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WEAK MIXING MANIFOLD HOMEOMORPHISMS
PRESERVING AN INFINITE MEASURE

STEVE ALPERN AND VIDHU PRASAD

Introduction. Let 5 = (M, p) denote the group of all homeomor-
phisms of a e-compact manifold which preserve a o-finite, nonatomic,
locally positive and locally finite measure p. In two recent papers [4, 5] the
possible ergodicity of a homeomorphism £ in 3 was shown to be related
to the homeomorphism A* induced by 4 on the ends of M. An end of a
manifold is, roughly speaking, a distinct way of going to infinity. Those
papers demonstrated in particular that J#(M, p) always contains an
ergodic homeomorphism, paralleling the similar result of Oxtoby and
Ulam [11] for compact manifolds with finite measures. Unfortunately the
techniques used in [4] and [5] rely on the fact that a skyscraper
construction with an ergodic base transformation is ergodic, a result which
cannot be extended to finer properties than ergodicity.

In this paper we use different techniques, but still related to the ends of
M, to establish sufficient conditions that > contains homeomorphisms
that are weak mixing (by which we mean ergodic Cartesian square).
Actually our results apply equally well to any “typical property” ¥; that is,
to any conjugate-invariant property which constitutes a dense Gg subset of
the group ¥ = M, p) of all automorphisms of the infinite o-finite
Lebesgue space (M, p) with respect to the coarse topology. This sufficient
condition (Theorem 2) on (M, p) is that there is a homeomorphism 4 in
JA(M, p) such that h* is topologically weak mixing on the ends of M with
infinite measure. A very special case is the manifold R", n = 2, (which has
a single end) with Lebesgue measure, since the identity on this singleton
end space is trivially topologically weak mixing. That case was treated
separately in [2] from a different point of view. However manifolds which
have more than one but finitely many ends are never covered by our
condition, since topological weak mixing is not possible on a non-
singleton finite space. Indeed an important open question is whether such
a manifold, for example the infinite cylinder (two ends) can support a
weakly mixing homeomorphism. To show that our condition is not
vacuous we give an example (the disk with a deleted Cantor set) of a
manifold with uncountably many ends which supports a homeomorphism
inducing topological weak mixing on the ends.
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The main new technique introduced in this paper is an extension
(Theorem 1) of a purely measure theoretic “conjugacy approximation”
theorem of Choksi and Kakutani [8, Theorem 6]. They showed that given
two ergodic automorphisms 7 and 4 of an infinite o-finite Lebesgue space
one can always find a conjugate 8’ of § which agrees pointwise with
on a given set of finite measure. We show that if = additionally satis-
fies a certain mixing type property, then 8’ can be also made to agree with
7 setwise on a finite collection of infinite measured sets. In our application
to manifolds these infinite measured sets correspond to the ends of the
manifold.

The paper is organized as follows. Section 1 presents the definitions of
the terms mentioned in this introduction and states precisely our main
result (Theorem 2). Section 2 gives the proof of our extension (Theorem 1)
of the Choksi-Kakutani result. In Section 3 we prove Theorem 2, and in
Section 4 we give an example of a manifold with uncountably many ends
which supports a weak mixing homeomorphism preserving an infinite
o-finite measure.

1. Definitions and statement of results. An end of the manifold M is a
map e which assigns to every compact subset K of M a nonempty
connected unbounded component e(K) of M — K. The only restriction on
the map is the monotonicity condition: K; C K, implies e(K,) C e(K)).
The set of all ends is denoted by E. When M is compactified by adjoining
E, the relative topology on F is given by typical neighborhoods Ny (e;) of
the following form. For any ¢, in E and any compact subset K of M,

Ny(ey) = {ein E:e(K) = ¢y(K) }.

