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SUMMARY

Syndromic surveillance (SyS) systems currently exploit various sources of health-related data,
most of which are collected for purposes other than surveillance (e.g. economic). Several
European SyS systems use data collected during meat inspection for syndromic surveillance of
animal health, as some diseases may be more easily detected post-mortem than at their point of
origin or during the ante-mortem inspection upon arrival at the slaughterhouse. In this paper we
use simulation to evaluate the performance of a quasi-Poisson regression (also known as an
improved Farrington) algorithm for the detection of disease outbreaks during post-mortem
inspection of slaughtered animals. When parameterizing the algorithm based on the retrospective
analyses of 6 years of historic data, the probability of detection was satisfactory for large (range
83–445 cases) outbreaks but poor for small (range 20–177 cases) outbreaks. Varying the amount
of historical data used to fit the algorithm can help increasing the probability of detection for
small outbreaks. However, while the use of a 0·975 quantile generated a low false-positive rate,
in most cases, more than 50% of outbreak cases had already occurred at the time of detection.
High variance observed in the whole carcass condemnations time-series, and lack of flexibility in
terms of the temporal distribution of simulated outbreaks resulting from low reporting frequency
(monthly), constitute major challenges for early detection of outbreaks in the livestock
population based on meat inspection data. Reporting frequency should be increased in the
future to improve timeliness of the SyS system while increased sensitivity may be achieved
by integrating meat inspection data into a multivariate system simultaneously evaluating
multiple sources of data on livestock health.
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INTRODUCTION

Health surveillance is the ongoing, systematic collec-
tion, analysis, interpretation and dissemination of

data regarding health-related events. Surveillance is
critical for an effective early response (to reduce mor-
bidity and mortality) upon the emergence of health
problems; and is used to identify changes in the nature
or extent of health problems and the effectiveness
of actions to improve health [1]. At the beginning of
the 21st century, the development of a new type
of passive surveillance system, called syndromic sur-
veillance (SyS), highlighted the potential offered by
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the automated tracking of disease indicators which
may signal the onset of epidemics [2].Veterinary SyS
is not based on laboratory-confirmed diagnosis of a
disease, but on non-specific health indicators (e.g.
non-slaughter mortality or number of individuals pre-
senting clinical signs) termed ‘syndromes’ [Triple-S
definition of syndromic surveillance (http://www.syn-
dromicsurveillance.eu/)]. Thus, SyS systems seek to ex-
ploit new and varied sources of health-related data,
some of which may be collected by the animal produc-
tion industry for purposes other than surveillance (e.g.
economic) [3].

Meat inspection data may be suitable for SyS for
several reasons. First, it contains large amounts of
records routinely collected over several years, provid-
ing the possibility to use historical data for construct-
ing a baseline model to define the expected normal
behaviour of the indicator monitored. Second, in
countries in which the reporting of data is compulsory
(e.g. the EU), coverage of the majority of the slaugh-
tered population is ensured and existing reporting
channels can be used, thereby reducing the costs
required for a surveillance system. While systematic
collection and use of meat inspection data for epi-
demiological surveillance is scarce at the EU level
[4], a recent inventory of veterinary SyS initiatives in
Europe revealed several monitoring systems that
used (e.g. Sweden) or planned to use (e.g. France)
meat inspection data from slaughterhouses [5].

System users and decision makers need to have a
good understanding of the types of disease agents and
outbreak scenarios that are likely to be detected by
such surveillance systems. However, the evaluation of
the performance of such systems in real surveillance
environments remains limited (but see [6]). This consti-
tutes one of the obstacles to the use of meat inspection
data for prospective epidemiological surveillance. The
most informative evaluation scenario would assess
system performance by using data from historical out-
breaks of the type the system is intended to detect.
This is, unfortunately, rarely possible because for the
majority of locations in which systems currently are
operating, no such historical data exist and little infor-
mation is available to enable the interpretation of statis-
tical aberrations retrospectively. Another alternative is
to use semi-simulated data for evaluation [7], i.e. real
baseline data (usually univariate time-series) are injected
with (relatively simple) simulated outbreaks. This is pref-
erable to relying on fully simulated data as it is typically
difficult to predict how well simulated data approximate
the relevant features of real syndrome counts [8].

