{—a)Z(S)}dsi|.
\)

K E[n] /=

Combining the above yields two equations for ¢ (-) from Lemma A.1 (see Appendix A):

CELM] o @) i) (K

= X dP(Z 4.1
CO =Bl h@) @ Sy & FEY @D
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and

EL™M 0 | ¢ —da() [
E[r2] ¢1(w) 1) K

Hence, (4.1) and (4.2) correspond to (3.3) and (3.2), respectively, where

‘() = e dP(Z < x). 4.2)

(t1) ; — i
M and Gi(w)zw, i=1,2.
$i (@) Elr] 9i(@)

4.1. Dams: change of drift

First assume that X;(t) = X () — rit, i = 1,2, with {X (¢), t > 0} a subordinator. This
concerns the classical dam where only the release rate is adapted, which reduces to an M/G/1
queue with two service speeds in the case where X (¢) is a compound Poisson process; see also
[13], [14, Section I11.5.10], and [17].

Step 1: Rewriting (4.2). Using the fact that (¢1(w) — ¢2(w))/d1(w) = (r1 — )w/d(w),

Fi(w) =

cwy = B @ @
W)= ———T_ ry—nr
E[n2] ¢1(w) #1(w)
Step 2: Workload distribution on (0, K]. The first term on the right-hand side of (4.3) can
be readily inverted using Theorem 2.1 and Definition 2.1, yielding the scale function Wj(-).
We refer the reader to [15] for details on the exact form of W;(-); see also Subsection 5.2 for
the M/G/1 case. The second term involves a convolution, corresponding to the sum of two
functions. Since the Laplace inverse of w/¢;(w) has mass on [0, co) and f ,?O e dP(Z < x)
is (up to a constant) the LST of a function with mass on [K, 00), its convolution has mass only
on [K, c0). Hence, for x € (0, K], the Laplace inverse of ¢ (w) is given by

/ e “*dP(Z < x). (4.3)
K

E[L{™]
E[r]

P(Z <x) = Wi(x). “4.4)

Step 3: Workload distribution on (K, co). Apply Laplace inversion to (4.1) to obtain the
distribution of Z on (K, 00). The inverse of the first transform on the right-hand side of (4.1) is
given by the scale function W5 (-). Note that (¢2(w) — ¢1(w)) /P2 (w) equals (r2 —r1)w/ P2 (),
which is (rp — ry) times the LST of the scale function W;(-). The second term now involves
an incomplete convolution. Using the result for the distribution of Z on (0, K], i.e. (4.4), we
obtain, for x > K,

E[L{™)]
E[1]

K
P(Z <x) = (W2(x) +(r2 — rl)/o Walx — y)dW1(y))~

Step 4: Determination of the constant. Use normalization and (4.4). More specifically,
letting w |, 0in (4.1) and applying (4.4) with x = K, we obtain

ELLY™] _ 95(0)
Bll 1402 —rmWi(K)’

Using the specific form of W;(-) given in Subsection 5.2, it may be readily checked that the
results coincide with the results in [13], [14, p. 556], and [17].
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Remark 4.1. Recently, a similar model has been studied in the context of insurance risk pro-
cesses [23]. The above expressions for the workload distribution coincide with the expression
for the survival probability in the dual insurance risk model (there called refracted Lévy
processes, i.e. Lévy processes whose dynamics change by subtracting a fixed linear drift
whenever the process is above a prespecified level); see [23, Theorem 5].

4.2. General M/G/1 queue

We now apply the procedure to the workload in the general M/G/1 queue with arrival rates
Ai, service requirement LSTs B;(-), and service speeds r;, i = 1,2. The Lévy exponent then
reduces to ¢;(w) = riw — A;j + A;iBi(w) for i = 1,2. Define p; := A;B;/ri. The stability
condition for this case reads py < 1.

Step 1: Rewriting (4.2). Using the fact that ¢; (w) = riw — X; + A Bi(w), i = 1,2, we may
rewrite the fraction of Lévy exponents as follows:

¢1(w) — P2 (w) _ (r1 —r))o+ A2 /A1) (=11 B2 (w) + 11 B1(w))

o1(w) o1(w)
L (1 3 E) A+ 1B (@)
Al ¢1(w)
— e —ipr(0) +rpi(@ A
p1(w) A riw—Ai+ A B1(w) A

Although this form is rather involved, we have decomposed it into three familiar terms. The
first one is related to the standard M/G/1 queue, the second one corresponds to an M/G/1 queue
with exceptional first service (up to a constant) (see, e.g. [35], [36], or Example A.1), and the
third is just a constant. Substituting the above into (4.2) provides

E[L{™] ( ®  dario— i) + A fi(@)
{() = 1 (-n 2
E[n] ¢1(w) o1(w) A riw—A+ A B1(w)
+1— E) /ooe—wx dP(Z < x). (4.5)
r ) Jk

Step 2: Workload distribution on (0, K]. The first term on the right-hand side of (4.5) can
be readily inverted using Theorem 2.1 and Definition 2.1, yielding the scale function Wy (-);
see also Subsection 5.2. For the remaining terms, we apply the decomposition of step 1 and
consider each term separately. The first decomposed term, (w/¢1(w)) |, I?O e " dP(Z < x),
corresponds to the convolution of two functions. Because the inverse of w/¢1(w) has mass
on [0, o) and f;o e~ ®*dP(Z < x) is the transform of a function with mass on [K, 00), this
convolution has mass on [K, 00).

The term (riw — A1f2(w) + 2181 (w))/(r1w — A1 + X1 B1(w)) is the Laplace transform of
the workload in a queue with exceptional first service requirement (see, e.g. [35], [36], or
Example A.1) and, thus, the inverse has mass on [0, 00). The convolution with P(Z < x) on
[K, 0o) clearly has no mass on [0, K). For the final term, it is readily seen that it has mass only
on [K, 00). Hence, for x € (0, K],

E[L{™]
E[r]

which is proportional to regular M/G/1 behavior with ¢1(w) = riw — A1 + 1181 (®).

P(Z <x) = Wi(x), (4.6)
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Step 3: Workload distribution on (K, 00). We apply (4.1) and a similar decomposition as in
step 1 to obtain the workload distribution on (K, co). In particular, (4.1) may be equivalently
written as

¢ (w) E[LYI)]
w) = _—
E[r2] ¢2(w)

w A1 120 — A f1(w) + A2fa(w) A /K Cox
— — 1— — dP(Z .
+ ( " P2 (w) + Ay 1w —Ay+ A fr(w) + kz) 0 ¢ (2 < x)

Since we have determined P(Z < x) forx € (0, K], we next apply Laplace inversion to each
of the above terms separately. Note that the inverse of the first term is given by the scale function
W> () (again, see Subsection 5.2 for the precise form of W, (x)). The second term involves the
convolution of W5(+) and the distribution of Z on (0, K], giving fOK Wa(x — y) dWi(y) times
a constant. For the third transform, we introduce W5*°(-) as the distribution of the workload in
an M/G/1 queue with service rate rp, arrival rate A, and generic service requirement By, but
with exceptional first service Bj in a busy period. Similar to the second term we obtain the
convolution fOK W3*(x — y) dWi(y) up to a constant. (For the constant, multiply and divide
by (1 —p2)/(14+A281/r2 — p2).) The final term corresponds to the transform of a function with
mass only on (0, K]. Hence, for x > K, the inverse appears only as the constant P(Z < K).