For any compact set K, let % be the finite partition of E obtained by
letting e vary over E in N (e). Let 2, be the finite algebra generated by %
and observe that
2= KcoanJpact QK

is the algebra of clopen subsets of £. An end e in F is said to be of finite
measure if u(e(K) ) << oo for some compact subset K; otherwise e is said to
have infinite measure. Let E denote the set of ends of infinite measure.
Observe that E i1s a closed and therefore compact subset of E. Every
homeomorphism % in (M, p) induces a homeomorphism h*:E — E
such that

(h*(e) XK) = h(e(h™ "(K)))

for every end e in E and compact subset K of M. In partlcular h* leaves
E mvarlant so we may consider the restriction h of h* to E. We will
classify h according to its topological dynamics using the following
definitions.
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Definition. A homeomorphism o of a compact space onto itself is
called topologically weak mixing if for any two nonempty open sets U, V,
the set

(n:o"U N V # 0}

is thick, i.e., contains arbitrarily long intervals. If the above condition is
satisfied for all clopen sets U and V (a weaker condition) we will say that
0 is componentwise weak mixing.

To state our main result we consider the embedding of (M, p) in the
space ¢ = 9M, p) of all bimeasurable p-preserving automorphisms of an
infinite o-finite Lebesgue space. We endow ¥ with the coarse topology,
under which a sequence of automorphisms g, in ¢ converges to a limit g if
and only if u(g,B A gB) — 0 for every finite measured subset B of M.

THEOREM 2. Suppose the space (M, p) contains a homeomorphism
h which induces a componentwise weak mixing homeomorphism on the
ends of M with infinite measure. Then for any conjugate-invariant subset
¥ C YM, p) which is dense and Gg in the coarse topology, ¥~ N (M, p)
is nonempty.

2. Conjugacy theorem. This section is devoted to proving a generaliza-
tion of the conjugacy theorem of Choksi and Kakutani (see below). This
material is entirely measure theoretic, so we consider M only as an infinite
o-finite Lebesgue space, forgetting the manifold structure. Recall that
¥ = 9(M, p) is the group of all p-preserving bijections of M.

THEOREM 1 (Conjugacy Theorem). Let 7, § € 9 with 0 ergodic. Let
M = E, U E; U ...U E, bea measurable partition with 0 < u(E;) < oo

and W(E;) = oo fori = 1,...,n. Assume that
1) There are no non-null t-invariant subsets of E,, and
2) Then X n0 — 1 matrix T = T(r, E|, E,, . . ., E,), defined by 1,

if M7E; N E;) = oo and t; = 0 if p(rE; N E) # 00, is przmztzve
(This means that TV has all posmve entries, for some positive integer N.)
Then there exists m € 4 such that & = 7 'O satisfies
1) 0'(x) = 7(x) for p-a.e. x in Ey, and
2)O0(E) =1(E) fori =0,...,n.

In other words, there is a conjugate of any ergodic transformation which
agrees with 7 pointwise on the finite measure set E, and agrees with 7
setwise on each of the infinite measured sets. The Choksi-Kakutani
Theorem [8, Theorem 6] established the first part, that 1) implies 17),
under the weaker assumption that 8 is antiperiodic rather than ergodic. A
finite measure version of the Choksi-Kakutani Theorem was proved by
Alpern {1, Theorem 4], giving pointwise agreement on £, assuming that

WE, U TE) < (M) < oo.
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To prove Theorem 1 we will need two constructions used by Choksi and
Kakutani, which we state below as Lemmas.

LEMMA 1 [8, Theorem 6, Step 1]. Let 7 € ¥ and a finite measured set
B C M be given. Assume that there are no non-null T-invariant subsets of B.
Then there are disjoint sets B ; k € N, 1 =i = k + 1, such that

™8, =B,y 1=i=k and

=

(o0)
B =9 Y B
LEMMA 2 [8, Theorem 6, Step 1l]. Let § € & be antiperiodic and
incompressible and let d,,, m = 1, 2,..., be nonnegative numbers with
Jfinite sum. Then there exist disjoint sets F,,,, m € N, 1 =i = m + 1, such
that

wF,) =d, forallm,i and
0CF,) = By Jori=m

Proof of Conjugacy Theorem (Theorem 1). We first reduce the theorem
to the case where the additional assumption * holds.

