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SOLUTIONS IN MORREY SPACES
OF SOME SEMILINEAR HEAT EQUATIONS
WITH TIME-DEPENDENT EXTERNAL FORCES

XIAOFANG ZHOUfT

Abstract. In this paper, we consider the Cauchy problem for some semilinear
heat equations with time-dependent external forces. Both the external force
and the initial data are assumed to be small in some Morrey spaces. We first
prove the unique existence of a small time-global solution. We next show the
stability of that solution by proving the time-global sovability of perturbation
problems.

§1. Introduction

In this paper, we are concerned with the existence, uniqueness and
stability of solutions of the semilinear heat equations in R"(n > 3) :

ov

(1.1) E(t,l‘) = Av(t,x) +v(t,z)” + f(t,z) in (0,00) x R",

(1.2) v(0,z) = a(x) on R",

where v > 3, v € Z.

There have been many researches on the Cauchy problem (1.1)—(1.2)
without external forces, i.e. f(t,x) =0. (see [3]-[6] and [14]) On the other
hand, many authors have also studied the Cauchy problem with measures as
initial data. Brezis and Friedman [2] proved that a time-local solution exists
with the Dirac measure §(z) as the initial value if and only if v < 1+ 2/n.
Baras and Pierre [1] studied various capacities of the initial Radon measures
for which the Cauchy problem is solvable. Niwa [12] obtained a sufficient
condition for the local well-posedness and the global well-posedness of the
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Cauchy problem with initial data in the spaces of measures of the Morrey-
type. Kozono and Yamazaki [8] obtained time-local and time-global solu-
tions when the initial data are in the Besov-type Morrey spaces. Wu [17]
concluded the well-posedness of the Cauchy problem with initial data in
the homogeneous Lebesgue spaces. Then Zhou [19] showed the stability of
small stationary solutions in Morrey spaces of the semilinear heat equations
with time-independent external force f(x).

Recently Yamazaki [18] considered the solutions in the Morrey spaces of
the Navier-Stokes equation with time-dependent external force. Inspired by
his research, we are interested in studying the Cauchy problem (1.1)—(1.2)
when the external force f(¢,z) depends on t and does not decay in general
as t — oo. In particular, we are interested in time-periodic solutions.

The main purpose of this paper is to give a sufficient condition on the
external force for the unique existence of small solutions of (1.1) in the
whole time which is bounded with values in some Morrey spaces. We also
show that this problem is well-posed by proving the continuous dependence
of the solution on the external force. As an immediate consequence of the
uniqueness, we can also prove that if the external force is time-periodic in
a function space, so is the solution. The second purpose is to show the
stability of small time-global solution in our functional setting.

This paper is organized as follows. In Section 2, we introduce our func-
tion spaces and state our main theorems. The existence and the uniqueness
of small solutions bounded in the whole space-time are proved in Section 3.
Finally, the stability of small time-global solutions is proved in Section 4.

§2. Main results

Before stating our main theorems, we will introduce the function
spaces of Besov-type based on the Morrey spaces defined by H. Kozono
and M. Yamazaki in [§].

DEFINITION 2.1. Let 1 < ¢ <p < 00, s € R. The Morrey space M,
on R" is defined to be the set of functions u(z) € L (R™) such that

1/q
ullm,, = sup supR™P/4 (/ |u(:z:)|qdac> < 0.
zo€R"R>0 |z—z0|<R

Furthermore, the Sobolev-type Morrey space M . is defined by

M;, = {u(x) € 8'/P |llu(@) g, = (D) 3ullag,,, < o0},
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where 8’ and P denote the set of tempered distributions on R™ and the set
of polynomials with n independent vaariables, respectively.

For detailed properties, see Peetre [14], Taylor [15], Kozono and
Yamazaki [8, 9], Zhou [19].

In order to define the spaces of Besov type based on the Morrey spaces,
we need to use the Littlewood-Paley decomposition functions. Let
{;(£)}52_ be asequence of C*°-functions on R satisfying 0 < ¢;(§) < 1,
supppo C {€ € R"1/2 < [¢] < 2}, p;(&) = @o(277€) for every integer j
and every ¢ € R", and the locally finite sum > 7% ©;(£) on R\ {0} is
identically equal to 1. Then we define our function spaces as follows

DEFINITION 2.2. Let 1 < g <p<o00,1 <r < ooands € R. The
space N, N;q ~(R™) is defined to be the set of equivalence classes of
distributions u € S§’/P such that

lullng,,. = {2 lle;(D)ullat, o Y52 —collir < oo,

where ¢;(D)u = Fp;(§)F[u](€)], and P denotes the set of polynomials
with n variables.

The following facts are proved in [8].

Facts. The spaces N;” , are Banach spaces independent of the
choice of the function ¢((£) modulo the equivalence, and enjoy the
following inclusion relations and the equivalences as Banach spaces.