Summarizing the above we have, for x > K,

E [ L ETI ) ]

P(Z <x) = i

K
(Wz(X) —r fo Walx — ) dWi(y)

Al+2pi/r—p
A2 1—p2

1= Y w
+( —A—z) 1( ))

Step 4: Determination of the constant. Use normalization and (4.6). In particular, letting
o | 01in (4.1) and using (4.6) with x = K, we obtain

K
/O W3 (x — y) dWi(y)

BLLY™T _ (1 = p)
E[z] L+ (rn(1—p2) —ri(1 = p))Wi(K)’

where the specific form of W (-) is given in Subsection 5.2.

5. Lévy processes with Poisson observer

In this section we consider the reflected Lévy process where the Lévy exponent is adapted
at Poisson instants; see Section 2. To determine the steady-state workload distribution, we
use steps 0—4 outlined in Section 3. In particular, steps 0 and 1 are obtained using a direct
approach. Depending on the form of (¢; (w) — ¢3_;(w))/¢i (w), i = 1, 2, it is possible to give
a direct and intuitive derivation of steps 2—4, leading to intuitively appealing expressions for
the steady-state workload distribution in various special cases: in Subsections 5.1, 5.2, and 5.3
we respectively consider the special case of a change of drift, the M/G/1 case (i.e. compound
Poisson with a negative drift), and the case of Brownian motion.

In general, it is not possible to rewrite (¢; (w) — ¢3—; (w))/¢i(w) in tractable terms. The
steady-state workload distribution for this general case can be found in Section 6.
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In the following lemma we present the two equations for ¢ (-) as outlined in the procedure
of Section 3. First we introduce the constant Q:

SPTMEINT 4p (7 <x)+§/deP(Z < ). (5.1)
K

0 / expl—m (§)x)
@)

n(é)
Lemma 5.1. With n; (§), i = 1,2, defined in Theorem 2.2, for Re(w) > 0,

® $1(w) — P2 (w) 3

(=050 b1@) £ (@)
x </ e~ dP(Z < x) — a)/ Xplmm @) by x)) (5.2)
K K n2(§)
and
(@) =0 P2 (w) — ¢1(w) &

@ ;@  E—di@

K K
x (/ eV dP(Z < x) — a)/ expl=mEX) b7 x)). (5.3)
0 0 né)

Proof. Our starting point is the recursion relation (2.1) between V,, and V11, where V,
denotes the workload just before the nth observer instant. Condition on V,,, use (2.1), and
apply Theorem 2.2, to obtain

El[exp{—wVy1}]

_ / Efexp{—wVys1) | Vi = x]dP(V, < x)
0

K K _
5 (/ ¢~ “* dP(V,, < x) —a)/ P X} by, x))
0 0

) mE)
£ /°° o f°° exp{—12(6)x) )
S dP(V, - PRSI gpy, .
+s—¢>z<w>(K e P (Vo = %)

To analyze the steady-state behavior of V,,, we let n — oo. Using the PASTA property,
it follows that the steady-state distribution of V,, equals the distribution of the workload at
an arbitrary instant P(Z < x). Using the above, we may obtain two alternative equations
for ¢(w), as described in step O of the general procedure: one 1nV01V1ng the incomplete LST
fl‘;o ~“YdP(Z < x) and one involving the incomplete LST fo e dP(Z < x).

Note that, fori =1, 2,
& —¢i (w)

- - . (5.4)
§—¢i(w) & —¢i(w)

Then, for the first equation, we deduce, after some basic manipulations, using (3.1) and (5.4)
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for i = 1, and dividing by the term on the right-hand side of (5.4) with i = 1, that

w K exp{—n1(&)x}
= dP(Z
der =g (w)E/o e (Z<x)
w &—¢1(w), [ exp{—m(&)x}

$1(@) § —pa(w) " Jk n2(8)

dP(Z < x)

1 £ — p1(w) /°° o
1— dP(Z
+¢](w)< s—<z>z<a>>>s o ¢ ey
w K exp{—n1(&)x} /°° exp{—m2(£)x} >
= ———dP(Z ——dP(Z
1@ (E/o "ne) e N (Z =2
+ 91@) — $2(@) d (/ e” " dP(Z < x)
o1 (w) & —po(w) \Jk
- w/oo expl=m X} 5 _ x)). (5.5)

K n2(&)

Using (3.1) and (5.4) for i = 2, and dividing by the term on the right-hand side of (5.4) with
i = 2, we similarly obtain, after some calculations,

— K -
oy = @ Em @ (Kewlom@©x) o

B@E—di@ o m@©
o [ expl—m(E)x)
dP(Z
+¢2(w)§./1< (2 <x)

n2(§)
1 £ — o) /K o
1— dP(Z
+¢2<w)( s—zm(w))s , © dPE=v
® K exp{—n1(&)x} /°° exp{—n2(&)x} )
= — "~ _dP(Z — -7 _dP(Z
52(@) (5/0 ne  FE=nEE [T e FE=

- K
N P2 (w) — ¢1(w) § </ e ®dP(Z < x)
$r@)  E—di@ \Jo

K _
- w/ expl=m @} 4p 7 x)). (5.6)
0 n()
Combining (5.1) with (5.5) and (5.6) yields (5.2) and (5.3), respectively. This completes the
proof.

Step 1: Rewriting (5.2). Rewrite the second term on the right-hand side of (5.2) into the
sum of two LSTs: an LST with mass only on [K, co) and an LST that depends only on the
distribution of Z through a constant. This step is based on the following intuition. Consider
the workload process continuous in time and note that a Lévy exponent ¢,(-) implies that
the workload at the previous observer instant was larger than K. When the observer sees a
workload smaller than K, then the exponent is set to ¢1(-). Thus, periods with exponent ¢;(+)
and workloads smaller than K are always initiated with an observer finding a workload larger
than K followed by a downcrossing of level K before the next observer instant. Owing to the
lack-of-memory property of the Poisson process, the remaining interobservation time is still
exponential at a downcrossing of K. Hence, the precise distribution of Z on (K, co) affects
only the distribution of Z on [0, K] through a constant.
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Applying the above intuition, we condition on V,, > K and use Theorem 2.2 to obtain

/ Elexp{—wV,+1} | V, = x]dP(V,, < x)
K

- L(/ooe—wxclp(vn <) —w/oo xpl=m )} by, x)).
& — () \Jk K n2(§)

Observe that the right-hand side corresponds to the final part of the second term on the right-
hand side of (5.2) in the case n — oco. Let tg := inf[r > 0: Z® = K] be the first hitting time
of K. Recall that T ~ exp(£). Using (2.1) in the first step and the lack-of-memory property of
Lévy processes and of the observer arrival process in the second step, we deduce that

o0
/ Elexp{—wV,+1} | V, = x]dP(V,, < x)
K
o° T 0
:/ Elexp{—oZS V(T < %) | 2 = x]1dP(V, < x)
K
> T 0
+/ Elexp{—0ZS ) (T = 1) | 2 = x]1dP(V, < x)

K

o0
:/ Elexp{—oZS ) (T < %) | 2 = x]1dP(Z < x)
K

+ Pk Blexp{-0Z"} | ) = K], 5.7

where in the final step we let n — o0 and use the PASTA property. Here P is the probability
of downcrossing level K before an exponential time starting from x > K according to the
distribution P(Z < x). Using results concerning the LST of first-exit times (see, e.g. [24]), it
may be checked that

Pk = & exp(na(®)K) /K exp{—n2(6)x} dP(Z < x).