*OoWrE; N E) =0 if WrE; N E;) < oo,

e, if 7, = 0.

Suppése the theorem holds under assumption * and let 7, E, satisfy the
hypotheses of the theorem (but not necessarily * ). For pairs i, j = 1 with
t; = 0 define

W, =rE N E,.
Observe that the sets W have finite measure. For all i, j = 1 with 7, = 0
choose measurable sets Z;; satisfying Z;; C E;, i(Z;) = u(W)) and with
m(Ey), all the W, and all the Z; disjoint. This is clearly possible since

WME) =00 fori=1,...,n

Let « € ¥ transpose the pairs of sets 7 II/I{]- and Z,,
t;, = 0 and be the identity off these sets. Define
zZ=u, 2z, Ey=E, U Z and

1

for all i, j = 1 with

E. =E —Z fori=1,...,n.

Then the automorphism 7 € ¥ defined by T = 7a, together with the
partition E,, i = 0, ..., n, satisfy the hypotheses of the theorem and also
condition *. According to our assumption that the theorem holds with
additional hypotheses *, there is an automorphism ' = 7 'z which
satisfies 1) and 2') with respect to 7 and the partition E,. But it is easily
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seen that 8 also satisfies 1’) and 2) with respect to 7 and the partition
E,i=0,...,n
So without loss of generality, we may assume that condition * holds.

Main part of proof. Let B = E; and apply Lemma 1 to produce disjoint
sets B, k € N, 1 =i = k + 1 such that

TB/(,i = Bk,i+l’ ] é i é k, and

Define
d,=0 form=1...,N and
dyyy = MB;) fork € N,

where N is the least positive integer with 7" > 0, where T'is the primitive
matrix of transitions. Apply Lemma 2 to the § € G given in the theorem
and the numbers d,, just defined. This yields a family of disjoint sets £, ,,
m=N+ 1 N+2 ...,1=i=m+ 1, with

WB, ) = mlyy,,) forallk, i and
HEn.i - En,H—l'
Let

We now define a p-preserving invertible transformation
#:B U 7B — F U 0F
in such a way that
7 '0nx = x
for all x in B = E,. Later we will extend # to an automorphism 7 € ¢
so as to satisfy condition 2’. Define 7 so that
7B, = Fyy4, forallk =1,2,....

Extend # to B U 7B by the following formula: If x € B, for some i,
let

ax = 0 a4 ik,

Since @ is ergodic, the forward and backward #-orbits of every x
in ~(F U @F) will both eventually hit F U #F. The forward orbit will
first hit F U 0F at some point of F — @F, and the backward orbit, at
some point of §F — F. Let r = r(x) denote the length of the orbit of x
in ~(F U @F) and let
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k=kx)e{l,...,r}
denote the position of x in this orbit. Thus

0 %x) e 0F — F, 0" **(x) € F— 0F and

0'(x) € ~(FUOF) for —k<l<r—k+ 1
Partition F — F into n sets

D,=a((tB—B)NE)=@F -F)NaE, i=1...,n
Similarly partition F — 6F into n sets

4; = a((B — 1B) N TE;) = (F — 0F) N f?rfrEj, j=1....n
Hence for some i, j with 1 = i, j = n,

0 kx)e D, and 9" *"'x e A,

Call the set of all such points x, S(i, j, r, k). It is clear that

n n oo r
( )= Y99 Y S k)

and
S, j,r. k)=S0, j,rnk + 1) fork <r.

The reason that the orbit length r is at least N is that we chose the
height of the columns F ., ; to be N more than the corresponding columns
of B, ..