The aim of our study was to evaluate, using a mix-
ture of real and simulated data, the performance of a
quasi-Poisson regression (also known as the improved
Farrington) algorithm [9, 10] for the detection of dis-
ease outbreaks during post-mortem inspection of
slaughtered animals in Switzerland. Baseline data on
whole carcass condemnation (WCC) rates for cattle
and pigs were generated based on the characteristics
of historical Swiss meat inspection data (dataset
described in [11]). As system developers are, by nature,
uncertain about the types of outbreaks the surveil-
lance system may come across, we defined feature
sets of simulated outbreaks (i.e. of different magnitude
and duration) to determine the system’s ability to de-
tect an outbreak under varying conditions [7]. The
outbreak-detection performance of the system was
then measured in terms of its ability to detect a signal
(i.e. disease outbreak) against background noise (i.e.
normally varying baseline).

METHODS

Condemnation data and outbreak simulation

Meat inspection data were extracted from the
‘Fleischkontrolldatenbank’ (FLEKO database) be-
longing to the Swiss Federal Food Safety and
Veterinary Office (FSVO). The FLEKO holds post-
mortem meat inspection data from all hoofed animals
slaughtered in Switzerland. Depending on the obser-
vations made by the meat inspector (none, generalized
vs. localized conditions), the carcass can either be (1)
classified as entirely fit for human consumption; (2)
partially condemned (only parts of the carcass unfit
for human consumption are removed) or (3) wholly
condemned (this includes organs and blood). Meat in-
spectors must report the number of animals slaugh-
tered under normal and emergency (sick or injured)
conditions, the number of WCCs, and the reason for
condemnation† to the veterinary authorities on a
monthly basis. More information on the database
can be found in [11]. This study uses data on the num-
ber of WCCs of cattle and pigs slaughtered in
Switzerland between 1 January 2007 and 31
December 2012 (Table 1). All statistical analyses
were performed in R [12] using the ‘surveillance’ pack-
age [13]. No major disease outbreaks took place in
Swiss cattle or pig populations during this time, so
these time-series are assumed to be epidemic free.

†817·190·1 Regulation of Swiss Federal Department of Home
Affairs (EDI) on hygiene during slaughter (Vhys), November 2005.
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Both slaughters under normal and emergency condi-
tions were considered.

The four time-series (number of condemned car-
casses per month, yt) were retrospectively modelled
following a framework proposed by [14] and imple-
mented in the R function ‘hhh4’. As preliminary ana-
lyses using Poisson models showed the presence of
overdispersion, the outcome yt was assumed to follow
a negative binomial distribution with mean μt. The
mean monthly incidence (μt) was decomposed addi-
tively into an autoregressive component and an en-
demic component:

μt = λt yt−1 + νtet with λt, νt . 0( ).
The autoregressive component (λt) can capture possible
outbreaks and can include a seasonal pattern or a long-
term trend. The endemic component (νt) models the
baseline counts and can include seasonality and
trend. It is multiplied by the offset (et) to adjust for vari-
ation in the number of total animals slaughtered per
month [15]. The following parametric models for the
endemic and autoregressive components were used:

log νt( ) = α+ βt+ St,

log λt( ) = τ + ωt+ At.

In the endemic part, a baseline condemnation rate
is captured with the intercept α, a time trend is cap-
tured with the parameter β, and a seasonal component
is captured through {St}. In the autoregressive compo-
nent, a baseline estimate of the impact of the observa-
tion from the previous month on the current month is
estimated with τ. A long-term trend for the depend-
ence of the observations on the previous ones can be
estimated with the parameter ω. A seasonal pattern
within the autoregressive part can also be estimated
through {At}.