1. The space N;’pr coincides with the standard homogeneous

Besov space B;r.
2. For every s1,52 € R such that s; # sy, every 1 < ¢ < p < o0,

every 1 < r < oo and every 6 € (0, 1), the space Nzo4 ") D419 coincides
with the real interpolation space (/\/lp o M) )
3. If1<q¢d <qg<pl<r<r <oo thenwehave/\/’;qr
N;fq T’szqr C Ns
s 4 o s 4
4. Ifs<o < t thenwehave/\/pwﬁ/\/pqr C NS w CNG AN e
5. We have/\/’s a CM CNS
6. All smgular 1ntegrals are bounded on M7 , for 1 < ¢ <p < oo
andon/\/';qrfor1§q§p<ooand1<r<oo
s—(1—
7. We have the imbedding N, C N, , 0% for 9 € (0,1) and
&g
N r C Boolf'

https://doi.org/10.1017/50027763000008825 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000008825

130 X. ZHOU

8. If s < 2, then we can choose a canonical representative from

so that we can regard A%, as a

every equivalence class in N? D

p7q7""7

subspace of §'.
9. Suppose that 1 < m < n, and put z = (z/,2"), where 2’ € R™
and 2" € R"™™. Then the function u(z’) € N, .(R™), regarded as a

function on R, belongs to the space N3, ‘ J(R7).

10. Let exp(tA) denote the heat kernel on R™. If 1 < ¢ <p <
0,1 <r <ooands € R, there exists a positive constant C' such that
the inequality
< Clful|n

4T T p,q,T

|| exp(tA)ul|n;

holds for every t > 0. Moreover, for every p, q,r as above and s < o,
there exists a positive constant C' such that the inequality

lexp(tA)ullng, , < Ct= [Jullx;

P,q,1 P,q,00
holds for every ¢t > 0.
Let pg = ”(”2_1), p, q,r satisfy
2
v v+l v—1 1 v
(Hy) max{ 5 po,l/}<p<p0, v<r<p, 4= —.
v p a Po

The condition (H;) implies that v < p < py < gq.
For small positive constants €, d, we define the sets

K={v(t,) € L*(R, My, 0 Myar)| [[o]|xc < oo}

and
_ 00 —2—¢ —24+0 —2— —240
L={f(t;") € LR NS NN NN s NN )
1flle < oo},
where

||vllc = sup max{{[|v(t, -)[| s, [0, )l |m, or
teR P

[1£1le =supmax{[I£(t, )l 226 £ lazee

p,T,00 p,T,00

1 M 2e S 1) 20 3
%7»00 %7,00
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We observe that the equation (1.1) formally follows from the integral
equation

t
@1 vt = [ et - DAY u(r) + Flr
In general, the equation (2.1) without the initial data does not imply
(1.1). However, we shall show that the small solution of (1.1) which
exists on the whole space-time is uniquely determined and enjoys (2.1).

Our main result on the unique existence of small solutions of (2.1)
bounded for the whole time is the following.

THEOREM 2.1. Suppose that p,q,r satisfy (Hi). For small positive
numbers €, 6, there exist positive numbers vy and kg such that the following
holds.

(1) If f(t,-) isin L with || f||z = v < Y0, there uniquely exists a solution
v(t,x) € K of (2.1) such that

(2.2) H’UH;C < Ko

and t — v(t,) is Hélder-continuous with values in My N M, ar.
TP

(2) Moreover, ift — f(t,-) is Holder-continuous with values in ijr%ooﬂ
Nq_i + then v(t,-) is a unique solution of (1.1) satisfying (2.2).
) P )

(3) The mapping T from B(0,v0) C L to B(0,kg) C K defined by
T(f(t,-)) =v(t,-) is continuous.

Remark 2.1. Suppose that f(¢,z) € L is periodic with respect to ¢t with
period T', and let v(t,z) be the corresponding solution. Then the function
vi(t,z) = v(t+T,x) is also the solution of (2.1) and enjoys ||vi||x = ||v]|x-
Hence, by the uniqueness of Theorem 2.1, we see that vi(t,x) = v(t,z),
which implies that the solution v(t,z) is also time-periodic with the same
period T as well.

