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Abstract. We show that α-stable Lévy motions can be simulated by any ergodic and
aperiodic probability-preserving transformation. Namely we show that: for 0 < α < 1
and every α-stable Lévy motion W, there exists a function f whose partial sum process
converges in distribution to W; for 1 ≤ α < 2 and every symmetric α-stable Lévy motion,
there exists a function f whose partial sum process converges in distribution to W; for
1 < α < 2 and every −1 ≤ β ≤ 1 there exists a function f whose associated time series is
in the classical domain of attraction of an Sα(ln(2), β, 0) random variable.
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1. Introduction
Thouvenot and Weiss showed in [12] that for every aperiodic, probability-preserving
system (X, B, m, T ) and for a random variable Y, there exist a function f : X → R and a
sequence an → ∞ such that

1
an

n−1∑
k=0

f ◦ T k converges in distribution to Y .

This result means that any distribution can be approximated by observations of an
aperiodic, probability-preserving system. See also [1] for a refinement of this distributional
convergence result for positive random variables and the subsequent [6] which is concerned
with the possible growth rate of the normalizing constants an. The results mentioned above
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were preceded by research into central limit theorems (CLTs) in dynamical systems with
convergence towards a normal law; see, for example, [4, 13].

Given a stochastic process Y = (Y (t))t∈R whose sample paths are in a Polish
space D, a natural question that arises is whether we can simulate it using our
prescribed dynamical system. That is, do there exist a measurable function f : X → R

and normalizing constants an and bn such that the processes Yn : X → D defined by
Yn(t)(x) = (1/an)(

∑[nt]
k=0 f ◦ T k(x)− b[nt]) converge in distribution to Y?

As noted by Gouëzel in [6], by a famous result of Lamperti (see [3, Theorem 8.5.3]), any
process Y which can be simulated in this manner must be self-similar and the normalizing
constants need to be of the form an = nαL(n) where L(n) is a slowly varying function
and α is the self-similarity index of the process. Perhaps due to this, results about the
simulation of processes are rather scarce; to the best of our knowledge the only such result
is [13], where the second author has answered a question of Burton and Denker [4] and
shown that every aperiodic, probability-preserving system can simulate a Brownian motion
with classical normalizing constants an = √

n.
An important subclass of self-similar processes is the class of α-stable Lévy motions

which we describe in the next subsection. These include Brownian motion (α = 2) and
Cauchy–Lévy motion (α = 1) which is a process with independent increments which are
Cauchy-distributed and are often used to model heavy-tailed phenomena.

In this work we show that given an aperiodic, ergodic, probability-preserving transfor-
mation (X, B, m, T ):
• every α-stable Lévy motion with α ∈ (0, 1) can be simulated by this transformation;
• every symmetric α-stable Lévy motion can be simulated using this transformation.
One may ask about general α-stable Lévy motions when α ∈ [1, 2). In this regard we
extend the results of [9] and show a classical CLT result for any α-stable distribution when
α �= 1.

From a bird’s-eye view, the methods are similar to those in [9, 13] in the sense that
the process is constructed by a sum of coboundaries and that in any ergodic and aperiodic
dynamical system and for a natural number n there is a function f such that the sequence
of f , f ◦ T , . . . , f ◦ T n has a given distribution of a discrete-valued independent and
identically distributed (i.i.d.) sequence X0, . . . , Xn (Proposition 2 in [8]). We remark that
our work shows that any ergodic dynamical system can simulate these α-stable processes
but in order to have algorithms which converge fast one may want to choose a special
dynamical system; such works in the context of α-stable processes were carried out, for
example, in [5, 14].

The coboundaries used in the preceding papers naturally lead to a convergence towards
symmetric laws. A natural challenge, which is treated in full generality in this work, is to
get CLT convergence with i.i.d. scaling towards skewed stable limits. We note that the case
where 1 ≤ α < 2 (Theorem 2.10) is especially challenging.

The invariance principle was studied in [13] only where the structure of Hilbert spaces
could be used and the convergence is with respect to the metric of uniform convergence
in the space of continuous functions. The methods of this paper are different, and even in
the case of a symmetric stable process limit the function here is different and makes use of
linear combinations of skewed stable functions.
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1.1. Definitions and statement of the theorems. A random variable Y is stable if there
exist a sequence Z1, Z2, . . . of i.i.d. random variables and sequences an, bn such that∑n

k=1 Zk − an

bn
converges in distribution to Y as n → ∞.

In other words, Y arises as a distributional limit of a CLT; see [7]. Furthermore, in this
case bn is regularly varying of index 1/α which implies that bn = n1/αL(n), where L(n)
is a slowly varying function. A stable distribution is uniquely defined by its characteristic
function (Fourier transform). Namely, a random variable is α-stable, 0 < α ≤ 2, if there
exist σ > 0, β ∈ [−1, 1] and μ ∈ R such that for all θ ∈ R,

E(exp(iθY )) =

⎧⎪⎪⎨
⎪⎪⎩

exp
{(

− σα|θ |α
(

1 − iβsign(θ) tan
(
πα

2

)))
+ iμθ

}
, α �= 1,

exp
{(

− σα|θ |α
(

1 + iβ

2
sign(θ) ln(θ)

))
+ iμθ

}
, α = 1.

The constant σ > 0 is the dispersion parameter and β is the skewness parameter. In this
case we will say that Y is an α-stable random variable with dispersion parameter σ ,
skewness parameter β and shift parameter μ, or in short Y is an Sα(σ , β, μ) random
variable. If μ = β = 0 and σ > 0 then the random variable is symmetric α-stable and we
will say that Y is SαS(σ).

A probability-preserving dynamical system is a quadruplet (X , B, m, T ) where
(X , B, m) is a standard probability space, T is a measurable self-map of X and
m ◦ T −1 = m. The system is aperiodic if the collection of all periodic points is a null
set. It is ergodic if every T-invariant set is either a null or a conull set. Given a function
f : X → R, we write Sn(f ) := ∑n−1

k=0 f ◦ T k for the corresponding random walk.
Recall that if Yn and Y are random variables taking values in a Polish space X, then Yn

converges to Y in distribution if for every continuous function G : X → R,

lim
n→∞ E(G(Yn)) = E(G(Y )).

Here E denotes the expectation with respect to the relevant probability measure of the
space on which the random variable is defined on.

THEOREM 1.1. (See Theorem 2.10) For every ergodic and aperiodic probability-preserving
system (X , B, m, T ), α > 1 and β ∈ [−1, 1], there exist a function f : X → R and
Bn → ∞ such that

Sn(f )+ Bn

n1/α converges in distribution to Sα(
α
√

ln(2), β, 0).

A process W = (
Ws

)
s∈[0,1] is an Sα(σ , β, 0) Lévy motion if it has independent

increments and for all 0 ≤ s < t ≤ 1, Wt − Ws is Sα(σ α
√
t − s, β, 0) distributed. The

existence of an Sα(σ , β, 0)-stable motion can be demonstrated via a functional CLT (also
called a weak invariance principle); the details given below appear in [10].

Consider the vector space D([0, 1]) of functions f : [0, 1] → R which are
right-continuous with left limits, also known as càdlàg functions. Equipped with the
Skorohod J1 topology, D([0, 1]) is a Polish space. Now a natural construction of a
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distribution on D([0, 1]) is to take X1, X2, . . . , an i.i.d. sequence of random variables
and an > 0 and define a D([0, 1])-valued random variable Wn via

Wn(t) = anS[nt](X)

where Sn(X) := ∑n
k=1 Xk and [·] is the floor function. By [10, Corollary 7.1.], if Xi are

Sα(σ , β, 0) and an = n−1/α , then Wn converges in distribution (as a sequence of random
variables on the Polish spaceD([0, 1])with the J1 topology), its limit being an Sα(σ , β, 0)
Lévy motion. The main result of this work is such functional CLT results in the setting of
dynamical systems.

THEOREM 1.2. Let (X , B, m, T ) be an ergodic and aperiodic probability-preserving
system.
(Theorem 2.5) For every α ∈ (0, 1), σ > 0 and β ∈ [−1, 1], there exists f : X → R

such that Wn(f )(t) := (1/n1/α)S[nt](f ) converges in distribution to an
Sα(σ , β, 0) Lévy motion.

(Theorem 2.6) For every α ∈ [1, 2) and σ > 0, there exists f : X → R such that
Wn(f )(t) := (1/n1/α)S[nt](f ) converges in distribution to an SαS(σ )
Lévy motion.

We remark that while the results in Theorem 2.5 provide a function f whose partial
sum process Wn(f ) converges to an Sα(α

√
ln(2), β, 0) Lévy motion, the scaling property

of α-stable distributions gives that, writing c := σ/α
√

ln(2), Wn(cf ) converges to an
Sα(σ , β, 0) Lévy motion. A similar remark is true with regard to Theorem 2.6.