The isomorphism 7~ ! will be extended to ~(F U @F) by assigning
labels / € {1,...,n} to the sets S(i, j, r, k). Let L(i, j, r, k) be the label
assigned to S(i, j, r, k). If

LG, j,r,k)y=1and L(i,j,r,k + 1) =m
we will map wﬁl(S(i,j, r, k + 1)) into
E,,,=71E NE,.
The labeling process involves the notion of a universal word
U=l ... Uy
for the prirrﬁtive matrix 7. The word u 1s universal for 7T if

oy = I forp=1....w—-1 1, =1
and for any pair i, j with ¢;; = 1 thereis ap withu, = iand u, , = /. It
is easy to construct a universal word for any primitive matrix (irreduci-
bility is sufficient).

To define L(i, j, r, k) fix i, j and r, and denote
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L, =L@, j,r.k) fork=1,...,r

Denote /[, = iand /., = j. For (orbit lengths) r with N = r < 2N + W
simply choose the /, so that

t/l =1 fOrk=0,...,r.
Kk+1

This is possible because » = N and T > 0. For all other r there is an
integer a with

2N +aW =r < 2N + (a + DHW,

where W is the length of a universal word u. Choose /|, ..., [y so that
Ui, = 1 fork=0,...,N

where Iy, = uy, the first entry of u. Let
bytm =1u, forl=b=a andm =1,... N,

so that /5 is followed by repetitions of the word u. Finally, define
Intaw+1s - - -5 L. s0 that

=1 fork=N-++aW,...,r

U1y
where
INvaw = uy and [ =]

The sequence [, . . ., |

'+ looks like:

lw[ul .« e uwl[ul ...uwl .« .. [ul .« .. uW]mJ
Observe that for large values of r, most of the labels come from the
repetitions of the word u.
Forpairs , min {1, ..., n} with ¢, = 1, define R(/, m) as the union of
all sets S(i, j, r, k) with

LG, j,r,k —1)=1and L(i,j, r, k) = m.

(Recall that L(i, j, r,0) = i and L(i, j, r, k + 1) = j.) Since the pair /, m
appears in that order somewhere in the universal word u, the labelling
process ensures that

MR, m)) = oo.
The set
El.m = TE/ n Em

also has infinite measure, because #;,,, = 1. Consequently we may define an
invertible p-preserving transformation

%lm:E/,m - R(l’ m).

If we piece together-the maps # and 7, with 7,, = 1, we obtain the
automorphism 7 € ¥ required by the theorem.
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3. Proof of theorem 2. Our proof of Theorem 2 is based on viewing the
space of homeomorphisms ¥ = (M, p) as a subset of the automor-
phisms ¥ = UM, p). We “extend” the compact-open topology to UM, )
in such a way that the relative topology on J#(M, p) is the usual
compact-open topology. Specifically we define, for any automorphism g
in ¢, compact subset K of M, and positive €, the sub-basic open
neighborhood

€g K, ¢) = {fin :d(f(x), g(x)) < € for p-a.e. x in K},

where d is the metric on M (o-compact implies metrizable). The
compact-open topology on ¥ thus defined, is finer than the coarse
topology. The relative topology on J# is the usual, topologically complete,
compact-open topology. It is shown in our previous paper [4, Lemma 0]
that we may restrict the compact sets K to sets called “special compact
sets”, since every compact set is contained in a special compact set. A
compact set K is called special if it is a connected manifold with boundary,
of the same dimension as M, such that M — K has no bounded
components and the boundary of K has p measure zero. The signifi-
cance of the special compact sets is that they are needed in the following
result.

THEOREM A (Proposition 3, [4], see also [10], [13], or [3]). Let K be a
special compact subset of M, 8 > 0, and g in UM, p) satisfying

(1) g(K) = K

(il) d(x, g(x)) < & for p-a.e. x in K

(iii) g(P(K)) = P(K) for every set of ends P in %.