Four different types of trends were tested for β and
ω based on visual inspection of the raw time-series
and findings from [11]: no trend (t0), a (log-)linear

trend (t1), a (log-)linear trend starting in 2010 (t2010),
and no trend but a shift in the intercept in 2010
(j2010). Seven different types of seasonality were tested
for {St} and {At}: no seasonality (s0), a seasonal impact
of each month (monthly), an impact of December only
(dec) and seasonality with up to |H| = 4 harmonics
per year modelled by a combination of sine and cosine
functions as in [14] (s1–s4). All combinations of the
different seasonal patterns and long-term trends
within the autoregressive and endemic components
were tested for each time-series. Furthermore, models
excluding the autoregressive or the endemic compo-
nent were also evaluated. Model selection (see
Supplementary material) was based on Bayesian
Information Criterion (BIC) as it does not over-fit
the data [16].

The best retrospective models in terms of BIC
(Table 2, Fig. 1) were used to simulate baseline time-
series with a length of 72 months. The time-series thus
generated were split into three categories: a ‘baseline’
period (38 months), an ‘outbreak-risk’ period (24
months) and a ‘post-outbreak’ period of 10 months
(Fig. 2). One outbreak was added to each simulated
baseline series, with a random outbreak size and start-
ing point ti (within the ‘outbreak-risk’ period) as in
[10]. Figure 2 helps to visualize the generation process
of one simulation. Outbreak sizes were randomly gen-
erated as Poisson variables with a mean equal to k
times (with k from 2 to 10) the standard deviation of
the baseline count at ti. Preliminary analyses showed
that k values >10 produced abnormally large out-
breaks which would be, in practice, detected rapidly
by the veterinary authorities through other surveil-
lance channels. Outbreak cases were then distributed
in time according to a lognormal distribution with
mean 0 and standard deviation 0·5. The mean dur-
ation of the simulated outbreaks increased with k,
but remained in the limited range of 3·6–5·6 months,
a realistic duration for disease outbreaks of low mortal-
ity which may go unnoticed and uncontrolled by the
veterinary authorities for several weeks. The baseline
time-series exhibited large variation in standard devia-
tions resulting in more pronounced differences in the
final outbreak sizes (Fig. 3). For each parameter k,
1000 time-series were simulated.

Prospective analysis

The improved Farrington algorithm [9, 10] was ap-
plied for outbreak detection on each simulated time-
series using the ‘farringtonFlexible’ function in

Table 1. Number of slaughters and condemnations per
animal type and slaughter group between 2007 and 2012

Number of
slaughters

Number of
condemnations %

Cattle 3 750 805 5863 0·16
Cattle (E) 65 304 13 322 20·4
Pigs 16 517 599 25 310 0·15
Pigs (E) 33 720 3288 9·75

E, Slaughtered under emergency conditions.
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R. The algorithm fits a log-linear quasi-Poisson model
using the available baseline data (historic data). The
amount of historic data used can be chosen (with
parameters b and w) so that only recent values, within
the time window (2w + 1) months from the last b years
from the current time point, are included to fit the
model:

E yt
[ ] = μt = α+ βt+ ft

( ) ∗ et,

Var yt
( ) = θ ∗ μt with θ . 1.

The model can include a baseline incidence rate α, a
trend β, a seasonal pattern ft and the population

offset. The outbreak detection performance of the
improved Farrington algorithm was compared for dif-
ferent sets of parameters (Table 3). Parameter set 1
was derived from the insight gained from the retro-
spective analyses. For example, a trend was only
included if there was evidence for a trend based on
the retrospective analysis; otherwise no trend was
fitted. Seasonality was either excluded or included
(based on the retrospective analyses) using the
{noPeriods} argument. A number of seasonal periods
are modelled by a zero-order spline function with
{noPeriods+1} knots.

(a) (b)

(c) (d )

Fig. 1. Best retrospective model fit according to the Bayesian Information Criterion for (a) cattle slaughtered under
normal conditions, (b) cattle slaughtered under emergency conditions, (c) pigs slaughtered under normal conditions, and
(d) pigs slaughtered under emergency conditions.