Observe that the first term on the right-hand side of (5.7) corresponds to an LST with mass on
[K, 00) and the second term of (5.7) depends only on the distribution of Z on (K, co) through
a constant. Combining the above, (5.2) can be written as

‘() = Q¢1‘E’w) n $1 (qulzw‘z)’z(w) Koo Elexp(~0Z5 ) 1(T < %) | 23 = x]1dP(Z < x)
%Pm Elexp(—0Z5"} | 2" = K], Co

where E[exp{ —wZéT)} | Zéo) = K] may be obtained from Theorem 2.2. This completes step 1.
We note that (¢; (w) — ¢3—; (w))/¢i(w), i = 1,2, cannot be reduced in general. This is the
reason for applying alternating Lévy processes as defined in Appendix A for the general case;
see Section 6. However, in several important special cases, as in Subsections 5.1-5.3 below,
the derivation is more insightful, leading to intuitively appealing expressions.
5.1. Poisson observer: change of drift
In this subsection we consider the important special case of a change of drift, i.e. we assume
that ¢; () = riw + ¢(w), i = 1, 2, for some Lévy exponent ¢ (w). So,
¢1(w) — $2(w) w
— Y =(@1—-nr) )
é1(w) 1(w)

where the right-hand side can be readily inverted using the scale function Wy (-).

(5.9)
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Step 2: Workload distribution on (0, K]. Apply Laplace inversion to each of the three terms
on the right-hand side of (5.8) separately. The inverse of the first term can be directly obtained
from Definition 2.1 (see also Theorem 2.1 and (2.2)), yielding QW ().

Using (5.9), the second transform reduces to

w
¢1(w)

We note that this involves the product of two LSTs, corresponding to the convolution of two
functions. Since the first function has mass on [0, 0o) and the second has mass only on [K, 00),
its convolution has no mass on [0, K).

The third transform on the right-hand side of (5.8) also corresponds to a convolution of
two functions. The Laplace inverse of (w/¢;(w)) E[ex {—a)ZéT)} | Zéo) = K] reads W (x) %
WZ(T) (x; K), where ‘x’ denotes a convolution and W2( (x; K) is given by (2.5).

Combining the above, we have, for x € (0, K],

(r1 — 1) / Elexp{—wZ Y (T < %) | Z¥ = x]dP(Z < x).
K

P(Z < x) = OWi(x) + (r] — rz)PU(/O Wi (x — y; K) dWi (). (5.10)

Step 3: Workload distribution on (K, 0o). Substituting the results from step 1 into (5.3)
provides ¢ (w). In this step we use (5.3) directly to derive the workload distribution on (K, 00).

For the first term on the right-hand side of (5.3), the Laplace inverse is given by the scale
function W (-). For the special case of a change of drift, the second term reduces to

w £ K- K exp{—n1(&)x} )
— _— X qP(Z — — " _dP(Z .
r r1)¢2(w)€—¢1(w)</o ¢z =y “’/o &) (Z <x)

Inversion of the above term corresponds to a convolution of the scale function W>(-) (given
by w/¢2(w)) and a second function. For the latter one, we note that, by applying Theorem 2.2,
the inverse is given by

K
WD (x) :=/ W (x; ) dP(Z < y),
0

i.e. the amount of work of a reflected Lévy process with exponent ¢ (w) after an exponential
time, starting according to P(Z < x). Since we have determined the distribution of Z on [0, K],
we have also found W) (.) (although its precise form may be involved).

Combining the above, we obtain, for x > K,

P(Z <x)= OWa(x)+ (r» — rl)/o Wa(x — y)dW D (y).

Step 4: Determination of the constants. The remaining constants can be determined in a
similar fashion as in [4]. First, the constants

e¢]

K
/0 expl—m (§)x)dP(Z < x) and /K expl—n2(§)x} dP(Z < x)

can be expressed in terms of Q and P(Z < K) using (5.1) and (5.10). (For the latter equation,
multiply by exp{—n1(£)x} and integrate over the interval [0, K].) Finally, determine Q and
P(Z < K). Letting @ | 01in (5.3) and applying I’Hopital’s rule gives

0 = ¢5(0) — (¢5(0) — ¢} (0) P(Z < K),
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and substituting x = K into (5.10) gives

K
P(Z < K) = QWi (K) + (r — Vz)Pu(/O Wi (K — y; K)dWi(y).

5.2. M/G/1 queues

In this subsection we assume that ¢; (w) = riw — A; + A; Bi (w) fori = 1, 2. Recall that the
stability condition reads py < 1, with p; = A;B;/ri, i = 1, 2. In this case, the scale function
Wi (+) can be explicitly determined (for p; > 1, the explicit form is involved).

To describe the scale function W;(-), we define

Hix) = ﬁ;‘/o (1= Bi(y) dy

as the stationary residual service requirement distribution of a generic service requirement
B;, i = 1, 2. In the case in which p; < 1, it is well known that

1 & .
Wi(x) = — > pf'H" (x),
i n=0
which is directly related to the steady-state workload distribution in an M/G/1 queue. In fact,
it may be checked that the LST of (1 — p;)r; W; () equals

(I - priw

Ele %] = :
riw — A + AiBi(w)

which is given by Theorem 2.1. Since we assumed that po < 1 for stability, this provides W (-).
However, we allow p; > 1. To obtain Wj(-), we apply the arguments of [13] and [12]. Let

81 = 0 for p; < 1 and, for p; > 1, let §; be the unique positive zero of the function

(o)
/ e VprdH () — 1.
0

Then, for x > 0, define
X 1 x S .
L(x) :=/ exp{—9d1y}p1dH;(y) and Wi(x):= Zf exp{81y}d{z L" (y)},
0 0~ =0

where L (-) denotes the n-fold convolution of L(-) with itself. It may be checked that, as
in [12] and [13], the Laplace transform of Wj(-) equals 1/¢1(w).