Then any coarse topology neighborhood of g contains a compactly
supported homeomorphism h in # (M, w) which satisfies (i), (ii) and (iii) (with
h replacing g).

A proof of Theorem 2 can be based on the following proposition
which yields an automorphism g = hAlf satisfying the hypotheses of
Theorem A.

ProposITION 1. Let h be an ergodic homeomorphism in (M, p) whose
induced end-homeomorphism o = h* is componentwise weak mixing on
the ends of infinite measure E. Let K be a compact subset of M such that
M — K has no bounded components (in particular, K can be any special
compact set). Let 8 be any ergodic automorphism in M, ). Then there is
an automorphism f in (M, p) which is conjugate to 8 and satisfies the
Sfollowing conditions:

() f(K) = h(K)
(ii) f(x) = h(x) for p-ae. x in K
(i) f(P(K)) = h(P(K)) for all P in %.
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Proof. Let % = {F,,...,E, I,...,1,} where
WE(K)) <oo, r=1,...,m, and
WMI(K)) =00, i=1,...,n

Thus
M=KUFK)U...UE(K)UI(K)uU...UIL(K)

is the partition of M into K and the connected components of M — K.
Apply Theorem 1 with

Ey= KU F(K)U...U FE/(K),
E =1(K),i=1...,n, 7=h andf = 0.

Hypothesis 1) of Theorem 1 is satisfied by the assumed ergodicity of A.
We now demonstrate how condition 2) of Theorem 1 follows from the
assumption that ¢ is componentwise weak mixing on the ends of infinite
measure. To this end we first show that
=1 ifel, 0 I #4
where IA, =1 N E. So suppose there is an end e of infinite measure with
e in /; and oe in 1. It follows that

h((K)) N L(K) > h(e(K)) N oe(K)
= h(e(K)) N he(h '(K)))
= hle(K) N e(h”(K))]
> hle(K U h 1K) ]
Consequently
Wh(L(K)) N I(K)] Z plhe(K U h'K))]
= ple(K U h'K)] = oo,
because e is an end of infinite measure. More generally we have that for
any natural number p,
=1 ife’I N I + 9.
Since the sets [; are clopen in E, the sets I are clopen in the relative

topology on E. By assumption the restriction of o to £ is component-
wise weak mixing, so by the definition it follows that each set

S = {p:ti; = 1}
is thick. The finite intersection
n

S=n S.
ij=1"Y
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is therefore nonempty. For any positive integer N in S,
=1
ij
So we have demonstrated that condition 2) of Theorem 1 is satisfied, and
now the conjugate f = 6 of § produced by Theorem 1 satisfies the
requirements of this proposition.

t foralli,j=1,...,n

THEOREM 2. Suppose the space ¥(M, p) contains a homeomorphism
whose induced end-homeomorphism o is topologically weak mixing on the
ends E of M of infinite measure. Then for any conjugate-invariant subset ¥~
of Y(M, p) which is dense and Gy in the coarse topology,

YO HM, ) £ D,
Proof. Observe that the space
A, = {h in H(M, p):h* = o}

is a closed subset of (M, p) in the compact-open topology, hence it is
topologically complete. Using a Baire category argument we will show
that ¥~ N 5% is a dense G subset of /£ in the compact-open topology.

It has been shown by Sachdeva [12] and by Choksi and Kakutani [8]
that the ergodic automorphisms & in Y(M, p) constitute a dense Gy set in
the coarse topology. Since ¥ is also a dense Gy set the intersection ¥~ N &
is nonempty. Therefore ¥~ contains an ergodic automorphism 6 and
consequently its entire conjugacy class. Write

oo
7= m=1 "
where each ¥, is coarse topology open and contains the conjugacy class of
0. The theorem will follow by a Baire category argument if we can
establish that for each m the set ¥, N J£ is a dense open subset of S in
the compact-open topology.
The set ¥, N 5, is open because the compact-open topology is finer