Table 2. Best retrospective (hhh4) models for the four time-series

Cattle Cattle (E) Pigs Pigs (E)

TrendAR No No AR component excluded No
TrendEND No Log-linear Log-linear starting in 2010 No
SeasonAR No No AR component excluded No
SeasonEND No No Sine-cosine 1 harmonic No

E, Slaughtered under emergency conditions; trendAR, trend in the autoregressive component (λt); seasonAR, seasonality in
the autoregressive component (λt); trendEND, trend in the endemic component (νt); seasonEND, seasonality in the endemic
component (νt).
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Parameter sets 2 and 3 were chosen to increase the
probability of detection (POD) of small outbreaks
(defined as 2 < k < 4). We hypothesized that the per-
formance may be improved by varying the amount
of historic data used to fit the model (set 2); or by in-
cluding a trend in the model (set 3) if not previously
included (as suggested in [10]). A population offset
(total number of animals slaughtered) was used in
all models.

The models were then used to derive prospective
predictions (and upper confidence limits) for the num-
ber of condemnations in a given month. The one-sided
confidence limit was derived from the (1 – α)*100%
quantile of the normally distributed estimates (α =
0·025 was used). A statistical alarm was raised when

an observed value (y0) at the current time point (t0)
exceeded the confidence limit (U0) according to the
following Z score:

Z = y0 − μ̂0
U0 − μ̂0

,

with μ̂0 defined as the expected value at t0
The following performance criteria were calculated

and averaged over 1000 simulations for each param-
eter k. The false-positive rate (FPR) was defined as
the number of statistical alarms during outbreak-free
months within the outbreak-risk period divided by
the total number of months that were outbreak free
within the same period. The POD was obtained by
dividing the number of outbreaks that were detected
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by the total number of simulations tested. An out-
break was detected if there was at least one alarm dur-
ing the course of the outbreak. Thus the FPR
indicates a rate per month and POD a rate per out-
break. The mean time to detection in months (TTD)
and the mean percentage of cases until detection
(CUD) were calculated only from simulations during
which an outbreak was detected.

RESULTS
Prospective outbreak detection
Under parameter set 1 (which was derived from the
retrospective analyses), the improved Farrington algo-
rithm detected <50% of small outbreaks (Fig. 4). The
number of outbreak-related WCCs had to reach at
least 50% (range 49–104%) of the mean monthly base-
line counts for the algorithm to detect at least one in

Simulated outbreaks
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Fig. 3. Mean final outbreak size (number of additional condemnations) and duration (in months) over the 1000
simulations for each parameter k. CattleE, cattle slaughtered under emergency conditions; cattleN, cattle slaughtered
under normal conditions; pigE, pigs slaughtered under emergency conditions; pigN, pigs slaughtered under normal
conditions.

Table 3. Different sets of parameters used in the improved Farrington algorithm during prospective outbreak
detection

Improved Farrington
algorithm* Cattle Cattle (E) Pigs Pigs (E)

Parameter set 1 b= 2 b= 2 b= 3 b= 2
w= 6 w= 6 w = 2 w= 6
trend = FALSE trend = TRUE trend = TRUE trend = FALSE
noPeriods = 1 noPeriods = 1 noPeriods = 1 noPeriods = 1

Parameter set 2 b= 3 b= 3 b= 3 b= 3
w= 0 w= 0 w = 0 w= 0
trend = FALSE trend = TRUE trend = TRUE trend = FALSE
noPeriods = 1 noPeriods = 1 noPeriods = 1 noPeriods = 1

Parameter set 3 Set 1 with trend = TRUE NA NA Set 1 with trend = TRUE

E, Slaughtered under emergency conditions.
* The amount of historic data used to fit the model can be chosen such that only recent values within the time window (2w+ 1)
months from the last b years from the current time point are included. A number of seasonal periods are modelled by a
zero-order spline function with {noPeriods + 1} knots.
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every two outbreaks. A satisfactory POD (>80%) was
only achieved for the time-series in which large out-
breaks (defined as 8 < k < 10) were inserted. When
the algorithm correctly identified an outbreak, the
statistical alarm was raised, on average, 1 month
after the simulated outbreak started (range 0·9–1·1
months), by which time between 73% and 86% of all
outbreak cases had already been introduced into the
slaughtered population, i.e. the larger part of the epi-
demic had run its course unmanaged. The FPRs
(range 0·005–0·013/month) were satisfactory, leading
to one false-positive alarm (and ensuing epidemio-
logical investigation) every 6·4–16·6 years.

