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UNBOUNDED NEGATIVE DEFINITE FUNCTIONS 

CHARLES A. AKEMANN AND MARTIN E. WALTER 

0. Introduction. Negative definite functions (all definitions are given 
in § 1 below) on a locally compact, o--compact group G have been used in 
several different contexts recently [2, 5, 7, 11]. In this paper we show 
how such functions relate to other properties such a group may have. 
Here are six properties which G might have. They are grouped into three 
pairs with one property of each pair involving negative definite functions. 
We show that the paired properties are equivalent and, where possible, 
give counter-examples to other equivalences. We assume throughout 
that G is not compact. 

(1A) G does not have property T. 
(IB) There is a continuous, negative definite function on G which is 

unbounded. 
(2A) G has the (weak and/or strong) dual R-L property. 
(2B) For every closed, non-compact set Q C G there is a continuous, 

negative definite function on G which is unbounded on Q. 
(3A) Co(G) has an approximate unit consisting of positive definite 

functions. 
(3B) There is a continuous, negative definite function \p on G such 

that for any M > 0 there is a compact set K C G with |^(x)| > M for 
all x e G\K. 

Note that (3B) => (2B) => (IB) in an obvious way, but the relation­
ships among (1A), (2A) and (3A) are not so apparent at first. We shall 
prove the equivalences (1A) <=» (IB), (2A) <=> (2B) and (3A) <=» (3B) 
as well as several other results related to these properties. As applications 
we give simpler proofs for (and/or stronger versions of) some results of 
Connes and Kazhdan. An interesting open problem is the possible 
equivalence between (2B) and (3B). 

This paper was inspired in part by conversations with Alain Connes 
and Uffe Haagerup. We thank the referee for pointing out [12]. 

1. Notation and preliminaries. We shall assume familiarity with 
basic information about C*-algebras as found in the first few chapters 
of [4, 9 or 10]. Recall that the positive linear functionals of norm 1 on 
a C*-algebra A are called states, and S(A) denotes the positive linear 
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functionals on A of norm less than or equal to 1. S (A) is a convex set 
which is compact in the weak* topology determined by A. The second 
dual space A** of A is a von Neumann algebra [4, 9, 10] containing A 
in its canonical embedding. The multiplier algebra M {A) is defined to 
be the idealizer of A in ^4**. Elements of M (A) are weak* continuous 
as functions on the set S\{A) of all states of A. A projection p in A** is 
called open [9, Section 3.11] if there is a net {aa\ of positive operators 
in A which is increasing and satisfies lim aa = p in the weak* topology 
of A**. If Ao = {a £ A: pa = ap = a}, then A0 is a C*-algebra with 
dual space ^40* canonically isometrically isomorphic to pA*p = 
{pfp'.ftA*}, where pfp(a) = f(pap) for all a £ A** (the Sakai 
product [10]). In particular we get that the extreme points of 
{/ G S (A): f(p) = 1} are extreme points of S (A) (i.e., pure states or 0) 
and that every state g of A satisfying g(p) = 1 can be approximated by 
convex combinations of such extreme points in the weak* topology. 

Now let G be a locally compact, d-compact group. We shall assume 
familiarity with the last few chapters of [4] which deal with such groups. 
We let P(G)i denote the set of continuous positive definite functions 
f on G satisfying f(e) = 1, where e is the identity of G. The group 
C*-algebra is denoted by C*(G) as in [4], and P(G)i is exactly the set of 
states of C* (G). Further, there is a natural embedding of G into M(C* (G) ) 
so that an element x of G defines a weak* continuous function on P(G)\ 
by x(f) = f(x)> where/(x) has the same value when fis considered as a 
function on the group or as a functional on M(C*(G)) in which G is 
embedded. Further, the weak* topology on P(G)i is equivalent to the 
topology of uniform convergence on compact subsets of G, and we shall 
use this fact several times in our proofs. One particular element of P(G)i 
is of special interest; set/0(a;) = 1 for all x (E G. Let s0 £ C*(G)** be 
the one dimensional central projection such thatz0/o = /o (see [1]). The 
extreme points of P{G)\ are called pure positive definite functions. 