Remark 2.2. Suppose that f(t,z) satisfies the estimate

A= ngpmaX{Hf(t,-)HNm;m, £ (t, ')HNB,@W} < oo,

Withsomea,ﬁand’ysuchthat1<’y§a<%SZ—ﬁn<ﬁ<n. Then we

can take some p and r enjoying the condition (H;) and £,6 > 0 such that
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f(t,z) € L and ||f||z < CA with some positive constant C' independent

of f(t,z). In fact, we can choose p € (f3,po) satisfying 1 + ﬂ < 2 and

%-1—2%<3+p%. Puttingazg—%—land5:3+pﬂo—%—2£° we see
by Fact 7 that

Sup max {Hf(t, -)HN;%;;, G, -)HNflf%& } <CA
with some positive constant C'. Since

2434, ——E—Q—se< 2—5,—1——+E),
b q b
it follows from Fact 4 that
supmaX{llf( Miy-ass »1£(t )] “25}@%
teR

P q
7 NP,

I
|
2|
|
m
M
>

with another positive constant C'. Fact 7 implies that N , p 4,24
+ « «

and N 71;20 TCN 2+io Therefore f(t,x) € £ with r = 12,

EXAMPLE 2.1. We give an example of time-periodic external force en-
joying the assumptions of Theorem 2.1. Let f(t,z) = co(—A ) (1+sin? ¢+
[z|)” "2, then f(t,z) € L®(R,N7} o ﬂ/\/ﬁﬂ ) for every «, 3 such that
1<« § ﬁ Hence f(t,x) enjoys the conditions of Remark 2.2 with some
v < a. It follows that we can take this function as the time-periodic exter-
nal force f(t,z) in Theorem 2.1 provided that the constant |cg| is sufficiently
small.

In order to state the main result on the stability of the time-global
solution of (1.1), we first introduce the following condition on p,q,r
and [, m, a.

—1)? 1 1
(Hy) max{ 1) po,u}<p<po,y<r§p,y_+_:1,
v2—v—1 q

p Po
v lr
(v —1)po <1 < vpy, 1<a<ﬂ —<m< —.
[ Q P

It is easy to see that p in the condition (Hy) also satisfies (Hj).
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Moreover, we define the set
Ky ={v(t,-) € L>([0,00), M, N Mg a)| [[v][xc, < o0}
equipped with the norm

[v]lic,. = sup max{|[v(t, )|ty |[0(E v, o }-
t>0 P

Let w(t,z) € K4 be a solution of (1.1) given in Theorem 2.1 with
some f(t,z), and let v(¢, x) be another solution of (1.1) with the initial
data a(z). Then the difference u(t,x) = v(t,x) — w(t, x) enjoys the
following equations:

ou

(2.3) E(t’ x) = Au(t,z) + 2 (Z)u(t, 2) Fw(t, z)F,

(2.4) u(0,x) = b(z),

where b(z) = a(z) — w(0,x).
For the uniqueness of solutions of the Cauchy problem (2.3)-(2.4),
we have the following result.

THEOREM 2.2. Suppose that p,q,r and l,m,« satisfy the condition
(Hg2). Then we can find positive numbers p and A(A < kg) such that the fol-
lowing holds. Suppose that w(t,x) € Ky is a solution of (1.1) satisfying the
estimate ||w||x,. < A and Hélder continuous as an My, N ./\/lq,q?r—valued
function with respect to t € [0,00). Let T denote either a positive con-
stant or oo and let b(x) be an element of S’. Then the solution of (2.3) on
(0,T7) x RY satisfying

(2.5) sup tﬁfﬁ\]u(t, MMorom <1 for every T' € (0,T),
0<t<T" '
(2.6) sup [lu(t,-)|| = n < oo forevery T' € (0,T),
o<t<T" l,m,opoo
(27) limsup 1206 21 u(t, )|ty < P
t——+0 ’
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and
(2.8) u(t,") = bin S ast — +0

is at most unique. Moreover, it 1s Holder continuous as an Mg gn,-valued
function with respect to t € (0,T') for every B such that 1 < 8 < «.

Remark 2.3. From the convexity inequality on LP(R"™), we see that the
time-global solution w(t,z) € K4 of (1.1) satisfies

n n n n
17 po T po
w(t,x) € Mp, N /\/lq% C /\/lpmp%r C MLL’“ CNomos-
P

The following theorem gives the existence of time-global solution
to the equation (2.3) and its asymptotic behavior. Together with The-
orem 2.2, it implies the stability of the small solution given by Theorem
2.1.

THEOREM 2.3. Let p,q,r,l,m,a and w(t,x) be the same as in Theo-
rem 2.2. Then there exist a positive number tog and a continuous, strictly
monotone-increasing function w(t) on [0, 9] with w(0) = 0 such that the
following holds :

-5
l,m,00

For every b(zx) € with ||b]| nom =1 <1, there exists a solu-

lym,oc0

tion u(t,z) of (2.3) satisfying the assumptions of Theorem 2.2 with T = oo.
Moreover, this solution satisfies the following conditions:

n

(2.9) u(t,-) — b weakly™ in B;@o as t — +0,
(2.10) jgg\!u(t, -)HNZ%% <w(1)
and

(2.11) sup 20291 |[u(t, )|
t>0

\Mmﬁm < o0 for every B such that 1 < 8 < a.