In the case in which p; > 1, W (-) may be interpreted in terms of a dam with release rate
r1 and capacity K. Specifically, the stationary workload distribution for such a dam equals
Wi1()/ Wi(K); see, e.g. [12], [14, p. 536], or (2.3).

The special case in which only the service speed is adapted can be directly obtained from
Subsection 5.1 and the explicit form of the scale function. Moreover, the results become
especially tractable in the case where the service requirements have an exponential distribution
function. A probabilistic approach for this M/M/1 model can be found in [5]. In the general
M/G/1 setting, the steady-state workload distribution can be obtained from (5.3) and (5.8), and
by rewriting the fraction of Lévy exponents as in Subsection 4.2. Because of similarities with
Subsections 4.2 and 5.1, we only give an outline.

https://doi.org/10.1239/aap/1240319581 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1240319581

192 R. BEKKER ET AL.

Step 2: Workload distribution on (0, K]. Again, we apply Laplace inversion to each of the
three terms on the right-hand side of (5.8). The inverse of the first term is given by QWi (-);
see Definition 2.1. The second term corresponds to the LST of a function with mass only on
[K, 00). To see this, we note that f;;o E[exp{—wZéT)} 1(T < tg) | Zéo) =x]dP(Z < x) is
the transform of a function with mass on [K, 00), while the term (¢1 (w) — ¢2(w))/P1(w) can
be treated as in Subsection 4.2.

For the third term on the right-hand side of (5.8), we note that E[exp{—wZéT)} | Z;O) = K]
isthe LST of WT)(.; K), corresponding to the amount of work after an exponential time starting
from K. Rewriting the term (¢1(w) — ¢2(w))/d1(w) again, and applying similar arguments
as in Subsection 4.2, we may invert the third term. Specifically, let Wi*¢(-) be the steady-state
workload distribution in an M/G/1 queue with service rate rq, arrival rate A1, and generic service
requirement B, but with exceptional first service B> in a busy period (see, e.g. [35], [36], or
Example A.1). For simplicity, we assume here that p; < 1. Applying Laplace inversion then
yields, for x € (0, K],

M l+ripa/n
Al 1—p1

—~ rz/ W (x — y; K)dW, (y) + (1 - %)Wm(x; K)>.
0 1

P(Z <) = OWi(x) + P¢K( — /0 WD (x — y; K)dWP(y)

Step 3: Workload distribution on (K, 00). Apply Laplace inversion to each of the terms on
the right-hand side of (5.3). The Laplace inverse of the first term is given by Q W»(-). For the
second term on the right-hand side of (5.3), it follows from Theorem 2.2 that

K K _
L(/ e~ " dP(Z < x) — a)/ xpl=m X} o7 x))
& — 1 (@) \Jo 0 n1(§)

is the LST of WD) (+), i.e. the amount of work of a reflected Lévy process with exponent ¢1 (w)
after an exponential time, starting according to P(Z < x). Since we have determined the
distribution of Z on [0, K1, this also formally gives W T (-) (although the precise form is again
rather involved).

Now, rewriting the term (¢2 (w) — @1 (w)) /P2 (w) similarly as in Subsection 4.2, we can invert
each term separately. Recall that W5*°(-) denotes the workload distribution in an M/G/1 queue
with service rate rp, arrival rate A, and generic service requirement By, but with exceptional
first service Bj in a busy period. Applying similar arguments as in Subsections 4.2 and 5.1, we
find, by Laplace inversion, that, for x > K,

M1+ 7
P(Z < x) = OWa(x) + oL LT 221/
A2 1 —p2

J— X ~
& / WS (x — y) dW D ()
0
' 7(T) AR
—r [ Walx —y)dW () + (1 —— W (x).
0 A2
Step 4: Determination of the constants. The constants can be determined similarly as in

Subsection 5.1; see also [4].

5.3. Brownian motion

In this subsection we consider the special case of Brownian motion, i.e. we assume that
¢i(w) = a)zoiz /2 — pijw, i = 1,2. For stability, we require that o < 0. In the case of
Brownian motion, the steady-state workload distribution has a rather tractable form.
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First, consider the g-scale function Wl.(q)(-). Define §;(q) =,/ ,uiz + 2qoi2, and let nii (9)
be the positive and negative solutions, respectively, of ¢; (w) — g, that is,

witdiq) _ M +\/ui +2q07

’71 ( ) - 0'1.2 O'l.2

We note that ), F(q) equals 7;(¢), as defined in Theorem 2.2. The g-scale function now reads

Wi(q) (.X) —

p ( ) (exp{n; (@)x} — exp{n; (@)x});
see also [27] for the spectrally negative case with o; = 1. Given Theorem 2.1, of special interest
is the O-scale function. Inthe case in which u; < 0, wehave W;(x) = (1 —exp{Z/Lix/criz})/ [ i,
and (2.2) indeed reduces to the familiar steady-state distribution of a reflected Brownian motion.

Finally, the density of the amount of work after an exponential time starting from v follows
from the derivative with respect to x of (2.5), or can be obtained from Laplace inversion in
Theorem 2.2. Specifically, for x € (0, v), we have

n; (§)

: = NG

dx 8 (8)

and, for x € [v, 00), we have

exp{—; (E)v}<eXP{77, (&)x} — exp{n; (E)x}) (5.11)

d a1 & o €) )
i — W (xv) = 5, (é)( xp{—n; (§)v} —+(§) xp{—n; (£)v} ) expin; E)x}. (5.12)
Step 1: Rewriting (5.8). Note that
$1©) — () _ 2= +1/20f —oDe _ o (Mz a%) 2p1/o}
¢1(w) olw/2 — of w0t w—2p/o}
(5.13)

Substitution into (5.8) then gives
2 2 2
H2 0 2uy/of
=g (-3 (3-2): 2455
¢1(w) of w0 ) w—2u/o}

x (/ Elexp{—oZY (T < k) | 2 = x]1dP(Z < x)
K

+ Py g Elexp{—-wZi"} | 2 = K]> (5.14)

Step 2: Workload density on (0, K]. Apply Laplace inversion to each of the terms on the
right-hand side of (5.14) separately. The Laplace inverse of the first term is simply given by a
constant times the scale function W; (). The second term,

2 2
2
(1__2+<m 022)/“—%‘1)/ Elexp{—oZ{"Y (T < tx) | 28 = x]dP(Z < x),
M1 of/w 2,u1/<7l

is the LST of a function that has no mass on [0, K]. Indeed, the integral corresponds to a
function with mass on (K, 0o). The first part consists of a constant and the LST of the scale
function W1 (-) (having mass on [0, 00)) times a constant.
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Using (5.11) and the fact that a product of two transforms corresponds to the convolution
of two functions, it is a matter of tedious calculations to determine the Laplace inverse of the
final term. Denote by fz(-) the density of Z. For 0 < x < K, we then have

2% 4 -
Sfz(x) = Q1exp 7 + Q2 exp{n, (§)x} + Oz expin, (§)x} (5.15)
1
for some constants Q;, O, and Q3.