The parameters of the improved Farrington algo-
rithm were then modified (set 2) to try and increase
the POD of small outbreaks by varying the amount
of historic data used to fit the model (Fig. 5). The
POD for the smallest simulated outbreaks (k = 2)
increased (range 123–271%); however, a trade-off
was apparent with POD of the largest outbreaks (k
= 10) being lower (range 2–17%) when more historic
data were used to fit the model. The number of
outbreak-related WCCs had to reach at least 25%
(range 25–111%) of the mean monthly baseline counts
for the algorithm to detect at least one in every two
outbreaks. Comparing the performance of both

parameter sets for the improved Farrington algo-
rithm, we found that parameter set 2 reduced the
threshold of outbreak-related WCCs required to
reach a POD of 50% for pigs slaughtered under nor-
mal conditions (222 and 88 outbreak-related WCCs
for sets 1 and 2, respectively). When outbreaks were
detected, between 57% and 86% of the outbreak-
related WCCs had already gone through meat inspec-
tion (range of time to alarm: 0·8–1·3 months). The
FPR for pigs slaughtered under normal condition
time-series was high (range 0·163–0·173/month), in
other words the system would produce a false alarm
every 6 months. For the other three time-series, the
FPRs were more reasonable, one false alarm every
1·2–16·6 years (range 0·005–0·07/month). Including a
trend in the model when not already present (param-
eter set 3), did nothing to improve the POD or the
FPR (Fig. 6).

DISCUSSION

The choice of model parameters had an impact on the
ability of the improved Farrington algorithm to detect
simulated outbreaks in the WCC surveillance data
collected in Switzerland. When using parameters
based on the retrospective analyses of 6 years of
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historic data (set 1), the algorithm performed reason-
ably well (in terms of POD) for the detection of large
outbreaks but performed poorly in detecting smaller
outbreaks. One explanation could be the high vari-
ation in the baseline counts and the low amount of
data used for parameter estimation. The former
results in high estimates of mean incidence rates,
while the latter leads to estimates with high standard
errors. Both contribute to increased detection thresh-
olds, making it difficult to detect outbreaks with a
low number of cases. The POD of smaller outbreaks
was better after decreasing the time window (w) and
increasing the amount of years (b) used to fit the
model (parameter set 2) although this reduced the
POD for larger outbreaks. Noufaily et al. suggested
including a trend in the model to improve POD [10]
(parameter set 3) but we found no difference between
the performance indicators of the algorithm when
parameterized with set 1 or set 3.

The use of a 0·975 quantile generated a low FPR in
most of the series tested. A statistical alarm generated
by the system would result in the initiation of a re-
sponse protocol by the relevant authorities. The first
step in investigating an alarm is confirmation of the
signal. The individual cases that triggered the alarm
must be examined to obtain geographical (and poten-
tially demographic) data. Then, if the signal does not

appear to be the result of duplication of individual
case data or data entry error, the specificity of the sig-
nal must be increased (e.g. by a phone call to the meat
inspectors at the reporting sites, by dispatching a team
of epidemiologists in the field, etc.). The cost linked to
a statistical alarm investigation (time and people
resources) in our system would be acceptable for a
FPR of 0·08 or lower (41 false alarm per year).
This was the case for all series screened with the first
parameter set and most series screened with the se-
cond parameter set. Applying parameter set 2 to the
time-series of pigs slaughtered under normal condi-
tions resulted in an average false alarm rate of 1
every 6 months, a FPR that would probably be too
costly for the system’s users.

