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Inbreeding in artificial selection programmes
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The restriction of population size, in terms of the number of individuals allowed
to breed, leads to an increase of homozygosis within the population and also to
random changes in gene frequency from generation to generation. The magnitude
of these effects can be described by introducing the concept of the idealized random
breeding population (see Falconer, 1960, p. 49). In Crow’s words (1954), ‘the
offspring come from pairs of gametes which are drawn at random from an infinite
pool to which each parent had contributed equally’. The number of progeny
contributed by individual parents then has a Poisson distribution.

In practice, parents do not have equal probabilities of contributing to the next
generation. Under normal conditions, such inequalities will arise from differences
between individuals in inherent fertility and fecundity and between family groups
in viability. Under artificial selection, even if based solely on the individual’s
own performance, there will be a further effect because of differences between
progeny groups in the character under selection. In a population composed of
full-sib groups, for instance, all pairs of parents may have equal probabilities of
contributing progeny to be measured but, if there is any genetic variance in the
character under selection, they will not have an equal chance of having the progeny
gelected as parents of the subsequent generation. This paper presents a theoretical
treatment of this problem which was brought to my notice by Dr G. McBride.

A brief reference to the phenomenon was made by Morley (1954). He was
primarily interested in the fact that ‘in a flock exposed to selection, the genetically
superior individuals will tend to be most inbred. As a corollary, selection increases
the approach to homozygosity, not only at loci carrying genes determining the
character in question but at all loci’.

The problem can be most easily approached in terms of the random changes in
the frequency of genes which affect neither natural fitness nor the character under
selection. If such a gene is carried by an animal whose progeny mean for the
selected character is above the population mean, then its frequency will tend to
increase until its association with genes increasing the selected character is broken
down by segregation and recombination. The reverse will apply to genes carried
by individuals whose progeny mean is below the population mean for the selected
character. As a consequence, the random changes in the frequency of such genes
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from generation to generation are greater than that expected from the actual
number of parents and we can say that the effective population size is below the
actual size.

We may take as the simplest example a population split into N full-sib groups.
If the population behaved in the idealized manner, then the expected variance
of gene frequency change from generation to generation would be equal to

q(1-9q)
E(q) = v

We now assume a large ‘gene pool’ from which we sample the parents of the
full-sib groups. We form the ‘gene pool’ in the next generation by weighting the
genes in each group by a factor depending on the mean of the full-sib group for the
selected character. Suppose that the probable contribution of a family is f, and
that the frequency of the gene in question in that family is ¢;. Then the mean
gene frequency in the newly formed gene pool is given by summing over families
as 3f141/2f1, and the variance of this will be ¢(1 —q)X f2/4(Xf)? since each full-sib
family is a sample of four alleles. Thus, using the above formula in reverse, we
may say that the effective population size N, is given by

(=17
N, = SE
Now the families to which these f factors are ascribed can be considered as members
of an infinite population of such families, in which the mean and standard deviation
of f are m and ¢. Then

E(X f?) = Nm?+No®

and E(Sf)? = N2m?2+ No®,
N+C?
= ——— ]-
so that N, 1707 (1)

where C is the coefficient of variation of f between families. If we speak in the
usual way about the relative selective advantages s;, s, of the separate families,
it will be seen that C? is the variance of ¢ between families.

It may be of value to contrast this approach with that of Crow (1954) and
Crow & Morton (1955) to similar problems. In this paper the approach is a priors
in predicting effective population size from a knowledge of the variation of
selective advantage between families. They were concerned to measure N, from
the observation of the variation of actual family size.

The two approaches may be connected by noting that Crow’s expression for
the variance of family size after selection, Vg, has the expectation 2(N —1)
(14 2C?)/(N + C?) in a population stable in number.

It remains to determine the variance of s. We assume that selection is based
only on the individual’s own performance. It is known that if the selection dif-
ferential in artificial selection is ¢ standard deviations, then individuals in a group
with deviation z from the mean have a selective advantage iz/o,,, where o, is the
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standard deviation within groups. This holds only for small values of . By trial
and error, it has been found that the expression
72 2

1* o}

i
(where o? is the variance of the selected character between families) is an excellent
approximation for the variance of s up to ¢}, = 20, though it is less valuable at
high selection intensities.

We have then an expression for the variance of gene frequency changes in the
first generation. In the next generation, a new set of full-sib groups will be formed,
superimposed on which is a further relationship pattern deriving from the full-sib
structure in the first generation. Full-sibs chosen as parents of the second genera-
tion will have progeny which are related as single first cousins. So in the selection
of individuals in the second generation, those having parents from superior full-
sib groups in the first will have a slightly higher chance of being selected. Because
of the linear relationship between selected advantage and the deviation of a group
from the population mean, the expected change in gene frequency in the second
generation will be half that in the first and in the same direction. The expected
total change will then accumulate as 1, 2, Z ... to a limiting value of 2. But the
effective population size is dependent on the variance of random changes in gene
frequency, and C? in equation (1) will increase in successive generations as 1, 4, £2,
up to a limiting factor of 4. Thus, for individual selection, we may finally put

N 4320}
N, = oea ®

The parents of the full-sib groups are not a random sample of their generation.
As a selected group, they might be expected to show less genetic variation than a
random sample. In fact it can be shown that the genetic variation will be reduced
by a proportion A% ¢ (4 —z), where h? is the heritability of the character under
selection and z is the abscissa of the unit normal curve when the area cut off is p.
If we are then dealing with full-sib groups between which there is no non-genetic
variation, then we may write

N

= 1 -2 —w)]

T

P
b
and TZ\;T‘

= 142201 -R%i(z —2)]

In most laboratory selection experiments, p lies between 209, and 409, and 7
then lies between 1 and 1-4. In this range, 7 (:—x) varies little between 0-7 and
0-8. Selection for a character with a high heritability may thus cause an important
reduction in the effective population size.