Step 3: Workload density on (K, 0o). Combining step 2 with (5.3) gives the LST ¢(w).
The density fz(-) on (K, co) can be determined by applying Laplace inversion again. Using
Theorem 2.2 and a similar calculation as in (5.13), we may rewrite (5.3) as

é“(“’)=QL+<1—U—12+<ﬂ—ﬁ)2“2—/"22)
2

$2(w) o; 2 05)w—2ps/0}
K
« / Elexp(—0Z ") | 20 = yifz00dy.  (5.16)
0

Using (5.15) of step 2 combined with (5.11) and (5.12), we may determine the distribution
function W) (-) (and its density). However, it turns out to be sufficient to determine the density
W(T)(e dx) for only x > K; see also step 4, below. In this case, it follows, from (5.12) and
(5.15) and some straightforward algebra, that, for x > K,

d . ~
W@ = Qexplny €)x).
X

Now, applying Laplace inversion to each of the terms in (5.16) we obtain, after some
calculations for x > K, and for some constants Q4 and Qs,

— 2,u,2x
fz(x) = Qaexp{n; §)x} + Qs CXP{ 2 }
2

Step 4: Determination of the constants Q;, i = 1,...,5. We note that, for the case
of Brownian motion, there is no atom at O (to see this, observe that Wi(Q)(O) =0). First,
we have the normalizing condition fooo fz(x)dx = 1. The lengthy calculations to determine
Qi,i=1,...,4,in steps 2 and 3 also provide us with four equations. Together, we then have
five independent equations to determine the five unknowns Q;, i = 1,...,5. Since we also

find the constant Qs, there is no need to specify Qs any further in step 3.

6. Poisson observer: general solution

Now consider the general solution of the reflected Lévy process where the Lévy expo-
nent is adapted at Poisson instants. Since it is in general not possible to reduce (¢; (w) —
¢3—_i(w))/Pi(w), i = 1, 2, we use a slightly different approach in this section than in Section 5.
In particular, in step O we use the Palm inversion formula and results on alternating Lévy
processes as defined in Appendix A to obtain two sets of equations for ¢ (-). The interpretation
of the specific alternating Lévy processes allows us to carry out steps 1—4 in the general case.
We believe that the more direct and insightful derivation in Section 5 is of independent interest,
leading to more tractable expressions for P(Z < x).

In step O we derive a first set of equations using a specific alternating Lévy process. Since
we apply a different alternating Lévy process for the second set of equations, we have chosen to
derive this second set of equations in step 3, where the specific alternating process is introduced.
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Step 0: Determining the equations. Assume that the process is in stationarity and consider
the workload embedded at epochs when the Poisson observer sees a workload larger than K.
To describe the workload behavior in periods between these embedded epochs, we introduce
the following artificial regenerative alternating Lévy process { Z® ¢ > 0}. Let the process AY)
start from some level x > K accordingtoP(Z < x | Z > K), independent of the past evolution,
and define 6; = T, the first observer epoch after 0. During this first period, the Lévy exponent
is taken to be ¢, (-). At time 61, the Lévy exponent is changed into ¢1(-). We define 6, > 0
as the first observer instant after time O with a workload larger than or equal to K. It should
be noted that it is possible that 8> coincides with 8;. Then the period during which the Lévy
exponent equals ¢ (-) has length 0. Times 0 and 6 are two consecutive observer epochs with a
workload larger than K. Owing to stationarity, we have E[exp{—a)i O = E[exp{—a)2 ©2)4],
Applying Lemma A.1 we obtain

R £ (62—01) 2 (61) _ 0 .
pre-ozy B VIH B 0 41@) = 4@ | E[/ ! exp{—a)Z(S)}ds:|'
E[6:] o1(w) ¢1(w) E[6;] s=0 61

In fact, the LST of the actual process Z and the regenerative process Z are identical. To see
this, we consider the observer instants with a workload larger than or equal to K of the actual
process Z (i.e. the embedded epochs) as event times and apply the Palm inversion formula
(31, [33]:

1 62 1 62 . N
- _ () _ _ (s) _ —wZ
L(w) = El0] E|:/0 exp{—wZ }ds] = Eioy] E|:/O exp{—wZ }ds] =E[e 1.

Here, the second step is by construction of the process Z and the third step follows from
regeneration theory. Thus, (6.1) gives a first set of equations for the LST of Z.

Remark 6.1. Note that (5.2) and (6.1) are identical. Write, forx > K, P(Z < x) = P(Z <
K)+P(Z <x | Z> K)P(Z > K), and let x in E,[-] denote the initial position of the process.
Then,

01 n oo 0 N
EU exp{—wZ(s)}ds] = f E, U exp{—a)Z(s)}ds] dP(Z <x | Z > K)
0 0

K

1 00 01 R
= 577 < N —w7®
= P Z=K) /;( Ex [/0 exp{—wZ }ds} dP(Z < x)
E[6:] 0

=—— _ (D)
“Pz=K) Jx E.[exp{—wZ5 '}1dP(Z < x),

where the final step follows from (2.4). The fraction of time that the Lévy exponent is ¢»(-)
equals the fraction of observers finding a workload larger than K, and, hence, using the PASTA
property, also equals the fraction of time that the workload is larger than K. An application of
the Palm inversion formula then provides P(Z > K) = E[61]/ E[62]. Combining the above
and using Theorem 2.2, it follows that the second terms on the right-hand sides of (5.2) and
(6.1) are identical, and (6.1) can be rewritten as (3.2).

For the first terms, we have

E[i(zgl_el)]+E[i§01)] . E[L(t)]
E[6,] T st =
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where the first step follows from an application of the Palm inversion formula and the second
step is due to starting in stationarity.

Step 1: Rewriting (6.1). Use the fact that periods with Lévy exponent ¢, (-) and workloads
smaller than K are initiated by an observer finding a workload larger than K (to set the exponent
to ¢2(-)) followed by a downcrossing of level K before the next observer instant. Owing to the
lack-of-memory property of the Poisson arrival process, the remaining interobservation time
is still exponential at a downcrossing of K. Using the stationary and independent increments
property of Lévy processes, it is intuitively clear that the precise distribution of Z on (K, 00)
affects only the distribution of Z on [0, K] through a constant.