High variation in the baseline counts constitutes
one of major limitations of the use of the Swiss
WCC data for early outbreak detection. The POD
for smaller outbreaks may be increased by minimizing
the variance of the WCC time-series. One possibility
could be to apply such algorithms to the time-series
of some specified reason for WCC. Abscesses and
acute lesions are the most commonly reported reason
for WCC for Swiss pigs and cattle, respectively [11].
While sub-setting the WCC time-series may slightly
reduce the variance observed on a monthly level, the
SyS system should be monitoring more than one
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WCC reason as these are non-specific health indica-
tors and the system should be able to detect any out-
break caused by unspecified or unknown pathogens.
The next step should be to monitor concomitantly sev-
eral time-series (corresponding to different reasons for
WCCs in pigs slaughtered under normal conditions,
for example) using multivariate methods (e.g. [17,
18]). We could also stratify the WCC data by age,
sex and production type in an attempt to reduce vari-
ance; however, such data are not currently recorded
by the meat inspectors. We have also shown in a pre-
vious study [11] that WCC rates differed between large
and small slaughterhouses. However, as long as the
proportion of animals going to small vs. large slaugh-
terhouses is constant through time, the effects above
may not be important for outbreak detection of the
aggregated time-series, but will become relevant dur-
ing the more detailed investigation of statistical
alarms.

Outbreak simulation was performed according to
the methods outlined in [10]. Noufaily et al. chose a
lognormal distribution to simulate outbreaks in the
weekly counts of isolates reported to the Health
Protection Agency. Transferring Noufaily’s method-
ology [10] to monthly data may have its limitations.
While the outbreaks we simulated were quite long
(range 3·6–5·6 months), the majority of the outbreaks

detected were flagged within 1 month of their occur-
rence. Unfortunately, due to the lognormal distribu-
tion of the outbreaks, more than 50% of the
outbreak cases had already occurred at the time of de-
tection. Different outbreak shapes such as flat, linear
or exponential could be simulated using different
methods (see [6, 19]). However, the assumed temporal
distribution of any simulated outbreak constitutes a
challenge to the early detection of outbreaks using
monthly surveillance data. The applicability of the
developed algorithms should be further evaluated in
the future when the reporting frequency of the meat
inspection data has increased. Statistical process con-
trol methods used on weekly WCC data from one
large slaughterhouse in the Manche department,
France, have recently shown good outbreak detection
performances [6].

A limitation of most existing outbreak simulation
approaches, including ours, is that they may create
signals with insufficient complexity to evaluate the ef-
fectiveness of certain algorithms in the scenarios and
data environments for which they were designed
[20]. For example, we do not explicitly model the dis-
ease agent responsible for the simulated outbreak.
Strong assumptions about disease-agent parameters
(e.g. time spent in the incubation state) would need
to be made to develop such a simulation model.
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However, the aim of this study was to understand the
plausible range of detection-performance results for a
non-specified outbreak scenario as we cannot predict
the pathogen responsible for the next major zoonotic
outbreak in Switzerland. While larger outbreaks in
the livestock population may be more readily detected
using other animal-health data sources, meat inspec-
tion data may prove to be a valuable source of data
when trying to detect smaller outbreaks which may
span a longer time period. Parameter sets for the
improved Farrington algorithm that increase the
POD of small outbreaks and lead to <1 investigation
per year could therefore be considered reasonable by
the Swiss veterinary services. Parameter set 2 should
be prospectively applied on all the time-series, except
the series for pigs slaughtered under normal condi-
tions for which parameter set 1 is preferred. The
lack of sensitivity of the system evaluated is a valu-
able, if not disappointing, output from this study. It
highlights the need for the future SyS system planned
by the FSVO to integrate diverse data sources on live-
stock to help increase the sensitivity and timeliness of
its statistical output. One possibility would be to col-
late additional data, such as information on produc-
tion levels and market prices in order to help
interpret more accurately the patterns observed in
the WCC time-series. However, no single data source
will capture data from all the individuals involved in
an outbreak. Some diseases will cause a wide variety
of clinical symptoms in different animals and/or will
affect different strata of the population. As such,
SyS systems should be multivariate by nature, i.e. sim-
ultaneously evaluating various combinations of mul-
tiple datasets. In the next stage, we will consider
integrating the meat inspection data into a multivari-
ate SyS system for production animals in Switzerland,
an option that may appeal to decision makers as pro-
viding consistent evidence which may be used to sug-
gest inferential accuracy.

SUPPLEMENTARY MATERIAL
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