We say that G has the weak (resp. strong) dual R-L property [1] if for 
every e > 0 and for every weak* neighborhood V of /0 in P(G)\ (resp. 
every open projection p ^ z0 in C*(G)**) there is a compact neighbor­
hood K of e in G such that for every x G G\K there exists a pure, con­
tinuous positive definite function/ in V (resp. with/(£) = 1) such that 
Re(/(#)) ^ e. In [1] the weak and strong dual R-L properties are shown 
to be equivalent. 

Let Co(G) denote the continuous functions on G which vanish at 
infinity. The sup norm on C0(G) is denoted by |H|œ. 

If G is a discrete group (as in Theorem 9), we say G is an ICC group 
[10] if \xyx~~1: x Ç G) is infinite for all y G G\{e\. Following Effros, 
we say G is inner amenable [8] if there is a mean on f°(G) which is in­
variant under inner automorphisms of G. Paschke [8] introduces the 
representation of G as unitary operators on L2(G) by: if x G G and t\ is 
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inL2(G),then 

Ux{y)){y) = r]{x~lyx). 

He lets ô be the characteristic function of {e} and P5 the projection of 
L2(G) onto the subspace spanned by ô. Paschke shows that the group G 
is inner amenable if and only if P& is not in the C*-algebra generated 
by [Ux: x £ G}. 

A complex function \p on G is called negative definite if, for all n-tuples 
Xi, . . . , xn in G, the n X n matrix with entries 

bKxt) + ^(xj) - yp{xrlXi)) 

is positive semi-definite. These functions are discussed in great detail in 
Chapter II, § 7-9 of [2]. While [2] assumes that G is abelian, the results 
we need all hold in the general case. Further information on negative 
definite functions is given in [7]. For this paper we need only a few facts. 
It follows from Section 7.14 of [2] that if \j/ is a continuous negative 
definite function on G, then so is 

*o = Re [(* - iK*))1/2l. 
The function ^0 is not only continuous and negative definite, but it is 
bounded if and only if \f/ is bounded, \//o(e) = 0 and \po takes only non-
negative real values. If <p is a positive definite function on G, then 
<p(e) — <p = \p is a negative definite function. If } n̂}S=i are continuous, 
negative definite functions on G and if y^Li yf/n converges uniformly on 
compact sets, then the sum is a continuous, negative definite function. 

Kazhdan [6] introduces the notion that G has property T if the trivial 
representation is isolated in the dual space of G. A full discussion of the 
dual space of G and its topologies is given in [4] and [3]. 

2. The results. In this section we prove the equivalences (1A) t=> (IB), 
(2A) <=> (2B) and (3A) <=$ (3B) described in § 0 as well as some related 
results. Before we do so, however, let us look at some examples. There 
are a number of groups which have property T [6] and hence (Theorem 3) 
have no unbounded negative definite functions at all; 5L(3, R) is an 
example. Given such a group, we can cross it with the integers Z and 
get a group which does not have property T (see Proposition 8). How­
ever, 5L(3, R) X Z does not satisfy (2B) since the restriction of any 
continuous, negative definite function to the non-compact set 5L(3, R) 
X {0} must be bounded. 

Any amenable group satisfies (3A) since the Fourier algebra, A(G), 
contains an approximate unit of positive definite functions in this case. 
Any free group satisfies (3B) (see [7]) so there are non-amenable groups 
in this category as well. 

LEMMA 1. If A is a C*-algebra, p is an open projection in ^4** and \fa} 
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is a net of states of A with lim fa = f weak* and f(p) = 1, then fa(p) —-> 1, 
WPfaP — fa\\ —> 0 and pfap —>/ weak*. 

Proof. Since p is lower semi-continuous on Si(A) [9, Section 3.11], 
f(P) = / > ( / ) = ! and p(/ t t) = /«(£) ^ 1, it follows that/«(/>) -> 1. For 
any 6 G 4̂ with ||6|| ^ 1, 

= |/„((1 - p)bp) + fa(pb(l - p)) + / „ ( ( 1 - £)6(1 - P))\ 

é 31/,(1 - £)|1 / 2 , 

so 

ib/«/> - /«il - o. 
This implies pfap —»/ weak* as well. 