m
than the coarse topology. To prove denseness we must show that

Y, N N Eh K, e # 0,

where %(h, K, €) is a compact-open basic neighborhood of some
homeomorphism in /4 in 5. We now make use of a result established in a
previous paper to show that we may assume that & is ergodic. Corollary 1
of [S] says that if the restriction of o to E is transitive (topologically
ergodic) then the ergodic homeomorphisms are dense in 5%, with respect to
the compact-open topology. Since componentwise weak mixing implies
transitivity, we may use that result to assume without loss of generality
that the compact-open basic open set % is centered at an ergodic
homeomorphism 4. As mentioned above, we may also assume that K is a
special compact set. Now apply Proposition 1 to this # and K and the
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ergodic automorphism 6 found in ¥,,. Let f be the conjugate of § given
by Proposition 1, and observe that consequently f belongs to ¥,,. Let
0 = w(e) where w is the uniform modulus of continuity of 4 on K.

Thus the automorphism g defined by g = &~ 'f belongs to the coarse
topology open set hhlﬁl and satisfies the following (actually g(x) = x
on K):

(1) g(K) = K

(i1) d(x, g(x)) < & for p-a.e. x in K

(iii) g(P(K)) = P(K) for all P in %.

Applying Theorem A, we may approximate the automorphism g by a
compactly supported homeomorphism / which belongs to the coarse open
set i~ '¥ and satisfies

h(K) = K and d(x, h(x)) < & for all x in K.
We claim that the homeomorphism 4 belongs to
Y 0K N Eh K, o

proving that set to be nonempty, thus completing the proof. Clearly hh
belongs to ¥, because & belongs to h~'¥. Next observe that since & has
compact support, its induced end-homeomorphism 4 * is the identity. The
*_operation is a group homomorphism so

(hh)* = h*h* = h* = ¢

and hh belongs to 5. Finally, for all x in K we have
d(h(x), hh(x)) < e,

so hh belongs to €(h, K, ¢), completing the proof.

The above proof of Theorem 2 used the fact (established in [5]) that
ergodicity is generic in £ when o is transitive on E. We now outline a
modification of the arguments given in this section which gives a proof of
Theorem 2 which is independent of that fact. We begin by observing that
two hypotheses of Proposition 1 can be weakened. First observe that the
ergodic automorphism /4 need not be a homeomorphism. Secondly, 4 need
not be ergodic on M since the weaker condition, that there are no non-null
h-invariant subsets of the set

Ey = KU F(K) U ...U E/(K)

is sufficient to achieve condition 1) of Theorem 1.

These observations lead to the following alternate proof of Theorem 2.
Let € = %(h, K, €) be the compact-open neighborhood of an 4 in 5 given
in the previous proof of Theorem 2. While we no longer assume that 4 is
ergodic, a simple perturbation argument [4, Lemma 6] enables us to
assume that none of the sets K or e(K), e in FE, is h-invariant. That is, sets
€(h, K, €) with this property form a sub-basic family. Let § = w(e) be the
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uniform modulus of continuity of # on K. We now approximate the given
homeomorphism /4 by an automorphism /' satisfying the (weakened)
hypotheses of Proposition 1, using the following result which is step 1 of
[4, Proposition 2].

LEMMA 3. Let h be a homeomorphism in (M, p) and let K be a special
compact subset of M such that none of the sets K or e(K), e in E, are
h-invariant. Then for any positive number 8 there is an automorphism h' in
YM, p) such that h'(e(K)) = h(e(K)) for every end e in E, there are no
non-null h'-invariant subsets of

KU Y seK) (=KUFRK) U...UE(K))

and
dh (), )7 N(y)) < 8 for p-ae. y in h(K).

