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Abstract. We consider the equation

ab + cd = λ, a ∈ A, b ∈ B, c ∈ C, d ∈ D,

over a finite field �q of q elements, with variables from arbitrary sets A,B, C,D ⊆ �q.
The question of solvability of such and more general equations has recently been
considered by Hart and Iosevich, who, in particular, prove that if

#A#B#C#D ≥ Cq3,

for some absolute constant C > 0, then above equation has a solution for any λ ∈ �∗
q.

Here we show that using bounds of multiplicative character sums allows us to extend
the class of sets which satisfy this property.

2000 Mathematics Subject Classification. 11L40, 11T30.

1. Introduction.

1.1. Background. Let �q denote the final field of q elements.
Using exponential sums, Hart and Iosevich [9] have shown that for any 2n sets

Ai,Bi ⊆ �q, i = 1, . . . , n, with

n∏
i=1

#Ai#Bi > Cqn+1, (1)

for some absolute constant C > 0, the equation

n∑
i=1

aibi = λ, ai ∈ Ai, bi ∈ Bi, i = 1, . . . , n, (2)

has a solution for any λ ∈ �∗
q (although the proof is given only in the case of A1 =

B1 = · · · = An = Bn, the method and results immediately extend to the general case,
see [9, Remark 1.3]). These results have been put in a more general context in a recent
work of Hart et al. [10].

In particular, for n = 2, one can easily derive from the proof of [9, Theorem 1.1]
that the equation

ab + cd = λ, a ∈ A, b ∈ B, c ∈ C, d ∈ D, (3)
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has

N(A,B, C,D; λ) = #A#B#C#D
q − 1

+ O
(
(q#A#B#C#D)1/2) (4)

solutions for any λ ∈ �∗
q.

In particular, we see from (1) that for any λ ∈ �∗
q, equation (3) has a solution for

any four sets A,B, C,D ⊆ �∗
q with

#A#B#C#D ≥ Cq3, (5)

for some absolute constant C > 0.
Furthermore, for the number T(A,B, C,D) of the solutions of the similar equation

a + b = cd, a ∈ A, b ∈ B, c ∈ C, d ∈ D, (6)

Sárközy has given an analogous bound

T(A,B, C,D) = #A#B#C#D
q − 1

+ O
(
(q#A#B#C#D)1/2) (7)

in [18] and also the bound (1) in [19] (it is shown in [18, 19] only for prime fields but the
proofs and results extend to the general case at the cost of only typographical changes).
Thus (6) has a solution under the condition (5) as well.

Hart and Iosevich [9] have also considered the set E(A,B, C,D) of λ ∈ �q for
which (3) has no solution. Although only the case of A = B = C = D has been worked
out in [9], the same approach seems to give the bound

#E(A,B, C,D) = O
(

q3

#A#B#C

)

(certainly if D is not of the smallest cardinality among A,B, C,D one can alter this
bound in the obvious way). Thus only three sets out of four are relevant. This implies
that instead of (3) one can consider the equation with only three variables

f + gh = λ, f ∈ F , g ∈ G, h ∈ H, (8)

for some sets F ,G,H ⊆ �q. If E(F ,G,H) is the set of λ ∈ �q for which (8) has no
solution then we have

#E(F ,G,H) = O
(

q3

#F#G#H

)
. (9)

We now remark that the result of Sárközy [18] also implies (9). Indeed, we see that

T (−E(F ,G,H),F ,G,H) = 0,

and we derive from (7)

#E(F ,G,H)#F#G#H
q − 1

= O
(
(q#E(F ,G,H)#F#G#H)1/2),

which leads to (9).

https://doi.org/10.1017/S0017089508004382 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004382


ON THE SOLVABILITY OF BILINEAR EQUATIONS IN FINITE FIELDS 525

We remark that in a recent work of Garaev [5] considering equation (6) (for some
special sets A,B, C,D) has been the main tool in obtaining new results on the sum–
product problem in finite fields (see also [2–4, 9, 11, 15, 16]). In fact, one can shorten
the proof of [5, Theorem 1] by a direct appeal to (7).

1.2. Our results. Here we show that using multiplicative character sums one
can extend the region of possible values for #A, #B, #C, #D which guarantee the
solvability of equations (3) and (6). We show that for any fixed ε > 0, there exists δ > 0
such that if

#A ≥ q1/2+ε and #B ≥ qε, (10)

as well as

#C#D ≥ q2−δ, (11)

then equations (3) and (6) have a solution for any λ ∈ �∗
q (provided that q is large

enough).
More precisely, we obtain the following asymptotic formulas:

THEOREM 1. For any fixed ε > 0, there exists δ > 0 such that for any λ ∈ �∗
q and

any set A,B, C,D ⊆ �q which satisfy (10) and (11), equations (3) and (6) have

N(A,B, C,D; λ) = #A#B#C#D
q

(1 + O(q−δ))

and

T(A,B, C,D) = #A#B#C#D
q

(1 + O(q−δ))

solutions, respectively.