1.2. Notation. Here and throughout, log(x) denotes the logarithm of x in base 2, and
similarly ln(x) is the natural logarithm of x.

Given two non-negative sequences an and bn, we write an � bn if there exists C > 0
such that an ≤ Cbn for all n ∈ N; and if, in addition, bn > 0 for all n then we write an ∼ bn

if limn→∞(an/bn) = 1,
For a function f : X → R and p > 0, ‖f ‖p := (

∫ |f |p dm)1/p.

2. Construction of the function
2.1. Target distributions. Let (�, F , P) be a probability space. Let {Xk(m) : k, m ∈ N}
be independent random variables so that for every k ∈ N, Xk(1), Xk(2), Xk(3), . . . are
i.i.d. Sα(σk , 1, 0) random variables with σαk = 1/k.

For every k, m ∈ N, define Yk(m) = Xk(m)1[2k≤Xk(m)≤4k] and its discretization on a
grid of scale 4−k defined by

Zk(m) =
42k∑

j=2k4k

(
j

4k

)
1[(j/4k)≤Yk(m)<(j+1)/4k].

The following fact easily follows from the definitions.
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Fact 2.1. For every k ∈ N, Zk(1), Zk(2), . . . are i.i.d. random variables supported on the
finite set {2k , 2k + 4−k , . . . , 4k}, and for all m ∈ N,

0 ≤ Yk(m)− Zk(m) < 4−k .

The construction of the cocycle will hinge on realizing a triangular array of the Z
random variables in a dynamical system.

2.2. Construction of the function. Let (X , B, m, T ) be an ergodic, aperiodic,
probability-preserving system. We first recall some definitions and the copying lemma
of [8] and its application as in [9].

A finite partition of X is measurable if all of its pieces (atoms) are Borel-measurable.
Recall that a finite sequence of random variables X1, . . . , Xn : X → R, each taking
finitely many values, is independent of a finite partition P = (P )P∈P if for all s ∈ R

n

and P ∈ P ,

m((Xj )
n
j=1 = s|P) = m((Xj )

n
j=1 = s).

We will embed the triangular array using the following key proposition.

PROPOSITION 2.2. [8, Proposition 2] Let (X , B, m, T ) be an aperiodic, ergodic,
probability-preserving transformation and P a finite-measurable partition of X . For
every finite set A and U1, U2, . . . , Un an i.i.d. sequence of A-valued random variables,
there exists f : X → A such that (f ◦ T j )n−1

j=0 is distributed as (Uj )nj=1 and (f ◦ T j )n−1
j=0

is independent of P .

Using this, we deduce the following corollary.

COROLLARY 2.3. Let (X , B, m, T ) be an aperiodic, ergodic, probability-preserving
transformation and (Zk(j)){k∈N,1≤j≤4k2 } be the triangular array from §2.1. There exist

functions fk , gk : X →R such that (fk ◦ T j−1){k∈N,1≤j≤4k2 } and (gk ◦ T j−1){k∈N,1≤j≤4k2 }
are independent and each is distributed as (Zk(j)){k∈N,1≤j≤4k2 }.

Proof. The sequence (Zk(m))n∈N,1≤m≤2·4k2 is a sequence of independent random vari-
ables and for each k, (Zk(m))1≤m≤2·4k2 are i.i.d. random variables which take finitely many
values.

Proceeding verbatim as in the proof of [9, Corollary 4], one obtains a sequence
of functions fk : X → R such that (fk ◦ T j−1){k∈N,1≤j≤2·4k2 } is distributed as

(Zk(j)){k∈N,1≤j≤2·4k2 }. Setting gk = fk ◦ T 4k
2

concludes the proof.

From now on let (X , B, m, T ) be an aperiodic, ergodic dynamical system and (fk)∞k=1
and (gk)∞k=1 the functions from Corollary 2.3.

LEMMA 2.4. We have that #{k ∈ N : fk �= 0 or gk �= 0} < ∞, m-almost everywhere.

Proof. Since fk and gk are Zk(1) distributed and Xk(1) is Sα(σk , 1, 0) distributed, it
follows from Proposition A.1 that
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m(fk �= 0 or gk �= 0) ≤ m(fk �= 0)+m(gk �= 0)

= 2P(Zk(1) �= 0)

≤ 2P(Xk(1) > 2k) ≤ C
2−αk

k
,

where C is a global constant which does not depend on k. Using the union bound and
stationarity, the right-hand side being summable, the claim follows from the Borel–Cantelli
lemma.

In what follows, we assume that α ∈ (0, 2) is fixed and fk and gk correspond to the
functions in Corollary 2.3. In addition, we write for h : X → R and n ∈ N,

Sn(h) :=
n−1∑
k=0

h ◦ T k .

Define

f =
∞∑
k=1

fk and g =
∞∑
k=1

gk .

Note that by Lemma 2.4, f and g are well defined as the sum in their definition is almost
surely a sum of finitely many functions. Recall that the (rescaled) partial sum process of a
function h : X → R is

Wn(h)(t) = 1
n1/α S[nt](h), 0 ≤ t ≤ 1.

THEOREM 2.5. Assume 0 < α < 1. Fix β ∈ [−1, 1] and define

hk :=
(

1 + β

2

)1/α

fk −
(

1 − β

2

)1/α

gk ,

h :=
(

1 + β

2

)1/α

f −
(

1 − β

2

)1/α

g =
∞∑
k=1

hk .

Wn(h) ⇒d
W where W is an Sα(ln(2), β, 0) Lévy stable motion.

We also have a functional CLT version for general α ∈ (0, 2) when the limit is SαS.

Recall that the functions fk and gk are related by gk = fk ◦ T 4k
2
.

THEOREM 2.6. Assume α ∈ [1, 2). Define

hk := fk − gk ,

h := f − g =
∞∑
k=1

hk .

Wn(h) ⇒d
W where W is an SαS(α

√
2 ln(2)) Lévy motion.

2.3. General CLT for α > 1. Recall that a coboundary for a measure-preserving
transformation is a function H such that there exists a function G, called a transfer function,
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such that H = G−G ◦ T . The resulting cocycle (sum process) of the coboundaries
fk − gk from the proof of Theorem 2.6 converges to a symmetric α-stable distribution.
To get a skewed α-stable limit we thus use a different kind of coboundaries as described
below. Set Dk := 4αk ,

ϕk := 1
Dk

Dk−1∑
j=0

fk ◦ T j

and hk := fk − ϕk . We note that the hk and h in this subsection denote different functions
than in the previous subsection.

LEMMA 2.7. If α ∈ (1, 2), then
∑N
k=1 hk converges in L1(m) and almost surely as

N → ∞.

Proof. By Fubini’s theorem it suffices to show that
∑∞
k=1

∫ |hk| dm < ∞.
To that end, for a fixed k we have∫

|hk| dm ≤
∫

|fk| dm+ 1
Dk

Dk−1∑
j=0

∫
|fk ◦ T j | dm = 2

∫
|fk| dm,

where the last equality is true as T preserves m. Next fk and Zk(1) are equally distributed
and

Zk(1) ≤ Yk(1) ≤ Xk(1)1[Xk(1)≥2k].

As α > 1, it follows from this and Corollary A.3 that there exists C > 0 such that for all
k ∈ N, ∫

|fk| dm = E(Zk(1))

≤ E(Xk(1)1[Xk(1)≥2k]) ≤ C
2k(1−α)

k
.

We conclude that
∞∑
k=1

∫
|hk| dm ≤ C

∞∑
k=1

2k(1−α)

k
< ∞.

Following this, we write h = ∑∞
k=1 hk and throughout this subsection and §5, h always

corresponds to this function. Note that for every k ∈ N, E(Xk(1)1[Xk(1)≤2k]) exists, and
write

Bn := n

(1/α) log(n)∑
k=(1/2α) log(n)

E(Xk(1)1[Xk(1)≤2k]).

THEOREM 2.8. Assume α ∈ (1, 2). (Sn(h)+ Bn)/n
1/α converges in distribution to an

Sα(ln(2), 1, 0)) random variable.

The following claim gives the asymptotics of Bn.

https://doi.org/10.1017/etds.2025.17 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.17


8 Z. Kosloff and D. Volný

CLAIM 2.9. For every α ∈ (1, 2), there exists cα > 0 such that Bn = cαn(log(n))1−1/α

(1 + o(1)) as n → ∞.

Proof. Recall that σk = k−1/α . Since 2k/σk → ∞ as k → ∞, it follows from the
monotone convergence theorem that if Z is an Sα(1, 1, 0) random variable, then

lim
k→∞ E(Z1[σkZ≤2k]) = E(Z) =: ηα > 0.