Now we proceed as before. First apply Proposition 1 to /4’ (instead of h),
obtaining an automorphism fin %M, p) which agrees with A’ pointwise
on K and setwise on each set e(K), and belongs to the coarse topology
open set ¥, Let g = hﬁlfand observe that g(K) = K, g(e(K)) = e(K)
for all ends e in E, and

d(g(x), x) = d(h~f(x), x) = dth '(»), f ') <8

fory-ae. x = f~ ly in K. So applying Theorem A to g we get a compactly
supported homeomorphism A such that hh belongs, as before, to the
required set

77N H O Eh K, 6.

4. Example. To see that the conditions for Theorem 2 are not vacuous
we give an example of a o-compact manifold (M, p) which supports
a homeomorphism 4 in J#(M, p) that induces a topologically weak mix-
ing homeomorphism on the ends E of M.

The manifold is given by M = D — C where D is the unit disk

() +)7 = 1)

and C is the standard Cantor ternary set lying on the line I = [—1/2, 1/2]
along the x-axis. The Cantor set may be identified with the set £ of ends of
M. Let u be any infinite o-finite non-atomic Borel measure on M which is
locally positive and locally finite and for which all the ends have infinite
measure. We will give some explicit constructions of such a measure later.
Let o be any homeomorphism of C onto itself which is topologically weak
mixing, for example the two sided shift when C is viewed as the countable
product of a two-symbol set. Antoine [6] proved that any homeomorphism
of C can be extended to a homeomorphism of D. Let g:D — D
be a homeomorphism which extends o. The restriction f of g to M
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is a homeomorphism of the manifold M which induces the homeomor-
phism o on the ends C. Unfortunately the homeomorphism f of M need
not preserve the measure p. This can be remedied as follows. Observe that
the Borel measure puf ' defined by

pf N A) = p(f N A4))

for Borel subsets A of M is, like p, a good (non-atomic, locally positive and
locally finite) measure. Since all ends have infinite measure with respect to
p (by assumption) they all have infinite measure with respect to wf It
has been recently proved by Berlanga and Epstein [7] that whenever two
good Borel measures on a o-compact manifold have the same set of
infinite measured ends, there is an end-preserving homeomorphism of the
manifold which takes one measure into the other. Applying this result to
the measures pf ~!and @, we obtain an end-preserving homeomorphism
r:M — M such that

(wf = p
The p-preserving homeomorphism A& of M described in the previous
paragraph can now be defined by 4 = r - f. The construction of r ensures
that 4 preserves p and that 4 induces the homeomorphism

W= f = Pt =0

on the (infinite measured) end set C.

We now outline the construction of a good o-finite Borel measure p on
M such that all ends (points of C) have infinite measure. Let /(0) and /(1)
denote the left and right thirds of the interval I = [—1/2, 1/2] on the
x-axis. For iy, = 0, 1andn = 1 let I(4},...,i, 0)and I(i|,...,i, 1)
denote the left and right thirds of I(i|, ..., i,), respectively. Let m; and
m, denote respectively one and two dimensional Lebesgue measure. For
each Borel subset A4 of M define u(4) by the formula

pA) = myA4) + X 2 ImyA 0 IGy .. 0))

n=1 1i,...,i,

Another construction of a suitable measure p goes as follows. Let
R(iy, . .., i,) be the closed rectangular 3~ "-neighborhood of I(i}, ..., i,
in D and let

K,=D— U intR(G,....i,).

Then the sets L, = K, ,; — K, consist of 2" congruent components each

with measure
a, = my(L,)/2".

n

Set
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WA) = my(d) + 2 (1/a,)ms(4 N L,).

Finally, we note that there is nothing special in our example about
dimension two. We could have taken our manifold to be M = D" — C
where D" is the unit n-dimensional ball and C is a Cantor set. The Cantor
set however cannot be wild. For n > 2 Antoine’s result can be replaced by
the extension theorems of Keldys [9] or Oxtoby [10] for certain suitably
chosen Cantor subsets of D".
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