LEMMA 2. The following are equivalent. 
(a) G /ras property T. 
(b) So fe iw C*(G), wo/ merely in C*(G)**. 
(c) / w aŵ y we/ {&*) C P(G)\ with ga —»/o weak* we have 

II& - /oil -* 0. 

(d) For an^ we/ {gaj C P(G)\ with ga —»/0 weak* we have 

\\ga - /o|U -> 0. 

Pnw/. If G has property T, then by [4, Section 3.2], C*(G) = I ® J, 
where 7 and 7 are closed, 2-sided ideals and C*(G)—> C*(G)/1 = J 
extends the trivial representation of G. Thus 7 has a unit £ which is 
clearly the central projection z0 supporting the trivial representation of 
G. Thus (b) follows. 

Assuming (b), the projection s0 is in C*(G) (and hence is open) ; so in 
the notation of (c), ga(zo) —>/o(so) = 1. Thus 

Zrga —> Z0fo = / o 

in norm and by Lemma 1, 

\\Zoga - g«|| ->0 , 

hence (c) follows. 
That (c) => (d) is trivial. 
Assuming (a) is false and using the notation of Lemma 1 of [3], we 

get a net {ga} of normalized positive definite functions from representa­
tions orthogonal to the trivial representations such that ga —>/0 uniformly 
on compact sets. However, using Lemma 2 of [3], if ||ga — /0 | |œ —» 0, then 
the representation from which ga is taken must eventually contain the 
trivial representation, a contradiction. 
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THEOREM 3. (1A) & (IB). 

Proof. First suppose that G has an unbounded, continuous, negative 
definite function \p. We can assume \p(e) = 0 and \p(x) ^ 0 for all x Ç G. 
By Schoenberg's Theorem [2, Theorem 7.8] the functions gt = e*** for 
/ ^ 0 are continuous, positive definite and satisfy gt(e) = 1. Clearly 

\imt_>Qgt(x) = 1 

uniformly on any compact subset K of G since \p is bounded on K, so 
lim^o gt = /o in the weak topology of B{G). If G had property T, then 
by Lemma 2 we must have 

limt^Qgt(x) = 1 

uniformly on G. However, for any t > 0 there is an xt £ G such that 
yp(xt) > t~l since \[/ is unbounded. Thus 

£,(*,) = e-W
Xt) < e~l < 1 

for every / > 0, so uniform convergence fails. Thus G cannot have 
property T. 

Now suppose G does not have property T. By Lemma 2 let {ga} be a 
net of continuous, positive definite functions on G with ga(e) = 1, 
ga(x) —» 1 uniformly on compact subsets of G but ga(x) •& 1 uniformly 
on all of G. By passing to a subnet we can find e > 0 such that for any a 
there is an xa £ G with Re(ga(xa)) < (1 — e). Since G is o--compact, there 
is an increasing sequence Kx C. K2 . . . oî compact neighborhoods of e 
with G = UkLiKn- By a simple induction we can get a sequence^} C \ga} 
and {xn} C G such that Re(<pn(xn)) < 1 — e and Re(l — ̂ n(x)) < 4_ n 

for all x £ Kn and for all w. Set 

oo 

*(*) = Z 2*Re(l - <pk(x)), 

and note that the series converges uniformly on each compact neigh­
borhood Kn (and hence uniformly on any compact subset K of G since 
K C i£w f° r large n) because 

|2*Re(l - <pk{x))\ < 2-* 

for k > n and all x £ K. Thus f is a continuous, negative definite 
function which is unbounded since 

lK*n) ^ 2wRe(l - <pn(xn)) > 2ne. 

COROLLARY 4 ([6, 12]). If G has property T, then G is compactly 
generated. 