The same argument which we have used to derive (9) from (7), combined with our
bound on T(A,B, C,D), leads to the following estimates:

COROLLARY 2. For any fixed ε > 0, there exists δ > 0 such that for any setF ,G,H ⊆
�q which satisfy

#F ≥ qε and #G#H ≥ q2−δ,

equation (8) has a solution for all but

#E(F ,G,H) = O(q1/2+ε)

values of λ ∈ �q.

COROLLARY 3. For any fixed ε > 0, there exists δ > 0 such that for any setF ,G,H ⊆
�q which satisfy

#F ≥ q1/2+ε and #G#H ≥ q2−δ

equation (8) has a solution for all but

#E(F ,G,H) = O (qε)

values of λ ∈ �q.
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As far as we are aware, before the work of Sárközy [19] and the present work,
multiplicative character sums have not been used in questions of this kind. The main
purpose of this work is to show that multiplicative character sums may allow us to
break through the q1/2-threshold on the cardinalities of the sets involved, which usually
occurs when one uses exponential sums.

2. Proof of Theorem 1.

2.1. Estimating N(A,B, C,D; λ). Let us denote by X the set of all multiplicative
characters of �∗

q and by X ∗ the set of all non-trivial characters. For the trivial character
χ0 we define χ0(0) = 1 and put χ (0) = 0 for all other characters χ ∈ X ∗.

Using the orthogonality property of characters, see [17, Equation (5.4)], we write
for the number of solutions N(A,B, C,D; λ) to equation (3)

N(A,B, C,D; λ) = 1
q − 1

∑
a∈A

∑
b∈B

∑
c∈C

∑
d∈D

∑
χ∈X

χ (ab − λ)χ(cd)

= #A#B#C#D
q − 1

+ 1
q − 1

×
∑
χ∈X ∗

∑
a∈A

∑
b∈B

χ (ab − λ)
∑
c∈C

χ (c)
∑
d∈D

χ (d).

Let

W = max
χ∈X ∗

∣∣∣∣∣
∑
a∈A

∑
b∈B

χ (ab − λ)

∣∣∣∣∣ .
Then, using the Cauchy inequality (and again the orthogonality property of
characters), we obtain∣∣∣∣∣∣

∑
χ∈X ∗

∑
a∈A

∑
b∈B

χ (ab − λ)
∑
c∈C

χ (c)
∑
d∈D

χ (d)

∣∣∣∣∣∣
≤ W

∑
χ∈X ∗

∣∣∣∣∣
∑
c∈C

χ (c)

∣∣∣∣∣
∣∣∣∣∣
∑
d∈D

χ (d)

∣∣∣∣∣
< W

⎛
⎝∑

χ∈X

∣∣∣∣∣
∑
c∈C

χ(c)

∣∣∣∣∣
2
⎞
⎠

1/2 ⎛
⎝∑

χ∈X

∣∣∣∣∣
∑
d∈D

χ (d)

∣∣∣∣∣
⎞
⎠

1/2

= W (q − 1) (#C#D)1/2
.

Therefore ∣∣∣∣N(A,B, C,D; λ) − #A#B#C#D
q − 1

∣∣∣∣ < W (#C#D)1/2
. (12)

We now recall a result of Karatsuba, see [13] or [14, Chapter VIII, Problem 9]
(which in turn follows from the Weil bound and the Hölder inequality), asserting that
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for any integer r ≥ 1, we have

W = O
(
(#A)1−1/2r#Bp1/4r + (#A)1−1/2r(#B)1/2p1/2r), (13)

where the implied constant depends only on r. In particular, taking r = ⌈
ε−1

⌉
, we see

that for any ε > 0 there exists δ > 0 such that under condition (10) we have

W ≤ #A#Bq−2δ (14)

provided that q is large enough. Substituting (14) in (12) and recalling (11), we obtain
the desired estimate for N(A,B, C,D; λ).

2.2. Estimating T(A,B, C,D). We proceed exactly in the same way; however,
instead of W , the bound on the number of solutions depends on

V = max
χ∈X ∗

∣∣∣∣∣
∑
a∈A

∑
b∈B

χ (a + b)

∣∣∣∣∣ ,
for which the same bound as in (14) holds as well.

3. Concluding remarks.

3.1. Links with the sum–product problem. We have already mentioned that
equation (6) appears in the argument of Garaev [5] on the sum–product problem
in finite fields. We present this argument in a slightly more general form. For two sets
X ,Y ⊆ �q we consider their sum and product sets

U = {x + y : x ∈ X , y ∈ Y} and V = {xy : x ∈ X , y ∈ Y}.