The above intuition can be applied as follows. Let Ez> x[e™*#] for [¢° E,[e™?]dP(Z <
x | Z = K). Define, with some abuse of notation (see already the hitting time 7 in Section 5),
Tt = inf[t > 0: AN ¢ ] as the first hitting time of K, and let 1(-) again denote the indicator
function. Now, using (2.4) in the second and fourth equalities below, and the lack-of-memory
property of the Poisson arrival process and the Lévy process in the third equality, we have

1
E[6,]

1 62 R
— E —wZNUT > tx)d
E[Oz] Z>K|:/(; exp{—w V(T > 1) s:|

oy _

(%) R
Ez>kle EZzK|: / exp{—wZW) (T < 1) ds]
0

1

T
= S Ez-x UO exp{—wZW} (T < tK)dsi|

gEl[e ] Ez-klexp{—oZ DY (T > k) ds]

1 6 .
—Ezs —wZ V(T > ) d

1

T
= S Ez-x [/0 exp{—wZW} (T < rK)dsi|

1
E Eo5] — P,k Exlexp{—0Z D} ds]

1 62 N
— P xE —wZ®9})d
+E[9] ¢K K|:/91 exp{—w } s]

1

T
= _EZ>K|:/ exp{—w 0Z N T < k) dsi| + 13“(
0

Ek[6:] —wl
E[61] Egxle 7],

E[6:]
6.2)

where P |k is the probability of downcrossing K before an exponential time with parameter &,
starting from x according to P(Z < x | Z > K). Using results on the LST of first-exit times
(see, e.g. [24]), it may be checked that

Pk = £ expim(6)K} fK exp{—m@E)x}dP(Z <x | Z > K)

= PZsK) eXP{ﬁz(E)K}/K exp{—n2(§)x}dP(Z < x). (6.3)
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The first transform on the last line of (6.2) gives no contribution on [0, K], since 7 s K
for all s € [0, T']. Thus, the distribution of VA , and, hence, that of Z, on the interval [0, K] is
completely determined by the second transform E g [e ], where the initial condition depends
only on the distribution of Z on [K, co) through the constant 13¢ k Ex[02]/ E[6;].

Step 2: Workload distribution on (0, K]. Apply Laplace inversion to EK[e"”Z]. Using
Lemma A.2, this transform satisfies

“ws.  EILY™M1 o 1 Elexp{—wZ®)}] — E[exp{—0Z®)}]
Exle™"] = +
Exl[62] ¢1(@)  Ekl[62] #1(w)
1 01 .
- — 7 )
+EK[92]E[ /szoexp{ wZ }ds]. (6.4)

In this step, the initial position of the process is K. For notational convenience, we suppress
this initial position, except for Ex [6>] (to distinguish from E[6;]).

Using Theorem 2.1, (2.4), and Theorem 2.2, we directly obtain the inverse of the first and
third terms on the right-hand side of the above equation as constants times W (-) and WQ(T) (-; K),
respectively. It remains to find the Laplace inverse on (0, K] of the second term.

Observe that 6; = 65 if and only if Z©@) > K. Thus, we may write

E[exp{—a)z(gZ)}] - E[exp{—a)i(@l)}]
= E[exp{—wZ®}1(Z) < K)] — Elexp{—0Z}1(Z®) < K)]
=P(Z% < K)(E[exp{—wZ®} | 6, > ;] — E[exp{—wZP} | Z®) < K))
=P(Z% < K)e K (Elexp{—0(Z® —K)} | 6> 01— 1+ 1 —E[e®Y | U > 0)),
where U := K — Z©) is the undershoot under K at the end of the first exponential time 6;
starting from level K. For the second term on the right-hand side of (6.4), we then have
Elexp{—wZ®)}] — E[exp{—wZ®}]
¢1(w)
_ —_w(7©) _
_ _p2®) < g)_@_o-ox LZElexplza(Z® — K)) | 6, > 1]
¢1(w) w
_ P2 < k) 1) e"”Kl — E[exp{wU} | U > 0]‘
¢1(w) -

For the first term on the right-hand side of the above equation, we note that 70 _ g >0
corresponds to the overshoot over K. Hence, e @K (1 - E[exp{—a)(i(‘b) —K)}|6>6])/w
corresponds to the sum of the constant K and the residual overshoot at time 6, given that
6> > 6;1. Clearly, the corresponding convolution has no mass on [0, K]. Since w/¢1(w) has
mass on [0, 00), this first term corresponds to the LST of a function with mass on (K, 00).

The second term can be interpreted as the transform of a sum as well. First note that the
conditional undershoot U | U > 0 has mass on [0, K]. The transform e “X (1 —E[e®Y | U >
0])/(—wE[U | U > 0]) then corresponds to K — U™, where U™ represents a generic residual
undershoot given that U > 0. Using Theorem 2.1 and Definition 2.1, the Laplace inverse of
the second term reads

Wix)*P(K—U™ <x|U>0E[U |U > 0].
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Summarizing, we have, for x € (0, K],

P(Z < x)
_ P (E[£(92‘91>]W1(x) + WD k)
E[6]\ 7 g2

~ Wy (K; K)E[U | U > 0]/ P(K-U®<x—y|U-> O)dW1<y)>~
0
(6.5)

Although the distribution of K — U™® may be rather involved, we note that P(Z < x) for
x € (0, K] depends only on the distribution of Z on (K, oo) through a constant.

Remark 6.2. We may also give another representation of the Laplace inverse of the second
term on the right-hand side of (6.4). Using Theorem 2.1 and Definition 2.1, we easily find that
1/¢1(w) is the LST of f(f Wi(y) dy. Clearly, this function has mass on [0, o). Rewriting the
second term on the right-hand side of (6.4), we obtain

Elexp{—wZ®)}] — E[exp{—wZ®}] 1 5 62) 1 560
= Elexp{—wZ®)}]— —— E[exp{—wZ}].
1 (@) fr(a) Pz =l Blexpl—oZ ]

Both terms are products of LSTs, corresponding to the convolution of two functions. For the
first term, E[exp{ —wZ®) }/¢1(w), observe that E[exp{—a)Z(@?) }1is the LST of a function with
mass on (K, 0co). Hence, the inverse of the first term has no mass on (0, K']. The inverse of the
second term equals f(f Wi(y)dy * WZ(T) (x; K). Summarizing, we obtain, for x € (0, K],

P%K
E[62]

P(Z <x) = (E[[ZS’”')]W] (x) + éWz(T)(x; K)— /0 Wil (x — y; KYWi(y)dy ).

(6.6)
Note that the distribution of Z on (0, K] again depends only on P(Z < x) for x € (K, 00)
through a constant.

Step 3: Workload distribution on (K, 00). Using (5.3), we have completely determined the
LST of Z. In this step we apply Laplace inversion similar to step 2 to obtain its distribution on
(K, 00).

In particular, assume that the process is in steady state and consider the workload embedded
at epochs when the Poisson observer finds a workload smaller than K. Again, to describe the
workload process between these embedded epochs, we introduce the following regenerative
alternating Lévy process {Z®), r > 0}. Let Z© be determined according to the conditional
distribution P(Z < x | Z < K) for x € (0, K), independent of the past evolution, and define
01 = T. During this first period the Lévy exponent is taken to be ¢ (-). At time 0;, the Lévy
exponent is changed into ¢ (-). We define 6, > 0 as the first observer instant with a workload
smaller than K. As in step 0, 6, may coincide with 6;. Because of the stationarity of the
embedded process, we have E[exp{—a)Z Oy = E[exp{—a)Z (2)}]. Lemma A.1 then reads

. B+ ELP ] o L 20— 6@ 1]E[ /91

Ele—®Z7 — E ~ e d:|.
¢ : E[6,] P2 (w) b2 (w) E[6, exp{ @ }ds

(6.7)

s=0
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It follows from similar arguments as in step 2 that the steady-state distribution of the actual
process Z and of the regenerative process Z are identical. Using the Palm inversion formula
[31, [33], it readily follows that the time stationary LST equals ¢ (w):

! E - AT ! E " AT E[e—®%
E[0] Uo expl-e }S]_E[ézl [/o expl-e }S}_ e

where the second step is by construction of Z and the third step is by regeneration theory.