Now for every k, Xk(j) and σkZ are equally distributed. Consequently,

E(Xk(1)1[Xk(1)≤2k]) = σkE(Z1[σkZ≤2k]) = σkηα(1 + ok→∞(1)).

The claimed asymptotics now follows from this and

(1/α) log(n)∑
k=(1/2α) log(n)

σk ∼
(

1
α

log(n)
)1−1/α

(1 − 21/α−1) as n → ∞.

Now write

ĥk := gk − 1
Dk

Dk−1∑
j=0

gk ◦ T j

and ĥ := ∑∞
k=1 ĥk . Note that ĥ is well defined as for all k, ĥk = hk ◦ T 4k

2
so h is a limit

in L1 by Lemma 2.7.

THEOREM 2.10. Assume α > 1. Fix β ∈ [−1, 1] and define

H :=
(
β + 1

2

)1/α

h−
(

1 − β

2

)1/α

ĥ.

Then 1/n1/α(Sn(H)+ Bn(((1 + β)/2)1/α − ((1 − β)/2)1/α)) converges in distribution to
Sα(ln(2), β, 0).

2.4. Strategy of the proof of Theorems 2.5 and 2.6. The proof starts by writing for
ψ ∈ {h, f , g},

Wn(ψ) = W
(S)
n (ψ)+ W

(M)
n (ψ)+ W

(L)
n (ψ) (1)

where

W
(M)
n (ψ) :=

(1/α) log(n)∑
k=(1/2α) log(n)+1

Wn(ψk),

W
(S)
n (ψ) :=

(1/2α) log(n)∑
k=1

Wn(ψk),

W
(L)
n (ψ) :=

∞∑
k=(1/α) log n+1

Wn(ψk).
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Writing ‖ · ‖∞ for the supremum norm, we first show that ‖W(S)
n (h)‖∞ and ‖W(L)

n (h)‖∞
converge to 0 in probability, hence the two processes converge to the zero function in the
uniform (and consequently the J1) topology.

Next we show that W(M)
n (h) converges in distribution (in the J1 topology) to the correct

limiting process.
Finally, we use Slutsky’s theorem, also known as the convergence together lemma, in

the (Polish) Skorohod J1 topology, to deduce the weak convergence result for Wn(h).

LEMMA 2.11. Let An, Bn and W be D[0, 1]-valued processes such that An ⇒d 0 in
the uniform topology and Bn ⇒ W in the J1 topology. Then An + Bn ⇒d W in the J1

topology.

We remark that Lemma 2.11 follows from [2, Theorem 3.1.] and the fact that the uniform
topology is stronger than the J1 topology on D[0, 1].

3. Proof of Theorem 2.5
We carry out the proof strategy as stated in §2.4. In what follows (X, B, m, T ) is an
ergodic, aperiodic probability-preserving system, β ∈ [−1, 1], α ∈ (0, 1) is fixed and the
functions fk are as in Theorem 2.5.

This section has two subsections. In the first we prove results on W
(S)
n (f ), W(M)

n and
W
(L)
n (f ). These results combined prove Theorem 2.5 in the totally skewed to the right

(β = 1) case. In the second subsection we show how to deduce Theorem 2.5 from these
results.

3.1. Case β = 1.

LEMMA 3.1. We have limn→∞ m(‖W(L)
n (f )‖∞ �= 0) = 0.

Proof. The statement follows from the inclusion

[‖W(L)
n (f )‖∞ �= 0] ⊂

∞⋃
k=(1/α) log(n)+1

n−1⋃
j=0

[fk ◦ T j �= 0].

Therefore,

m(‖W(L)
n (f )‖∞ �= 0) ≤

∞∑
k=(1/α) log(n)+1

n−1∑
j=0

m(fk ◦ T j �= 0)

=
∞∑

k=(1/α) log(n)+1

n ·m(fk �= 0)

≤ Cn

∞∑
k=(1/α) log(n)+1

2−αk

k
,
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where the last inequality is from the proof of Lemma 2.4. The result now follows since

n

∞∑
k=(1/α) log(n)+1

2−αk

k
� 1

log(n)
−−−→
n→∞ 0,

LEMMA 3.2. The random variable ‖W(S)
n (f )‖∞ converges to 0 in measure.

Proof. Recall that for all k ∈ N, fk is distributed as Zk(1), whence fk ≥ 0 and

‖W(S)
n (f )‖∞ = max

0≤t≤1

∣∣∣∣ 1
n1/α

(1/2α) log(n)∑
k=1

( [nt]−1∑
j=0

fk ◦ T j
)∣∣∣∣

= 1
n1/α

(1/2α) log(n)∑
k=1

( n−1∑
j=0

fk ◦ T j
)

.

For every k, j ∈ Z, fk ◦ T j is distributed as Zk(1) and

0 ≤ Zk(1) ≤ Xk(1)1[0≤Xk(1)≤4k].

By Corollary A.2, there exists C > 0 such that for all k, j ∈ N,

‖fk ◦ T j‖1 = E(Zk(1))

≤ E(Xk(1)1[0≤Xk(1)≤4k]) ≤ C
4k(1−α)

k
.

Consequently,

‖‖W(S)
n (f )‖∞‖1 ≤ n−1/α

(1/2α) log(n)∑
k=1

n−1∑
j=0

‖fk ◦ T j‖1

≤ n−1/α
(1/2α) log(n)∑

k=1

Cn
4(1−α)k

k
� 1

log(n)
−−−→
n→∞ 0.

A standard application of the Markov inequality shows that ‖W(S)
n (f )‖∞ converges to 0

in measure, concluding the proof.

The rest of this subsection is concerned with the proof of the following result for
W
(M)
n (f ).

PROPOSITION 3.3. The random variable W
(M)
n (f ) converges in distribution to W, an

Sα(
α
√

ln(2), 1, 0) Lévy motion.

For V ∈ {X, Y , Z} and k, n ∈ N, define

Sn
(
Vk

)
:=

n∑
j=1

Vk(j).
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We introduce the following D[0, 1]-valued processes on (�, F , P):

W
(M)
n (Z)(t) := 1

n1/α

(1/α) log(n)∑
k=(1/2α) log(n)+1

S[nt](Zk(·)),

W
(M)
n (Y )(t) := 1

n1/α

(1/α) log(n)∑
k=(1/2α) log(n)+1

S[nt](Yk(·)),

W
(M)
n (X)(t) := 1

n1/α

(1/α) log(n)∑
k=(1/2α) log(n)+1

S[nt](Xk(·)).

The reason for their definition is the following lemma.

LEMMA 3.4. The random variables W(M)
n (f ) and W

(M)
n (Z) are equally distributed.

Proof. By the definition of fk , {fk ◦ T j−1 : k ∈ N, 1 ≤ j ≤ 4k} and {Zk(j) : k ∈ N,
1 ≤ j ≤ 4k} are equally distributed.

The function Gn :
∏
k∈N R

2·4k → D[0, 1] defined for all 0 ≤ t ≤ 1 and
(xk(j)) k∈N, 1≤j≤4k ∈ ∏

k∈N R
2·4k by

Gn((xk(j)) k∈N, 1≤j≤4k )(t) := 1
n1/α

(1/α) log(n)∑
k=(1/2α) log(n)+1

[nt]∑
j=1

xk
(
j
)
,

is continuous.
AsGn((fk ◦ T j−1) k∈N, 1≤j≤4k ) = W

(M)
n (f ) and similarlyGn((Zk(j)) k∈N, 1≤j≤4k ) =

W
(M)
n (Z), the claim follows from the continuous mapping theorem.

Using this equality of distributions, it suffices to show that W
(M)
n (Z) converges in

distribution to an Sα(1, 1, 0) Lévy motion. This follows from the convergence together
lemma (Lemma 2.11) and the following result.

LEMMA 3.5. The following two properties are satisfied.
(a) The sequence of random variables ‖W(M)

n (X)−W
(M)
n (Z)‖∞ converges to 0 in

measure.
(b) The sequence of D[0, 1] valued random variables W(M)

n (X) converges in distribu-
tion to an Sα(α

√
ln(2), 1, 0) Lévy motion.

Proof of Lemma 3.5(a). For every k, m ∈ N (noting here that as α < 1, a skewed α-stable
random variable is non-negative),

0 ≤ Zk(m) ≤ Yk(m) ≤ Xk(m).

We deduce from this and the triangle inequality that

‖W(M)
n (X)− W

(M)
n (Z)‖∞ ≤ n−1/α

(1/α) log(n)∑
k=(1/2α) log(n)+1

(Sn(Xk)− Sn(Zk)).