Proof. Since G is a-compact, there is an increasing sequence JJ\ C Ui 
C • . • of open neighborhoods of e with compact closures such that 
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G = UnU Un. Let Gn be the subgroup generated by Un. The character­
istic function Xn of Gn is continuous (since Gn is open) and positive 
definite. However, Xn(%) -~* 1 f° r ah1 x G G but convergence is not 
uniform unless Gn = G for all n ^ no. Thus G is compactly generated 
by Lemma 2(d). 

PROPOSITION 5. If a subset K of G satisfies Km = G for some m > 0 
and no continuous negative definite function on G is unbounded on K, then 
G has property T. 

Proof. If ^ were an unbounded, continuous negative definite function 
on G then so is 

6 = [Re(iA - iK*))1/2]1/2 

by [2, Proposition 7.15] and 

o s Q{xy) ^ o(x) + e(y) 

for all x, y £ G. By induction we get 

6(x) S ni sup {0(:y): y G X} 

for all x Ç G since Km = G. This contradicts the unboundedness of 0. 

COROLLARY 6 (see [3, Theorem 4]). If G contains closed subgroups 
Gi, . . . , Gn, each having property T and satisfying Km = G for 
K = {Jnt=i Gi and some integer m, then G has property T. 

The next result was first proved in [12, p. 25]. 

COROLLARY 7'. If T C G is a closed subgroup with property T such that 
G/T, the topological quotient space, is compact, then G has property T. 

Proof. Let -w: G —> G/T be the quotient map. Then w is an open map 
so \ir(U) : U is an open neighborhood of e in G with compact closure V] 
is an open covering oiG/Y, so there is a finite subcover 7r(Z7i), . . . , ir ( Un). 
Set 

n 

K = r u u Ût. 

Clearly K2 = G. If ^ is a continuous, negative definite function on G, 
then \p is bounded on Y (since Y has property T) and \p is bounded on 
U^=i Ûi by compactness. Thus \p is bounded on K, hence bounded on G 
by Proposition 5. Theorem 3 now implies that G has property T. 

Remark. Calvin Moore has mentioned to us a counter-example to a 
converse of Corollary 7, namely G = SL(3, R), Y = all matrices in 
SL(3, R) which have only zeros above the main diagonal. Then G has 
property T and G/Y is compact, yet Y does not have property T. This 
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is also mentioned in [12]. Also see [12, p. 26] for the converse of [3, 
Theorem 3]. 

PROPOSITION 8 (see [6]). If G\ and G2 are locally compact, a-compact 
groups, then Gi X G2 has property T if and only if both Gi and G2 have 
property T. 

Proof. If G\ and G2 have property T, so does G\ X Gi by Corollary 6. 
For the converse, if (say) G\ does not have property T, we can apply (d) 
of Lemma 2 to get a net {(ga)i} of continuous positive definite functions 
on G\ which converges to 1 uniformly on compacta but not uniformly 
on G\. Defining ga on G\ X G2 by 

ga(xyy) = (ga)i(x) 

we get a similar sequence for G\ X G2, contradicting Lemma 2. 

THEOREM 9. (2A) <^ (2B). 

Proof. Assume (2A). Let Q C G be non-compact and let G = \Jn=i Kn 

be an increasing union of compact neighborhoods of e in G (since G is 
o--compact). By (2A) there exist pure positive definite functions {/„} on 
G such that 

Re(l - /„(*)) < 4-» for all x £ Kn 

and there exist xn £ Q with 

Re(fn(*n)) < i 

Set \//n = Re(l —fn)- Each \j/n is negative definite and X l ^ i ^w(x)2* 
converges uniformly on each i£n, s o ^ = ^£=i ^n is continuous, negative 
definite and unbounded on Q since 

Now assume (2B) and suppose that G does not have the (strong) dual 
R-L property. Thus there is an e > 0, an open projection p ^ z0 and 
a sequence {xn} C G with xn £ G\i£n and Re(/(xw)) > e for every 
pure positive definite function / with f(p) = 1. Since p is open, the 
discussion in § 1 implies that for any state g with g(p) = 1 we have 
Re(g(xn)) = € for every » = 1 , 2 , . . . . Let Q = {xn}ÏLi, a non-compact 
set, and let \p be a continuous negative definite function on G which is 
unbounded on Q. We can assume \p is real valued with \[/(e) = 0. For 
each n choose tn > 0 such that gn = e-tn* satisfies 

\gn(x) - 1| < 2-* for all x G X». 