The argument of [5] (presented there in the special case X = Y) is based on the
observation that the equation

vx−1
1 + x2 = u, x1, x2 ∈ X , u ∈ U , v ∈ V,

has at least (#X )2#Y solutions of the form (x1, x2, u, v) = (x1, x2, x2 + y, x1y).
Combining this observation with (7) (and assuming that #Y ≥ #X ) we obtain

#U#V ≥ C0 min
{

p max{#X , #Y}, (#X )2(#Y)2

p

}
,

for some absolute constant C0 > 0, which for X = Y coincides with the result of
Garaev [5, Theorem 1]. It would be interesting to see whether our approach to
estimating the number of solutions to (6) allows to obtain stronger estimates.

3.2. Possible improvements. Certainly for every concrete value of ε one can use
the bound (13), instead of its simplified form (14), and optimise the choice of r.

Clearly (5) is not implied by (10) and (11). On the other hand, we show that our
approach also gives an alternative proof of the corresponding results of [9] and [18] for
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equations (3) and (6), respectively. In turn, using the well-known bound

W ≤ (q#A#B)1/2
,

(see [21, Exercise 8.c]) we easily derive (4) from (12). The bound (7) follows similarly
from the inequality

V ≤ (q#A#B)1/2
.

Certainly, if more information about the arithmetic structure of the sets A and B
is known then better bounds can be available, see for example, estimates which are
given by Friedlander and Iwaniec [12] and by Karatsuba [13]. Moreover, in the case
where q = p is prime and A = B = C = D = {1, . . . , H}, a slight modification of the
proof of [1, Theorem 12] shows that (3) has H4/p + O

(
H2po(1)

)
solutions for every

λ ∈ �∗
p. This is non-trivial starting with H ≥ p1/2+ε for any ε > 0 and sufficiently large

p. Several more results of the similar flavour are given by Garaev and Garcia [6].

3.3. Further problems. Unfortunately, our approach does not seem to extend
to the general equation (2). More precisely, combining bounds of exponential and
multiplicative character sums, some results can be obtained, but they are weaker than
those of [9, 10]. So, it would certainly be interesting to find a way of using bounds of
multiplicative character sums to obtain an alternative proof of the result of [9] on the
solvability of equation (2) under condition (1). Such a proof is likely to lead to the
solvability of this equation under several more conditions as well.

Following, Hart, Iosevich and Solymosi [11] we now consider the equation

(a1 − b1) · · · (an − bn) = λ, ai ∈ Ai, bi ∈ Bi, i = 1, . . . , n, (15)

where Ai,Bi ⊆ �q, i = 1, . . . , n and use Qn(A1,B1, . . . ,An,Bn; λ) to denote its number
of solutions. In the case A1 = B1 = · · · = An = Bn = A, it is shown in [11], using
bounds of Kloosterman sums, that (15) has a solution for any λ ∈ �q, provided that
#A ≥ q1/2+1/(2n). Clearly, using multiplicative character sums one can also obtain new
results for equation (15) (for example, in the case when the sets B1, . . . ,Bn are ‘thin’).

Gyarmati and Sárközy [7, 8] have considered several more generalisations of
equations (3) and (6). For some of these generalisations one may wish to study for
which classes of polynomials F(U, V ) ∈ �q[U, V ] the method of Karatsuba [13] can be
used to obtain analogues of bound (13) for the sums∑

a∈A

∑
b∈B

χ (F(a, b)), χ ∈ X ∗.

There is little doubt that in principle the whole approach works in this case too;
however, it may require to study the root multiplicities of the rational functions
F(U, u1) · · · F(U, ur)F(U, v1)−1 · · · F(U, vr)−1 with u1, v1, . . . , ur, vr ∈ �q.

We also remark that equation (3) (after a sign change and renaming some variables)
transforms into the determinant equation

det
(

a b
c d

)
= λ, a ∈ A, b ∈ B, c ∈ C, d ∈ D.

This suggests also to consider higher-dimensional determinant equations

det(aij)n
i,j=1 = λ, aij ∈ Aij, i, j = 1, . . . , n,
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for n2 sets Aij ⊆ �q, i, j = 1, . . . , n. For structural sets, such as intervals, this and similar
questions have been studied in [1], however its methods do not seem to apply to the
case of arbitrary sets.

An analogue of bound (13) has been given in [20] for character sum over points of
an elliptic curve over �q, which has also been applied to study an elliptic curve analogue
of equation (6). One can also consider some mixed cases involving points on an elliptic
curve and field elements.
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