We will show that the right-hand side converges to 0 in probability.

https://doi.org/10.1017/etds.2025.17 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.17


12 Z. Kosloff and D. Volný

Firstly 0 < α < 1, hence for all k > (1/2α) log(n), n < 4k . Consequently, by Fact 2.1,

0 ≤ Sn(Yk)− Sn(Zk) ≤ n4−k ≤ 1.

We conclude that

In := n−1/α
(1/α) log(n)∑

k=(1/2α) log(n)+1

(Sn(Yk)− Sn(Zk)) �
log(n)
n1/α . (2)

Secondly,

n−1/α
(1/α) log(n)∑

k=(1/2α) log(n)+1

(Sn(Xk)− Sn(Yk)) = IIn + IIIn

where

Ṽk(m) := Xk(m)1[Xk(m)>4k], V̂k(m) := Xk(m)1[Xk(m)≤2k],

and

IIn := n−1/α
(1/α) log(n)∑

k=(1/2α) log(n)+1

Sn(V̂k),

IIIn := n−1/α
(1/α) log(n)∑

k=(1/2α) log(n)+1

Sn(Ṽk).

Similarly to the proof of Lemma 3.1,

P(IIIn �= 0) ≤
(1/α) log(n)∑

k=(1/2α) log(n)+1

n∑
j=1

P(Xk(j) > 4k)

� Cn

(1/α) log(n)∑
k=(1/2α) log(n)+1

4−kα

k
� 1

log(n)
,

showing that IIIn −−−→
n→∞ 0 in probability.

We now fix α < r < 1 and ε > 0. Note that by Corollary A.2 there exists a global
constant C so that for every k and m,

E((V̂k(m))
r ) ≤ C

2k(r−α)

k
.

By Markov’s inequality and the triangle inequality for the r’th moments,

P(IIn > ε) ≤ E((IIn)r )ε−r

≤ n−r/αε−r
(1/α) log(n)∑

k=(1/2α) log(n)+1

n∑
j=1

E((V̂k(j))
r )

� ε−rn1−r/α
(1/α) log(n)∑

k=(1/2α) log(n)+1

2k(r−α)

k
� ε−r 1

log(n)
.

https://doi.org/10.1017/etds.2025.17 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.17


Stable functional CLT for deterministic systems 13

We conclude that IIn −−−→
n→∞ 0 in probability. Finally, we conclude the proof as we have

‖W(M)
n (X)− W

(M)
n (Z)‖∞ ≤ In + IIn + IIIn

and each of the terms on the right-hand side converges to 0 in probability.

Proof of Lemma 3.5(b). For all 0 ≤ t ≤ 1

W
(M)
n (X)(t) = n−1/αS[nt]

(
Vn

)
,

where for j ∈ N,

Vn(j) :=
(1/α) log(n)∑

k=(1/2α) log(n)+1

Xk(j).

We claim that Vn(1), Vn(2), . . . , Vn(n) are i.i.d. Sα(An, 1, 0) random variables with
limn→∞(An)α = ln(2).

Indeed, since α < 1, we deduce that for all k > (1/2α) log(n), we have 4k > n.
The independence of Vn(1), Vn(2), . . . , Vn(n) readily follows from the independence of
{Xk(m) : k ∈ N, m ≤ 4k}.

Now for all 1 ≤ j ≤ n and k ∈ ((1/2α) log(n), (1/α) log(n)], Xk(j) is an Sα(σk , 1, 0)
random variable with (σk)α = 1/k. As Vn(j) is a sum of independent Sα(σk , 1, 0) random
variables (and α �= 1), it follows from [11, Properties 1.2.1 and 1.2.3] that Vn(j) is
Sα(An, 1, 0) distributed with

(An)
α =

(1/α) log(n)∑
k=(1/2α) log(n)

1
k

∼ ln(2) as n → ∞.

We will now conclude the proof. Write an := (ln(2))1/α/An and define Wn(t) :=
anW

(M)
n (X)(t) so that Wn is the partial sum process driven by the random variables,

anVn(1), . . . , anVn(n).
As the latter are i.i.d. Sα(ln(2), β, 0) random variables, this shows that Wn is equally

distributed as Wn(V ) where (V (j))∞j=1 are i.i.d. Sα(ln(2), 1, 0) random variables.
By [10, Corollary 7.1] Wn(V ) (and hence Wn) converges in distribution to an

Sα(ln(2), 1, 0) Lévy motion.
Since W

(M)
n (X) = (an)

−1Wn with an → 1, we conclude that W(M)
n (X) converges in

distribution to an Sα(α
√

ln(2), 1, 0) Lévy motion.

3.2. Concluding the proof of Theorem 2.5. We now fix α ∈ (0, 1) and β ∈ [−1, 1] and
set hk , h as the functions from Theorem 2.5 corresponding to β. We claim that Wn(h)

converges in distribution to an Sα(ln(2), β, 0) Lévy motion.
We deduce this claim from the results on the skewed β = 1 case via the following

lemma.
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LEMMA 3.6.
(a) The sequence of D[0, 1] ×D[0, 1] valued random variables (W(S)

n (f ), W(S)
n (g))

converges in distribution (in the uniform topology) to (0, 0).
(b) The sequence of D[0, 1] ×D[0, 1] valued random variables (W(M)

n (f ), W(M)
n (g))

converges in distribution to (W, W′) where W, W′ are independent Sα(α
√

ln(2), 1, 0)
Lévy motions.

(c) The sequence of D[0, 1] ×D[0, 1] valued random variables (W(L)
n (f ), W(L)

n (g))

converges in distribution (in the uniform topology) to (0, 0).

Proof. For all k ∈ N, fk and gk are equally distributed. Following the proofs of
Lemmas 3.1 and 3.2 we see that ‖W(S)

n (g)‖∞ and ‖W(L)
n (g)‖∞ tend to 0 in probability as

n → ∞. Parts (a) and (c) follow from this and Lemmas 3.1 and 3.2.
Now for all n ∈ N, W(M)

n (f ) and W
(M)
n (g) are independent and equally distributed.

Part (b) follows from this and Proposition 3.3.

We have the following immediate corollary.

COROLLARY 3.7. The following three properties are satisfied:
(a) ‖W(S)

n (h)‖∞ → 0 converges in measure;
(b) W

(M)
n (h) converges in distribution to an Sα(α

√
ln(2), β, 0) Lévy motion;

(c) ‖W(L)
n (h)‖∞ → 0 in measure.

Proof. Set

ϕ(x, y) =
(

1 + β

2

)1/α

x −
(

1 − β

2

)1/α

y

and write cβ := (((β + 1)/2)1/α − ((1 − β)/2)1/α).
For each D ∈ {S, M, L}, and all n ∈ N,

ϕ(W(D)
n (f ), W(D)

n (g)) = W
(D)
n (h).

Parts (a) and (c) follow from Lemma 3.6(a) and (c) since for all x, y ∈ R, |ϕ(x, y)| ≤
|x| + |y|.

Let W, W′ be two independent Sα(α
√

ln(2), 1, 0) Lévy motions. It follows that
W̃ := ϕ(W, W′) is a process with independent increments. By [11, Property 1.2.13],
for all s < t , W̃(t)− W̃(s) is Sα(

α
√

ln(2)(t − s), 1, 0) distributed, whence W̃ is an
Sα(

α
√

ln(2), β, 0) Lévy motion.
Since ϕ is continuous, Lemma 3.6 and the continuous mapping theorem imply that

ϕ(W(M)
n (f ), W(M)

n (g)) = W
(M)
n (h)

converges in distribution to W̃ and the proof is concluded.

Proof of Theorem 2.5. By Corollary 3.7(a) and (c), W
(S)
n (h)+ W

(L)
n (h) converge in

distribution to the zero function. The theorem then follows from (1), Corollary 3.7(b) and
Lemma 2.11.
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4. Proof of Theorem 2.6
Let α ≥ 1. The strategy of the proof goes along similar lines. However, there is a major
difference in the treatment of W(S)

n as the L1 norm does not decay to 0. For this reason we
retort to a more sophisticated L2 estimate and make use of the fact that for all k, hk is a

T 4k
2

coboundary.
In what follows, 1 ≤ α < 2 is fixed, hk and h are as in the statement of Theorem 2.6

and the decomposition of Wn(h) to a sum of W(S)
n (h), W(M)

n (h) and W
(L)
n (h) is as before.

We write dk := 4k
2
.

LEMMA 4.1. We have limn→∞ m(‖W(L)
n (h)‖∞ �= 0) = 0.

Proof. The statement follows from the inclusion

[‖W(L)
n (h)‖∞ �= 0] ⊂

∞⋃
k=(1/α) log(n)+1

n−1⋃
j=0

[fk ◦ T j �= 0 or fk ◦ T dk+j �= 0].

In a similar way to the proof of Lemma 3.1, we have

P(‖W(L)
n (h)‖∞ �= 0) ≤

∞∑
k=(1/α) log(n)+1

2n ·m(fk �= 0) � 1
log(n)

−−−→
n→∞ 0.