Since gn —>/0 weak*, we get pgnp —>/o weak* by Lemma 1. Since 

(Pgnp/\\pgnp\\) = A» 
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is a state with hn(p) = 1, our assumption gives 

Re(hn(xk)) ^ e for every k and n. 

However, since (using a subsequence if necessary) \l/(xk) —> oo as k —> CQ , 
for fixed n, Lemma 1 implies that hn(x

k) —> 0, as fc —* oo , a contradiction. 

THEOREM 10. (3A) =* (3B). 

Proof. Assume (3B) and we can assume \f/ is real-valued with \j/{e) — 0. 
Then 

lim^o e-1* = 1 

uniformly on compact sets while 

l im^ œ *-*<*> = 0 

for each t. Thus (3A) holds. 
Assume (3A) and let {ga\ be a net of positive definite functions in 

Co(G) with gaipc) —» 1 uniformly on compact sets. We can assume 
ga(e) = 1 for all a. Write 

G = \JKt 

where Ki C ^2 C . . • are compact neighborhoods of e in G. Set K0 = {e}. 
Suppose we have chosen {g«t-}1=i and integers 0 = jo, j i , • • > , jn such 
that for all i = 1, . . . , n; 

(a) \gai(
x) — 1| < 4~* for all x G Kji_1 and 

(b) |&,(*)| < 4r* for all x g # , , . 

We can easily chose gan+l so that 

kan+l(x) - 1| < 4-* for all * € ^ 

since ga —» 1 uniformly on i£ ;n; and, since g«n+1 vanishes at infinity, we 
can choose jn+i such that 

l&n+i(*)l < 4"w for all x $ Kjn+l. 

This proves the induction step. Now set 

CO 

h = Re (1 - gan) and * = £ ^2*. 
n = l 

Clearly the series converges uniformly on each i£w, so ^ is negative 
definite and continuous. Further, for x 6 G\Kjn 

iK*) > 2Y»(*) = Re(l - g«„(*))2w > 2»(1 - 4-w) > 2"-1 -» 00 
a s w —•> 0 0 . 

Thus (3B) holds. 
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Remark. These results leave open the question, "Does (2B) imply 
(3B)?" 

Remark. If G\ and G2 are non-trivial discrete groups, their free product 
Gi*G2 always satisfies (IB) and hence cannot have property T (see [7]). 
In fact, it is shown in [7] that if each free factor satisfies (2B) (resp. 
(3B)), then the free product satisfies (2B) (resp. (3B)). 

The last theorem relates inner amenability to property T. The proof 
given here was discovered during a discussion with Alain Connes who 
had originally found a different proof. 

THEOREM 11. A countably infinite discrete ICC group with property T 
is not inner amenable. 

Proof. Using the notation of [8] we need only show that P8 £ C*(UG). 
If (p: C*(G) —•» C*(UG) is the representation determined by <p(x) = Ux 

for all x £ G, then we claim Ps = <p(zo). 
Clearly <p(zo)ô = <5 since <p(x)ô = ô for all x £ G. Suppose <p(z0)r] = 77 

for some unit vector 77 £ L2(G) which is perpendicular to b. Then 

(f(x)r] = <p(x)(p(z0)r] = <p(xz0)v = <p(zo)y = V, 

so 7] will be invariant under C*(UG). Write 

V = XX* with X) |\r|2 < °° 

and assume \XQ 7e 0 for some x0 ^ e. Then for each y G G, 

ri = UyTj = X) \xyxy~l = X x ^ -
x£G x£G 

Thus \y-iX()v = \r0 for each y 6 G. Since 

X̂ 0 ^ 0 and X I ^ ! 2 < °° 1 
xeG 

this contradicts the assumption that G is an ICC group, i.e., that 
\yxoy~1 = y G G} is infinite. Thus <£>(s0) = Pb, so G is not inner amenable. 
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