{(w) =

Remark 6.3. Using similar arguments as in Remark 6.1, it follows that (5.3) and (6.7) are
identical. Specifically, for x € (0, K], writing P(Z < x) =P(Z <x | Z < K)P(Z < K),

we have
01 - K 0 -
E[/ exp{—wZ(s)}ds] =/ E, U exp{—a)Z(s)}ds] dP(Z <x | Z < K)
0 0 0
E[6,] ¥ 1)
= m ) Ex[exp{—a)Zl }] dP(Z < x),

where the second step follows from (2.4). The fraction of time that the Lévy exponent is
¢1(-) equals the fraction of observers finding a workload smaller than K, and, hence, using the
PASTA property again, also equals the fraction of time that the workload is smaller than K.
An application of the Palm inversion formula then provides P(Z < K) = E[6;]/ E[éz]. Using
Theorem 2.2 and combining the above, we deduce that the second terms on the right-hand sides
of (5.3) and (6.7) are identical, and (6.7) may thus be presented in the form of (3.3).

For the first term on the right-hand side of (6.7), we have

BILP ") +BILO)] L EILOT
E[65] t—oo t ’

where the first step is an application of the Palm inversion formula and the second step follows
from starting in stationarity.

It thus remains to find the time stationary distribution of Z. Using (2.4) and Theorem 2.2, it is
easy to obtain the distribution on the first interval of the alternating process. Using LemmaA.2,

we have
— EL% ] 1 Elexp{—»Z®)}] — Elexp{—0Z )]
~ El6)] ¢2(@)  E[6] #2(w)
1 d -
——E —wZ"d ] 6.8
" Eld] [Lo“p{ 0z 9

From Theorem 2.1, the Laplace inverse of the first term is readily obtained, giving W>(-)
times a constant. Applying (2.4) and Theorem 2.2, we also directly obtain the inverse of the
third term as E[0;]/ E[6>] times

WD (x) = /KW(T)(x' YAP(Z <y | Z < K) = ;/KW(T)()C' YdP(Z < )
cond : 0 1 Y y P(Z <K) Jo 1 >y y)-
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Since we have determined the distribution of Z on [0, K], we have also found WC(; (-) (as
mentioned in Section 5, we note that its precise form may be rather involved). Finally, rewrite

the second term of (6.8) as

Elexp{—0Z®)}] — E[exp{—wZ®}]
h2(w)

@ (1—Elexp{~wZ®}] 1 —E[exp{—0Z®)]
_@w( - )

Using Theorem 2.1 and Definition 2.1, it follows directly that /¢, (w) is the LST of
W2(-). Observing that we again have the difference of two convolutions, we may apply
Laplace i 1nver510n to both terms separately. Note that (1 — E[exp{—wZ (91)}])/ w is the LST of
Jo (1= W) (3))dy. Equivalently, (1 — E[exp{— —wZ®\))/w is the LST of Jo(1=P(Z <
y|Z < K))dy with x € (0, K]. In fact, both terms correspond to the integrated tail
distribution. Using the fact that a product of LST's corresponds to a convolution of two functions,
it is now easy to apply Laplace inversion to this second term.

Summarizing, we have, for x € (K, 00),

w w

P(Z <x) = ;]GM@QM%m+/'%u—wa W () dy
2

—/ %u—wa—H2<m2<K»®+;§&u0
0

Remark 6.4. Similar to Remark 6.2, we may give a different representation for the second
term on the right-hand side of (6.8). In particular, for this second term, we may write

Elexp{—0Z®)] — E[exp{—0Z®)] 1
P2 (w)  (w)

Using Theorem 2.1 and Definition 2.1, we easily find that 1/¢»(w) is the LST of fg Wa(y)dy.
Observing that we again have the sum of two convolution terms, we may easily apply Laplace
inversion to both terms separately. In particular, for the first term, E[exp{— —wZ®) /P2 (w),
we obtain an incomplete convolution between fo Wa(y)dy and P(Z < x | Z < K) (see also
below). For the second term, E[exp{— —wZ®y] /2 (w), we have a convolution of fo Wa(y)dy
with Wcond() Summarizing, we obtain, for x € (K, 00),

E[exp{—wz@) - ; Elexp{—wZ}).
$2(w)

- K px—
P(Z < x) = ;<E[£§92‘91’]W2(x) +/ / ’ Wa(z)dzdP(Z <y | Z < K)
E[0>] o Jo

1
—A ﬁgmwmmw®+sgﬁ@0

Alternatively, conditioning on f(f W3 (y) dy for the second convolution, we may represent the
distribution of Z on (K, 00) as

P(Z <x) = ;]@M@&m%m+/xP@<x—NZ<KWMWM
2 x—K

—/0 Wi (x — y)Wz(y)der%_ C(Qd(x))
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Step 4: Determination of the constants. It follows from Remarks 6.1 and 6.3 that

E[LY* ™1+ EBIL1 _ EIL* ™1+ EIL{

= _ = Q. 6.9
E[6,] E[6:] ¢ ©

Using (2.4) and the final observation in Remark 2.1, it can be easily verified (see also [10,
Equation (3.6)]) that

EIL{™) _ /K exp(—m (§)x}
E[6,] 0 (&)

which can be determined in terms of Q and P(Z < K) by multiplying either (6.5) or (6.6) by
exp{—n1(£)x} and integrating over the interval [0, K]. Similarly, we have

dP(Z < x),

2 (61) 00 _
L) [ w6 g
K

E[6:] n2(8)

which can also be expressed in terms of Q and P(Z < K) by combining the above with
the definition of Q, i.e. (5.1). From the observations in Remarks 6.1 and 6.3, we also have
1/E[62] = £ P(Z > K)and 1/E[52] = £ P(Z < K). Itremains to determine Q and P(Z < K).
Letting w | 0in (6.1), we obtain

0 = ¢5(0) — (¢5(0) — $1(0) P(Z < K).

Note that letting |, 0 in (6.7) gives the same equation (this also provides the first equality in
(6.9)). In addition, P(Z < K) can be directly obtained by substituting x = K into either (6.5)
or (6.6), with f% k given by (6.3). These latter two equations determine the constants Q and
P(Z < K) and, thus, the remaining constants.