As before, we also have the following lemma.

LEMMA 4.2. The random variable ‖W(S)
n (f )‖∞ converges to 0 in measure.

The proof of this lemma when 1 ≤ α < 2 is more difficult than the analogous
Lemma 3.2. It is given in §4.2.

PROPOSITION 4.3. The sequence ofD[0, 1] valued random variables W(M)
n (h) converges

in distribution to W, an SαS(α
√

ln(2)) Lévy motion.

Assuming the previous claims, we can complete the proof of Theorem 2.6.

Proof of Theorem 2.6. By Lemmas 4.1 and 4.2, ‖W(S)
n + W

(L)
n ‖∞ converges in probability

to 0. The claim now follows from Proposition 4.3 and Lemma 2.11.

In the next two subsections we prove Proposition 4.3 and Lemma 4.2.

4.1. Proof of Proposition 4.3. We introduce the following D[0, 1]-valued processes on
(�, F , P):

W
(M)
n (Z)(t) := 1

n1/α

(1/α) log(n)∑
k=(1/2α) log(n)+1

S[nt](Zk(·)− Zk(· + dk)),

W
(M)
n (Y )(t) := 1

n1/α

(1/α) log(n)∑
k=(1/2α) log(n)+1

S[nt](Yk(·)− Yk(· + dk)),
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W
(M)
n (X)(t) := 1

n1/α

(1/α) log(n)∑
k=(1/2α) log(n)+1

S[nt](Xk(·)−Xk(· + dk)).

The following is the analogue of Lemma 3.4 for the current case.

LEMMA 4.4. The random variables W(M)
n (h) and W

(M)
n (Z) are equally distributed.

The proof of Lemma 4.4 is similar to the proof of Lemma 3.4, with obvious
modifications. We leave it to the reader. Proposition 4.3 follows from Lemma 4.4 and
the following result.

LEMMA 4.5. The following two properties are satisfied.
(a) The sequence of random variables ‖W(M)

n (X)− (W
(M)
n (Z))‖∞ converges to 0 in

measure.
(b) The sequence ofD[0, 1] valued random variables W(M)

n (X) converges in distribution
to an SαS(α

√
2 ln(2)) Lévy motion.

Consequently, W(M)
n (Z) converges in distribution to an SαS(α

√
2 ln(2)) Lévy motion.

Proof of Lemma 4.5(b). For all 0 ≤ t ≤ 1,

W
(M)
n (X)(t) = n−1/αS[nt]

(
Vn

)
,

where for j ∈ N,

Vn(j) :=
(1/α) log(n)∑

k=(1/2α) log(n)+1

(Xk(j)−Xk
(
j + dk

)
).

We claim that for all but finitely many n, Vn(1), Vn(2), . . . , Vn(n) are i.i.d. SαS(An)
random variables with limn→∞(An)α = ln(2).

For all n ≥ 24α , if k ≥ (1/2α) log(n), we have dk ≥ n. For all such n, the independence
of Vn(1), . . . , Vn(n) follows from the independence of {Xk(j) : k ∈ N, 1 ≤ j ≤ 2 · dk}.
We will now calculate its distributions.

For all 1 ≤ j ≤ n and k > (1/2α) log(n), Xk(j)−Xk
(
j + dk

)
is a difference of two

independent Sα(k−1/α , 1, 0) random variables. By [11, Properties 1.2.1 and 1.2.3], it is
SαS((2/k)1/α) distributed. As Vn(j) is a sum of independent SαS random variables, we
see that Vn(j) is SαS(An) distributed with

(An)
α :=

(1/α) log(n)∑
k=(1/2α) log(n)

2
k

= 2 ln(2)(1 + o(1)) as n → ∞.

This concludes the claim on Vn(1), . . . , Vn(n). The conclusion of the statement from here
is similar to the end of the proof of Lemma 4.5(b).

Proof of Lemma 4.5(a). We assume n > 24α so that for all k > (1/2α) log(n), dk > n.
Firstly, since for all k ∈ N and j ≤ 2dk ,

0 < Yk(j)− Zk(j) ≤ 4−k ,
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we have

n1/α‖W(M)
n (Y )− (W(M)

n (Z))‖∞ ≤
(1/α) log(n)∑

k=(1/2α) log(n)+1

Sn(Yk(·)− Zk(·))

+
(1/α) log(n)∑

k=(1/2α) log(n)+1

Sn(Yk(· + dk)− Zk(· + dk))

≤ 2n
(1/α) log(n)∑

k=(1/2α) log(n)+1

4−k � n1−1/α .

Consequently,

‖W(M)
n (Y )− W

(M)
n (Z)‖∞ � n1−2/α −−−→

n→∞ 0. (3)

We now look at W(M)
n (X)− W

(M)
n (Y ). For all 0 ≤ t ≤ 1,

W
(M)
n (X)(t)− W

(M)
n (Y )(t) = IIn(t)+ IIIn(t),

where

Ṽk(m) := Xk(m)1[Xk(m)>4k] −Xk
(
m+ dk

)
1

[Xk
(
m+dk

)
>4k]

,

V̂ (m) :=
(1/α) log(n)∑

k=(1/2α) log(n)+1

(Xk(m)1[Xk(m)≤2k] −Xk
(
m+ dk

)
1

[Xk
(
m+dk

)
≤2k]

),

and

IIn(t) := n−1/αS[nt](V̂ ),

IIIn(t) := n−1/α
(1/α) log(n)∑

k=(1/2α) log(n)+1

S[nt](Ṽk).

Similarly to the proof of Lemma 3.1,

P(there exists t : IIIn(t) �= 0) ≤
(1/α) log(n)∑

k=(1/2α) log(n)+1

n∑
j=1

P(Ṽk(j) �= 0)

≤
(1/α) log(n)∑

k=(1/2α) log(n)+1

n∑
j=1

(P(Xk(m) > 4k)

+ P(Xk
(
m+ dk

)
> 4k))

� 2Cn
(1/α) log(n)∑

k=(1/2α) log(n)+1

4−kα

k
� 1

log(n)
.
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Now V̂ (j), 1 ≤ j ≤ n, are zero-mean, independent random variables. By Proposition A.4,
they also have second moment and for all 1 ≤ j ≤ n,

E(V̂ (j)2) � 2
(1/α) log(n)∑

k=(1/2α) log(n)+1

E(Xk(j)
21[Xk(j)≤2k])

�
(1/α) log(n)∑

k=(1/2α) log(n)+1

2(2−α)k

k
� n2/α−1

log(n)
. (4)

It follows from Kolmogorov’s maximal inequality that for every ε > 0,

P(max
0≤t≤1

∣∣IIn(t)∣∣ > ε) = P( max
1≤m≤n

|Sm(V̂ )| > εn1/α)

≤ ε−2αn−2/α
E(|Sn(V̂ )|2)

= ε−2αn−2/α(nE(V̂ (1)2)) � 1
ε2α log(n)

.

Here the first equality of the last line is true as V̂ (1), . . . , V̂ (n) are independent, zero-mean
random variables with finite variance. This concludes the proof that

‖IIn‖∞ −−−→
n→∞ 0 in probability.

The claim now follows from (3) and the convergence in probability of IIn, IIIn to the zero
function.

4.2. Proof of Lemma 4.2. We first write

W
S
n(h) = W

(VS)
n (h)+ W

(LS)
n (h)

where

W
(VS)
n (h) =

√
log(n)∑
k=1

Wn(hk),

W
(LS)
n (h) =

(1/2α) log(n)∑
k=√

log(n)+1

Wn(hk).

The reason for this further decomposition is that dk > n if and only if k >
√

log(n) so
that only in the very small (VS) terms do we no longer have full independence in the
summands. The proof that W(LS)

n (h) tends to the zero function is quite similar to the proof
of the last part in Lemma 4.5(a) while the proof of the other term makes use of the fact
that we are dealing with coboundaries.

LEMMA 4.6. The random variable ‖W(LS)
n (h)‖∞ converges in measure to 0.
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Proof. Write

ψn :=
(1/2α) log(n)∑
k=√

log(n)+1

(fk − fk ◦ T dk ).

We have that:
• ψn ◦ T j , 1 ≤ j ≤ n, are independent (since dk > n for all k in the range of

summation), bounded and
∫
ψn dm = 0;

• for all t, W(LS)
n (h)(t) = n−1/αS[nt](ψn).