The model implies that animals from each progeny group have an equal chance
of being measured, so that at measurement the distribution of family sizes will
be Poisson. In laboratory experiments, one generally tries to measure an equal
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number of progeny in each mating. This must lead to a reduction of the variation
in family size after selection. Using Crow & Morton’s formula (14), it can be shown
that if at measurement there are n individuals of each sex in all families, then the
variance of group size after selection is reduced by a factor 1/n. For a large number
of families the effective population size is then given by

N 1 of 1
v, = (1-z) +4(1-5)

If » = 1, implying no selection and equal representation of all families in the next
generation, this reduces to the known result N, = 2N.

INDEX SELECTION BASED ON FAMILY AND
INDIVIDUAL PERFORMANCE

We have been discussing so far selection based solely on the individual’s own
performance. It is well known that it is more efficient to use a weighted combina-
tion of the measurement on the individual and the average measurement of the
family it belongs to (Lush, 1947). Writing P, F, and P, for the individual’s own
measurement, its family mean, and the population mean respectively, we then
select on an index

I=P-F+KkF-P),

where k is chosen to maximize the correlation between I and the individual’s
breeding value. In individual selection, which we discussed earlier, we pay no
attention to family mean and select only on P, i.e. we put £ = 1. The inbreeding
effect then depended on of/(of +0%). In this context, it will be seen that the effect
of index selection is to multiply o?/o? by a factor k2.

Using Lush’s terminology of r and ¢ for the genetic and phenotypic intra-family
correlations, we see that of/(af + o}) is equal to ¢. Lush showed that if family size
is large, the optimum value of k is 7(1 —#)/{(1 —7), which for full-sib families
becomes (1 —t)/t. In index selection, we then have

k2ol _ 1
Bop+oy  1+03/kof

_ 1

- 11—t
142+~
Ty

1

B t
1+—~1_t

=1-—t¢.

Thus if ¢ is low, implying a low heritability and considerable attention paid in
index selection to family average rather than to the individuals own performance,
the effective population size may be much reduced.
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On the other hand there may be much non-genetic variation between families
leading to a value of ¢ greater than r. In individual selection, selection may then
be concentrated on only a few families. Index selection, which in this case will
put more weight on the individual’s deviation from the family mean, will then
spread the selection over the families and increase the effective population. In
the extreme case, when selection is based entirely on the individual’s deviation
from family average, the effective size will equal the actual size.

DISCUSSION

The problem that has been discussed here has proved difficult to solve exactly
and many side-issues have had to be examined. However, the main factors con-
trolling effective population size in a selection programme have been clearly
isolated. We may then expect the inbreeding under individual selection to be
greater than that calculated from the actual number of parents when both the
intensity of selection and the heritability of the character are high. Selection
on combined individual and family measurements would be expected to increase
this effect except when there is much non-genetic variation between families.

Perhaps the most interesting aspect of the results is in the time-lag in the effect.
In the ideal random breeding population, the inbreeding due to a given generation
of ancestors is found after two generations (in the absence of self-fertilization) and
thereafter remains constant. Here, due to correlated changes in gene frequency
in successive generations, the increase in inbreeding from the second to the third
generation and from the third to the fourth are similar in magnitude to that in
the second generation. It is commonly observed in pedigree analyses of livestock
populations that an animal does not contribute greatly to inbreeding until he
appears four or five generations back in the pedigree. The effect discussed here
may be partly a cause of this but, in addition, in pedigree breeding, selection still
operates on animals as grandparents or great-grandparents. The present effect is
due to an increase in the contribution of ancestors over several generations
because descendants continue to be selected on their own individual merit and not
because they had a particular grandfather or great-grandfather.

The earlier discussion was entirely in terms of full-sib groups. In the larger
animals, it is customary to keep fewer males than females. The males will be
represented by a half-sib group of progeny and will themselves have been intensely
selected. In the females, the present effect will be reduced because of the lower
intensity of selection but increased because the progeny form a full-sib rather than
a half-sib group.

In a recent series of experiments in this laboratory, Dr McBride carried out a
selection experiment with Drosophila melanogaster in which full pedigrees were
kept. In each of two lines, he had 10 full-sib groups and in each sex selected the
best 10 individuals on their own score out of 100 measured in each generation. In
the early generations, while the response to the selection was still high, the effec-
tive population size was 4 and 5 groups in the two cases. The heritability of the

N
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selected character was 509%,. On the basis of the present theory, the expected
value of N/N, is 2:54, in fair agreement with the observed value. In a further
experiment, selection was based ona combination of individual and family measure-
ments with the same intensity of selection. The value of k£ used was 2. In the early
generations, the effective number of parents was 8 pairs. Here the expected value
of N/N,is 4-31, which is not in such good agreement. However, we have in these
experiments a clear demonstration of the actual reduction in effective population
size under intense selection.

SUMMARY

In a population under artificial selection, the effective population size may be
less than the actual number of parents selected because there will be variation
between families in the character under selection and consequently in the proba-
bility of selection. Expressions are developed for the magnitude of the effect,
which will be greater the more intense the selection and the higher the heritability
of the selected character. The inbreeding due to outstanding individuals may rise
for several generations after their use.
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