Appendix A. Alternating Lévy processes

Here, we analyze alternating Lévy processes without negative jumps. Consider a regen-
eration cycle, and let some (possibly random) level Z(") > 0 be the starting level of the
cycle. At these regeneration points a first period starts, consisting of a reflected Lévy process
without negative jumps and a Lévy exponent ¢; (). At some stopping time t; the first interval
ends, and the Lévy exponent is changed into ¢y;(-) until the end of the regeneration cycle,
denoted by time 7;;. Denote the starting time of interval i = I,II by 77, ie. 1; = 0
and 7;; = 1;. For convenience, the first period is referred to as interval I and the second
period as 1nterval II The reﬂ@cted process is denoted by {(Z®, t >0} and is defined as
Z0 = z@) +X -t +L TR for e [r 7;), i = I,1I, where we use the notation
7 =20, Here, L( Nz —1nfo<u<,[Z(f ) 4+ X )]_ (in this appendix we explicitly indicate
the dependence of L on the initial value Z(® = z, but, for ease of presentation, this is often
omitted in the remainder of the paper). Denote the steady-state version of {Z O ¢ > 0},
assuming that it exists, by Z.

We note that the model introduced above is not very natural in its full generality. However,
various natural models might be considered as a special case. The most prominent model is
the M/G/1 dam (see Section 3); define ZO® = K, 1; as the first upcrossing of K, and tj; as
the subsequent downcrossing of K. The equations in Lemmas A.1 and A.2, below, appear in
various parts of the paper.
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Lemma A.1. For an alternating Lévy process as described above, the LST of the steady-state
workload satisfies the following equations:

E[L;1n1—n)|z] + E[LETINZ] » El[exp{—wZ®}] — E[exp{—wZ©}]

E[e—wZ]z
E[ty] o (w) o (@) Elty]
di(w) — r(w) 1 f ©) ]
E —wZ®)ds|. Al
T @ Bl [s=oeXp{ ©Z7ds A-D
Also,
— EILT"" ™R 4 EILF] w  Elexp{—0Z™}] — Elexp{—0wZ©}]
Elty] o1 (w) ¢1(w) E[ty]
¢1(®) — pp(®) 1 / ©) }
E —wZ®)ds | A2
T g Bl [m,exp{ 077 s A2

Proof. To derive the steady-state distribution of this process, we use the following martin-
gale [1], [22]: fori = 1,11,

t
Ml.(t) = ¢i (w) / . exp{—wZ(S)} ds — exp{—a)Z([)} + exp{—a)Z(O)} — a)LEmZ.
§=

Application of the optional sampling theorem, with stopping time t;, to this martingale (with
i = I)yields (cf. [1], [22])

b1 () E[/n exp{—wZ®)} ds] = Elexp{—wZ™}] — Elexp{—wZ@}] + w E[L{F].

Note that the end point of this first period, i.e. Z () is also the starting point of the second
interval. Rewriting the above, we have

T

Elexp{—wZ™}] =¢,(a))E|: / exp{—wz@}ds]+E[exp{—wz<0>}]—wE[L§’”Z]. (A.3)

For the second interval, we apply the optional sampling theorem, with stopping time tj7, to
this martingale (starting at t; instead of at 0), yielding

b (w) E|:/m exp{—a)z(‘v)} dsi|

=17

= Elexp{—wZ™}] — E[exp{—0Z™}] + 0 E[L{" 1] (A.4)

= —¢; (a))E[/U exp{—a)Z(S)}dsi| + Elexp{—wZ™}] — E[exp{—wZ(O)}]

+wE[LF" ™ ]+ E[LSE, (A.5)

where the second step follows from (A.3). From regeneration theory, it follows that the LST of
the steady-state workload Z in a queue with alternating exponents is given by

E[e *%] = L(E[ / K exp{—a)Z(s)}ds] +E[ / " exp{—a)Z(S)}ds:D. (A.6)
Elzy] 5=0 s=1;
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Hence, dividing (A.5) by ¢y(w), adding E[ [ exp{—wZ®)}ds] to both sides, and then
dividing by E[z;7], we obtain

EIL" ™R 4 BILE] o E[exp{—»Z@}] — E[exp{—0Z @]
E[zy] o (w) o (w) E[ty]

1 ¢u(w) —¢1(w) / u ©) }
E —wZ ds |. A7
E[ty] o (w) [ 5 expl-wZ ds A7)

E[efa)Z] —

s=0

Hence, we have derived (A.1). Using (A.6) to rewrite the final term in (A.7) and some rewriting
provides (A.2).

In addition to the M/G/1 dam, the equations of Lemma A.1 can be useful in several special
cases, especially when Z© = Z() and ¢; and ¢ are related. Typical examples are Lévy
storage models where the output is shut off every time the system reaches O (as in, for instance,
vacation models or service according to D-policies); see also [21]. As an easy application, we
next consider an M/G/1 queue with service rate » and an exceptional first service during a busy
period. Moreover, the result is a slight extension of familiar results, where service at unit speed
is assumed; see, e.g. [35, p. 128] or [36],

Example A.1. Inthis example we consider an M/G/1 queue with arrival rate A, service speed r,
and generic service requirement By;. Each first customer in a busy period receives an exceptional
service that is generically denoted by B;. Let B;(-), i = I, II, be the LST of B; and denote by
Bi its mean.

This model can easily be analyzed using Lemma A.1 and some trivial observations. In the
general model with alternating exponents, let Z® = 0, define 7; as the first customer arrival
epoch, and let 77 := inf[t > 7;: Z® = 0] be the end of the busy cycle. We may then take
¢i(w) =rw — A+ ABj(w), i = I,1I. Note that there is no reflection in the second interval;
hence, E[Lg,r” U )IO] = 0. By definition of 7; we have for the first interval that Z*) = 0, with
s € [0, 77), implying thatE[fOT’ exp{—wZ(s)} ds] = E[t;]. Moreover, since it holds for the free
process that X)) = —rr;, we have E[L(IT’)‘O] = r E[77]. Substituting the above into (A.1)

and some straightforward rewriting yields

E[e—"%] = Elz/] ro — AB1 (@) + ABn(w)
Elty] ro—A+Mp(w)

The constant E[t;]/ E[7y] can be obtained by letting w | 0 and applying I’Hopital’s rule,
giving the final result

1—p ro — ABr(w) + B (w)

E[efu)Z] —
14+ AB81/r—p rw—Ai+ ABp(w)

where p = ABp;/r. We refer the reader to, for example, [35, p. 128] or [36] for the case r = 1.

Another equation that is useful when E[exp{—wZ(7}] and the steady-state workload dis-
tribution of the first interval can be determined separately is presented below. It follows by
dividing both sides of (A.4) by ¢y (w) and adding E[ [, exp{—wZ®)} ds] to both sides.
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Lemma A.2. For an alternating Lévy process as described above, we have the following
relations:

(tn—t1)lz
E|:./TII exp{—wZ(s)}dS] = ElLy lo | Elexp{-oZ")] ~ Blexp(~wZ™)]
s

o (w) o (w)
+E|: / 1 exp{—wz“)}ds] (A.8)

s=0
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