By Kolmogorov’s maximal inequality, for all ε > 0,

m(‖W(LS)
n (h)‖∞ > ε) = m( max

1≤k≤n
|Sk(ψn)| > εn1/α)

≤ ‖Sn(ψn)‖2
2

ε2n2/α = ε−2n1−2/α‖ψn‖2
2,

where the last equality follows from Sn(ψn) being a sum of zero mean, square integrable,
independent random variables. We will now give an upper bound for ‖ψn‖2

2. Firstly,
{fk − fk ◦ T dk : k >

√
log(n)} is distributed as {Zk(1)− Zk(dk + 1) : k >

√
log(n)}.

Using in addition that for all k ∈ N,

Zk(1) ≤ Yk(1) ≤ |Xk(1)|1[Xk(1)≤4k],

we observe that

‖ψn‖2
2 = E

(( (1/2α) log(n)∑
k=√

log(n)+1

(Zk(1)− Zk(1 + dk))

)2)

=
(1/2α) log(n)∑
k=√

log(n)+1

E((Zk(1)− Zk(1 + dk))
2)

≤ 4
(1/2α) log(n)∑
k=√

log(n)+1

E((Zk(1))2)

≤ 4
(1/2α) log(n)∑
k=√

log(n)+1

E(|Xk(1)|21[Xk(1)≤4k]) (by Proposition A.4)

� 4
(1/2α) log(n)∑
k=√

log(n)+1

C
4(2−α)k

k
� n2/α−1

log(n)
.

Plugging this into the previous upper bound, we see that for all ε > 0,

m(‖W(LS)
n (h)‖∞ > ε) � ε−2n1−2/α‖ψn‖2

2 � ε−2

log(n)
−−−→
n→∞ 0,

proving the claim.
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We now treat W(VS)
n (h). As before, we define

ϕn :=
√

log(n)∑
k=1

(fk − fk ◦ T dk ),

so that for all t ∈ [0, 1], W
(VS)
n (h) = S[nt]

(
ϕn

)
. It is no longer guaranteed that

ϕn, . . . , ϕn ◦ T n are independent. For this reason we can no longer bound the maximum
using the Lévy inequality and we will make use of a more general maximal inequality.
The first step involves bounding the square moments of random variables and we make
repetitive use of the following most crude bound.

CLAIM 4.7. Let U1, U2, . . . , UN be square integrable random variables. Then

E((

N∑
j=1

Uj)
2) ≤ N

N∑
j=1

E(
(
Uj

)2
).

LEMMA 4.8. There exists a global constant C > 0 such that for all 1 ≤ l < j ≤ n and
1 ≤ k ≤ √

log(n),

‖Sj (fk − fk ◦ T dk )− Sl(fk − fk ◦ T dk )‖2
2 ≤ C(j − l)

4(2−α)k

k
.

Proof. Let μk := ∫
fk dm and write Fk := fk − μk . For every j ≤ n,

Sj (fk − fk ◦ T dk ) = Sj (Fk − Fk ◦ T dk )
= Smin(j ,dk)(Fk)− Smin(j ,dk)

(
Fk

) ◦ T max(j ,dk).

Consequently, for every 1 ≤ l < j ≤ n,

Sj (fk − fk ◦ T dk )− Sl(fk − fk ◦ T dk ) = A+ B,

where

A :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑j−1
r=l Fk ◦ T r , l < j < dk ,∑dk−1
r=l Fk ◦ T r , l < dk ≤ j ,

0, otherwise.

and

B :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− ∑dk+j−1
r=dk+l Fk ◦ T r , l < j ≤ dk ,∑j−1

r=dk Fk ◦ T r − ∑dk+j−1
r=dk+l Fk ◦ T r , l < dk < j ≤ l + dk ,∑j−1

r=l Fk ◦ T r − ∑dk+j−1
r=dk+l Fk ◦ T r , j − l ≤ dk ≤ l < j ,∑j+dk−1

r=max(j ,dk)
Fk ◦ T r − ∑l+dk−1

r=l Fk ◦ T r , j − l > dk .
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We will next show that there exists a constant C such that

‖A‖2
2, ‖B‖2

2 ≤ 4C(j − l)
4(2−α)k

k
. (5)

The statement follows from this and Claim 4.7.
Recall that for all 0 ≤ L ≤ dk and M ∈ N,

SL(Fk) ◦ T M =
M+L−1∑
r=M

Fk ◦ T r

is a sum of i.i.d. zero-mean square integrable random variables. We deduce that so long as
L ≤ dk ,

‖SL(Fk) ◦ T M‖2
2 = L‖Fk‖2

2.

A similar argument as in the proof of Lemma 4.6 shows that there exists c > 0 so that

‖Fk‖2
2 ∝ ‖fk‖2 ≤ c

4(2−α)k

k
.

We conclude that there exists c2 > 0 such that for all L ≤ dk and M ∈ N,

‖SL(Fk) ◦ T M‖2
2 ≤ c2L

4(2−α)k

k
. (6)

Noting that in the definition of A all terms on the right are of the form SL(Fk) ◦ T M with
L ≤ dk , we observe that

‖A‖2
2 ≤ c2

4(2−α)k

k

⎧⎪⎪⎨
⎪⎪⎩
j − l. l < j ≤ dk ,

dk − j , l ≤ dk < j ,

0, otherwise,

and thus

‖A‖2
2 ≤ c2(j − l)

4(2−α)k

k
.

Now by Claim 4.7,

‖B‖2
2 ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖Sj−l(Fk) ◦ T dk‖2
2, l < j ≤ dk ,

2(‖Sj−dk (Fk) ◦ T dk‖2
2 + ‖Sj−l(Fk) ◦ T l+dk‖2

2), l ≤ dk < j ≤ l + dk ,

2(‖Sj−l(Fk) ◦ T l‖2
2 + ‖Sj−l(Fk) ◦ T dk+l‖2

2), j − l ≤ dk ≤ l < j ,

2(‖Smin(l,dk)(Fk) ◦ T max(l,dk)‖2
2 + ‖Sdk (Fk) ◦ T l‖2

2), j − l > dk .

A similar argument to that for ‖A‖2
2 shows that

‖B‖2
2 ≤ c2

4(2−α)k

k

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(j − l), l < j ≤ dk ,

2((j − dk)+ (j − l)), l ≤ dk < j ≤ l + dk ,

4(j − l) j − l ≤ dk ≤ l < j ,

2(min(l, dk)+ dk), j − l > dk ,
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and

‖B‖2
2 ≤ 4c2(j − l)

4(2−α)k

k
.

This concludes the proof.

COROLLARY 4.9. For every κ > 0, there exists C > 0 such that for all 1 ≤ l < j ≤ n,

‖Sj (ϕn)− Sl(ϕn)‖2
2 ≤ C(j − l)nκ .

Proof. By Claim 4.7,

‖Sj
(
ϕn

) − Sl
(
ϕn

)‖2
2 ≤ √

log(n)

√
log(n)∑
k=1

‖Sj (fk − fk ◦ T dk )− Sl(fk − fk ◦ T dk )‖2
2.

Plugging in the bound of Lemma 4.8 on the right-hand side we see that there exists C > 0
such that

‖Sj
(
ϕn

) − Sl
(
ϕn

)‖2
2 ≤ C(j − l)

√
log(n)

√
log(n)∑
k=1

4(2−α)k

k
.

Since √
log(n)∑
k=1

4(2−α)k

k
� 42

√
log(n)√

log(n)
� nκ√

log(n)
,

the claim follows.

LEMMA 4.10. The random variable ‖W(VS)
n (h)‖∞ converges in measure to 0.

Proof. Let ε > 0. We have

m(‖W(VS)
n (h)‖∞ > ε) = m

(
max

1≤j≤n
|Sj

(
ϕn

)| > εn1/α
)

.

Fix κ > 0 small enough so that κ + 1 < (2/α). By Corollary 4.9 and Markov’s inequality,
for all 1 ≤ l < j ≤ n,

m(|Sj
(
ϕn

) − Sl
(
ϕn

)| > εn1/α) ≤ Cε−2(j − l)nκ−2/α .

By [2, Theorem 10.2] with β = 1
2 and ul := √

Cnκ/2−1/α ,

m( max
1≤j≤n

|Sj
(
ϕn

)| > εn1/α) ≤ Cε−2n1+κ−2/α −−−→
n→∞ 0.

Proof of Lemma 4.2. The conclusion follows from Lemmas 4.6 and 4.10 and the triangle
inequality.

5. Skewed CLT for α ∈ (1, 2)
Assume α ∈ (1, 2) and (fk)∞k=1 are the functions from Corollary 2.3 where Xk(j) are
Sα(

α
√

1/l, 1, 0) random variables and Zk(j) is the corresponding discretization of the
truncation Yk(j). Recall that Dk := 4αk ,
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ϕk := 1
Dk

Dk−1∑
j=0

fk ◦ T j ,

hk := fk − ϕk and h = ∑∞
k=1 hk . The function h is well defined by Lemma 2.7.

We aim to show that

Sn(h)+ Bn

n1/α ⇒d Sα(ln(2), 1, 0),

where

Bn := n

(1/α) log(n)∑
k=(1/2α) log(n)

E(Xk(1)1[Xk(1)≤2k]).

5.1. Proof of Theorem 2.8. The strategy of the proof starts with the decomposition,

Sn(h)+ Bn = S(S)n (h)+ S(M)
n (f )+ S(L)n (f )− Vn(ϕ) (7)

where

S(S)n (h) :=
(1/2α) log(n)∑

k=1

Sn(hk),

S(M)
n (f ) := Bn +

(1/α) log(n)∑
k=(1/2α) log(n)+1

Sn(fk −
∫
fk dm),

S(L)n (f ) :=
∞∑

k=(1/α) log(n)+1

Sn(fk −
∫
fk dm),

Vn(ϕ) :=
∞∑

k=(1/2α) log(n)+1

Sn(ϕk −
∫
ϕk dm).

Note that in deriving (7) we used that for all k ∈ N,
∫
fk dm = ∫

ϕkdm and that both∑N
k=1 fk and

∑N
k=1 ϕk converge in L1(m) as N → ∞.

The proof of Theorem 2.8 is by showing that when normalized, three of the four
terms converge to 0 in probability and the remaining one converges in distribution to an
Sα(ln(2), 0, 0) random variable.

LEMMA 5.1. We have

lim
n→∞ m(S(L)n (f ) �= 0) = 0.

The proof of Lemma 5.1 is similar to the proof of Lemma 3.1 and is thus omitted.

LEMMA 5.2. The sequence of random variables n−1/αVn(ϕ) converges to 0 in probability.

The proof of Lemma 5.2 begins with the following easy calculation.
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Fact 5.3. If n ≤ Dk then

Sn(ϕk) =
n−2∑
j=0

j + 1
Dk

fk ◦ T j + n

Dk

Dk−1∑
j=n−1

fk ◦ T j +
n−1∑
j=1

n− j

Dk
fk ◦ T Dk+j−1. (8)

If Dk ≤ n then

Sn(ϕk) =
Dk−2∑
j=0

j + 1
Dk

fk ◦ T j +
n−1∑

j=Dk−1

fk ◦ T j +
Dk−1∑
j=1

Dk − j

Dk
fk ◦ T n+j−1. (9)

Since fk and Zk(1) are equally distributed and Zk(1) ≤ Yk(1), the next claim follows
easily from Proposition A.4.

Claim 5.4. For every k ∈ N,

Var(fk) ≤ E(Yk(1)2) ≤ C
4(2−α)k

k
.

Using (8) and this claim we obtain the following lemma.

LEMMA 5.5. We have Var(Vn(ϕ)) � (n2/α/log(n)).

Proof. For all k ≥ (1/2α) log(n), Dk ≥ n and (up to finitely many n) Dk ≤ 4k
2
. Since

{fk ◦ T j : 0 ≤ j < 2 · 4k
2} is equally distributed as {Zk(j) : j ≤ 1 ≤ j ≤ 2 · 4k

2}, we
deduce from (8) and the fact that the fk are the functions from Corollary 2.3 that:
(a) for all k ≥ (1/2α) log(n), Sn(ϕk) is a sum of independent random variables;
(b) Sn(ϕk), k ≥ (1/2α) log(n) are independent.

By item (a),

Var(Sn(ϕk)) = Var(fk)
( n−2∑
j=0

(j + 1)2

D2
k

+ n2

D2
k

(Dk − n+ 1)+
n−1∑
j=1

(n− j)2

D2
k

)

≤ 3n2

Dk
Var(fk), as Dk ≥ n

≤ 3Cn2 · 4(2−2α)k

k
.

Here the last inequality follows from Claim 5.4 and 4(2−α)k/Dk = 4(2−2α)k .
Finally, by item (b),

Var(Vn(ϕ)) =
∞∑

k=(1/2α) log(n)+1

Var(Sn(ϕk))

≤ 3Cn2
∞∑

k=(1/2α) log(n)+1

4(2−2α)k

k
� n2/α

log(n)
.

Applying Markov’s inequality we obtain the following corollary.
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COROLLARY 5.6. The sequence of random variables Vn(ϕ)/n1/α −−−→
n→∞ 0 in probability.

We now show that n−1/αS
(S)
n (h) tends to 0 in probability. The first step is the following

simple claim. Recall the notation Fk = fk − ∫
fk dm.

CLAIM 5.7. For every k ≤ (1/2α) log(n),

Sn(hk) =
Dk−2∑
j=0

(
Dk − j − 1

Dk

)
Fk ◦ T j − Un

( Dk−2∑
j=0

(
Dk − j − 1

Dk

)
Fk ◦ T j

)
.

Proof. As Dk ≤ n and hk = fk − ϕk , it follows from (9) that

Sn(hk) =
Dk−2∑
j=0

(
Dk − j − 1

Dk

)
fk ◦ T j − Un

( Dk−2∑
j=0

(
Dk − j − 1

Dk

)
fk ◦ T j

)

=
Dk−2∑
j=0

(
Dk − j − 1

Dk

)
Fk ◦ T j − Un

( Dk−2∑
j=0

(
Dk − j − 1

Dk

)
Fk ◦ T j

)
.

LEMMA 5.8. The sequence of random variables n−1/αS
(S)
n (h) converges to 0 in

probability.

Proof. By Claim 5.7,

S(S)n (h) = An − Un(An), (10)

where

An :=
(1/2α) log(n)∑

k=0

Dk−2∑
j=0

(
Dk − j − 1

Dk

)
Fk ◦ T j .

As An is a sum of independent random variables,

Var(An) =
(1/2α) log(n)∑

k=0

Dk−2∑
j=0

(
Dk − j − 1

Dk

)2

Var(Fk ◦ T j )

≤
(1/2α) log(n)∑

k=0

DkVar(Fk).

Noting that for all k ∈ N, Var(Fk) = Var(fk), we deduce from the last inequality and
Claim 5.4 that

Var(An) =
(1/2α) log(n)∑

k=0

DkVar(fk)

�
(1/2α) log(n)∑

k=0

42k

k
� n2/α

log(n)
.
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Next, as
∫
An dm = 0, it follows from Chebyshev’s inequality that for every ε > 0,

m(|n−1/αAn| > ε) ≤ Var(An)
n2/αε2 � 1

log(n)ε2 .

This shows that n−1/αAn tends to 0 in probability.
Since An and Un(An) are equally distributed, n−1/αUn(An) also tends to 0 in

probability. The claim now follows from the converging together lemma.

PROPOSITION 5.9. The sequence of random variables S(M)
n (f ) converges in distribution

to an Sα(σ , 1, 0) random variable with σα = ln 2.

We postpone the proof of this proposition to §5.2, but if we assume it here we can now
prove Theorem 2.8.

Proof of Theorem 2.8. We deduce from Lemmas 5.8, 5.1 and 5.2 that

S(S)n (h)+ Vn(ϕ)+ S(L)n (f ) −−−→
n→∞ 0 in probability.

The result now follows from (7), Corollary 5.6, Proposition 5.9 and the converging together
lemma.

5.2. Proof of Proposition 5.9. The proof of this proposition goes along similar lines to
the proof of Proposition 3.3, with some (rather) obvious modifications. We first define

S(M)
n (Z) :=

(1/α) log(n)∑
k=(1/2α) log(n)+1

Sn(Zk(·)),

S(M)
n (Y ) :=

(1/α) log(n)∑
k=(1/2α) log(n)+1

Sn(Yk(·)),

S(M)
n (X) :=

(1/α) log(n)∑
k=(1/2α) log(n)+1

Sn(Xk(·)).

The following result is the analogue of Lemma 3.4 for the current case.

LEMMA 5.10. The random variables S(M)
n (f ) and S(M)

n (Z)+ Bn are equally distributed.

The proof of Lemma 5.10 is similar to the proof of Lemma 3.4 with obvious
modifications. We leave it to the reader. Proposition 5.9 follows from Lemma 5.10 and
the following result.

LEMMA 5.11.
(a) The random variables 1/n1/α(S

(M)
n (X)− S

(M)
n (Z)− Bn) converge to 0 in measure.

(b) The random variables 1/n1/αS
(M)
n (X) converge in distribution to an Sα(α

√
ln(2), 1, 0)

random variable.
Consequently S(M)

n (Z)+ Bn converges in distribution to an SαS(α
√

ln(2)) random variable
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Proof of Lemma 5.11(b). For all n ∈ N, S(M)
n (X) is a sum of independent totally skewed

α-stable random variables. By [11, Property 1.2.1], n−1/αSn(X) is Sα(�n, 1, 0) distributed
with

(�n)
α := 1

n

(1/α) log(n)∑
k=(1/2α) log(n)+1

n

k
∼ ln(2) as n → ∞.

The result follows from the fact that if Bn is Sα(�n, 1, 0) distributed and �n → α
√

ln(2)
then Bn converges to an Sα(α

√
ln(2), 1, 0) random variable.

Proof of Lemma 5.11(a). We assume n is large enough so that if k > (1/2α) log(n) then
n < 4k

2
.

Firstly, since for all k ∈ N and j ≤ dk ,

0 < Yk(j)− Zk(j) ≤ 4−k ,

we have

|S(M)
n (Y )− S(M)

n (Z)| ≤
(1/α) log(n)∑

k=(1/2α) log(n)+1

Sn(Yk(·)− Zk(·))

≤
(1/α) log(n)∑

k=(1/2α) log(n)+1

4−kn � n1−1/α .

Consequently,

1
n1/α |S(M)

n (Y )− S(M)
n (Z)| � n1−2/α −−−→

n→∞ 0. (11)

We now look at S(M)
n (X)− S

(M)
n (Y )− Bn. For all n,

S(M)
n (X)− W

(M)
n (Y )− Bn = IIn + IIIn,

where

Ṽk(m) := Xk(m)1[Xk(m)>4k],

V̂n(m) :=
(1/α) log(n)∑

k=(1/2α) log(n)+1

(Xk(m)1[Xk(m)≤2k] − E(Xk(m)1[Xk(m)≤2k])),

and

IIn := n−1/αSn(V̂n)

IIIn := n−1/α
(1/α) log(n)∑

k=(1/2α) log(n)+1

Sn(Ṽk).

https://doi.org/10.1017/etds.2025.17 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.17


28 Z. Kosloff and D. Volný

Similarly to the proof of Lemma 3.1,

P(IIIn �= 0) ≤
(1/α) log(n)∑

k=(1/2α) log(n)+1

n∑
j=1

P(Ṽk(j) �= 0)

≤
(1/α) log(n)∑

k=(1/2α) log(n)+1

n∑
j=1

P(Xk(m) > 4k)

� 2Cn
(1/α) log(n)∑

k=(1/2α) log(n)+1

4−kα

k
� 1

log(n)
.

Now V̂ (m), 1 ≤ m ≤ n, are zero-mean, independent random variables. By Proposition A.4,
they also have second moment and for all 1 ≤ j ≤ n,

E(V̂n(j)
2) � 2

(1/α) log(n)∑
k=(1/2α) log(n)+1

E(Xk(m)
21[Xk(m)≤2k])

�
(1/α) log(n)∑

k=(1/2α) log(n)+1

2(2−α)k

k
� n2/α−1

log(n)
. (12)

It follows from Markov’s inequality that for every ε > 0,

P(
∣∣IIn∣∣ > ε) ≤ ε−2n−2/α

E(|Sn(V̂n)|2)
= ε−2n−2/α(nE(V̂n(1)2)) �

1
ε2 log(n)

.

This concludes the proof that IIn −−−→
n→∞ 0 in probability.

The claim now follows from (11) and the convergence in probability of IIn + IIIn
to 0.

5.3. Deducing Theorem 2.10 from Theorem 2.8. This is similar to the strategy and steps
which were carried out in §3.2.

Recall the notation ϕ̂k := (1/Dk)
∑Dk−1
j=0 gk ◦ T j and ĥk := gk − ϕ̂k . Since for all

k ∈ N, ϕk and ϕ̂k are equally distributed, by mimicking the proof of Lemma 5.2 and
Corollary 5.6 we obtain the following result.

LEMMA 5.12. The random variables n−1/αVn(ϕ̂) converge to 0 in probability.

Next we have the following analogue of Lemma 3.6.

LEMMA 5.13.
(a) The random variables 1/n1/α(S

(S)
n (h), S(S)n

(
ĥ
)
) converge in probability to (0, 0).

(b) The random variables 1/n1/α(S
(M)
n (f )+ Bn, S(M)

n (g)+ Bn) converge in distribu-
tion to (W , W ′) where W , W ′ are independent Sα(α

√
ln(2), 1, 0) random variables.

(c) The random variables 1/n1/α(S
(L)
n (f ), S(L)n (g)) converge in probability to (0, 0).
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Proof. As for all k, hk and ĥk are equally distributed, by mimicking the proof of
Lemma 5.8 one proves that

1
n1/α S

(S)
n (ĥ) −−−→

n→∞ 0 in probability.

Part (a) follows from this and Lemma 5.8.
The deduction of part (c) from Lemma 5.1 and its proof is similar.
Part (b) follows from Proposition 5.9 as S(M)

n (f ) and S(M)
n (g) are independent and

equally distributed.

Now fix β ∈ [−1, 1] and recall that H = �β(h, ĥ) where �β is the linear function
defined for all x, y ∈ R by

�β(x, y) :=
(
β + 1

2

)1/α

x −
(

1 − β

2

)1/α

y.

Proof of Theorem 2.10. Writing

An := 1
n1/α (S

(S)
n (h)+ Vn(ϕ)+ S(L)n (f ), S(S)n

(
ĥ
) + Vn

(
ϕ̂
) + S(L)n (g)),

we have for all n ∈ N,

Sn(H) = �β
(
An

) +�β(n
−1/αS(M)

n (f ), n−1/αS(M)
n (g)). (13)

By Lemma 5.12 and parts (a) and (c) of Lemma 5.13, An → (0, 0) in probability. Since
�β is continuous with �β(0, 0) = 0, it follows that �β

(
An

)
converges to 0 in probability

as n → ∞.
By Lemma 5.13(b) and the continuous mapping theorem,

�β(n
−1/αS(M)

n (f ), n−1/αS(M)
n (g)) ⇒d �β(W , W ′),

where W , W ′ are independent Sα(α
√

ln(2), 1, 0) distributed random variables. By [11,
Property 1.2.13], �β(W , W ′) is Sα(α

√
ln(2), β, 0) distributed.

The conclusion now follows from (13) and the converging together lemma.

Acknowledgements. The research of Z.K. was partially supported by ISF grant no.
1180/22.

A. Appendix. Estimates on moments of truncated stable random variables
The following tail bound follows easily from [11, Property 1.2.15]

PROPOSITION A.1. There exists C > 0 such that if Y is Sα(σ , 1, 0) distributed with
0 < σ ≤ 1 and K > 1 then

P(Y > K) ≤ CσαK−α .

In a similar way to the appendix in [9],the tail bound implies the following two estimates
on moments of truncated Sα(σ , 1, 0) random variables.
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COROLLARY A.2. For every r > α, there exists C > 0 such that if Y is Sα(σ , 1, 0)
distributed with 0 < σ ≤ 1 and K > 1,

E(Y r1[0≤Y≤K]) ≤ CσαKr−α .

Proof. The bound follows from

E(Y r1[0≤Y≤K]) =
∫ ∞

0
P(Y r1[0≤Y≤K] > t) dt

=
∫ Kr

0
P(Y > t1/r ) dt

= r

∫ K

0
ur−1

P(Y > u) du

= r

∫ 1

0
ur−1

P(Y > u) du+ r

∫ K

1
ur−1

P(Y > u) du

≤ r + Cσαr

∫ K

1
ur−1−α du.

Here the last inequality follows from Proposition A.1.

COROLLARY A.3. For every r < α, there exists C > 0 such that if Y is Sα(σ , 1, 0)
distributed with 0 < σ ≤ 1 as K → ∞,

E(Y r1[Y≥K]) � CσαKr−α .

The proof of Corollary A.3 is similar to the proof of Corollary A.2. The following
proposition is important in the proofs of Theorems 2.6 and 2.10.

PROPOSITION A.4. For every K , σ > 0, if X is Sα(σ , 1, 0) distributed then X1X<K is
square integrable. Furthermore, there exists C > 0 such that for every Sα(σ , 1, 0) random
variable X with 0 < σ ≤ 1 and K > 1,

E((X1[X<K])
2) ≤ CσαK2−α .

Proof. Let Y be an Sα(1, 1, 0) random variable and note that σY and X are equally
distributed. By [15, Theorems 2.5.3 and 2.5.4] (see also equations (1.2.11) and (1.2.12)
in [11]), P(Y < −λ) decays faster than any polynomial as λ → ∞. This implies that
Y1Y<0 has moments of all orders and

E((X1[X<0])
2) = σ 2

E(Y 21[Y<0]) ≤ D,

where D = E(Y 21[Y<0]). Now by this and Corollary A.2, we have

E((X1[X<K])
2) ≤ 4(E((X1[0<X<K])

2)+ E((X1[X<0])
2))

≤ 4(CσαK2−α +D) ∼ 4CσαK2−α as K → ∞.

The claim follows from this upper bound.
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