83. Unique existence of small solutions bounded for the whole
time

In this section we prove Theorem 2.1 by applying the functional
setting introduced in the previous section.
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For functions f(t,z),u(t,z) and v(t,z) on R; x R}, we define

Dfu,v](t, ) = / exp((t — )A){u(r, )"~ (r, ) }dr,

[=0,1,...,v.

For f € L, we define the sequences of functions {v;(¢,z)}>2

=0
{u;(t, ©) }52, mductlvely by

wlt,) = / exp((t — 7)A) (7, )dr,

00
t

viy1(t,-) = vo(t, ) + /_ exp((t — 7)A)v;(r,-)"dr

= vo(t, ) + ®u[v,v5](L,-), 5 =0,1,...,
Uj(t, ) = Uj+1(t, ) - Uj(t, '), j = 0, 1, cee

Then we have the following lemma.

LEMMA 3.1. For every s such that —e < s < 6(< ), there exists a
positive constant C such that

supmax{uvo< e oot iz, }SCHch-

teR 1

In particular, we have vy € K and there exists a positive constant Cy such
that [[vol[xc < Collfllc-

Proof. We use Fact 10 in the previous section to get

supmax{uvo< Y, o, >|wsqr}
teR
t
<up [ max{nexp«t—fmw, W, llexp((t—)A) £, .>\|N;’ﬂ,l}df

teRJ —
t—1 5 s t 35 s
< Csup (/ (t— 1) 122d¢+/ (t—T)H“dT) 1£]lz
teR —00 t—1
<Ol flle-
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In order to estimate the functions v;(¢, ) and u;(¢, z), we need the
following proposition.

PROPOSITION 3.1. Suppose that 2 (1 — %)
exists a positive constant C; such that the estimate

n_ n
<s< b b Then there

supma { [0 10, [0l | < Clull ol

holds for every u(t,z),v(t,z) € K, 1 =0,1,...,v.

Proof. Without loss of generality, let 1 <1 < v — 1. By definition we
observe that

||(I)l[uvv](t7 )||/\fg

7,1

< / [exp((t — ) A) {u(r, )"~ o(r, ) Hlne dr

p,r,1

P
p,T,0

t—1 b s . l
<c [ -n F Elutn ) s
t

_]—nn_s vl !
+C (t—1) 200 20 2||u(T, ) T (T, ) || —amnyndr,
t—1 Np,'r,oo

H@l[u,v](t, ')HNSﬂ
a1

< [ llesp((t = a)utr ) otr ) Hiag, dr

t—1 b s . l
<C [ -n Pl o a dr
t

Nof
—P0 2 v—l !
+C [ (t=7) « 2ul(r, )" v(r, ) || 2w dr.
t—1 N g
q,F,oo

Next, we apply the Holder inequality and embedding theorems on Morrey
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spaces to get (see Lemma 2.3, Lemma 2.4 of [19], together with Facts 5,7)

[[u(r, )" o, ')IHN_Q_ZQ < Cllu(r, )" o(r, )| xe

1=}

, L
‘v

-1 l
< Clu(r, )" M Lllv(ﬂ') Mg,
=a T

N [

< Cllu(r, ! o,
< Cllullloll

oot o vy <l 0t Y g
< Cllu(r, Y07 ) latig 1o
< Cllutr, ) o) Mnap [0l

< Cllu(r, iy, (s () g, e

< COllul [0,
IIU(T,-)"*ZU(T,-)lIIN_;ng < COllu(r, )" ~"o(7, -)ZIIN;TQ’;#%,
9 p o

lu(r, )" o(r, ) za < Cllulr, ) v )y,
Nq L;I o] U’W,oo
o

l
< Cfu(r, )HM qul 0(Ts ), ar
p
!
< Cllullg ol
Hence we get the following estimates:

||(1)l[u’ U] (ta )‘ |./\/’;,T!1

=1 _Po_s t ] yn_s ! !
sc{ [ a-n e [ - S Ll ol
t—1

— 00

< Cllullg" llollic,
@fu, o] (@, )l |ave |
p

t-1 _Po_s t _Po_ s —1 1
<C / t—7) v 2dT+/ (t—7) «2dr ¢ [Jullc vl
— 00 t—1

-l
< Cllulli ]l

which implies the proposition. 0
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COROLLARY 3.1.  There exist positive constants Co; such that
[1®ufu, o]l < Collulli o]li,
for every u(t,x),v(t,z) € K, 1 =0,1,...,v.
By virtue of Corollary 3.1 we can prove the next lemma.

LEMMA 3.2. We have vj,u; € K for every j = 0,1,..., and the esti-
mates

v—1

v —1 l

luolhe < Coullolls Tl < Y- () Coallus-all os-all
=0

hold for every j =1,2,....

Proof. We proceed by induction on j. Since ug=wv1;—v9=P,[vg,v0](t, "),
the statement for vy, ug follows immediately from Lemma 3.1 and Corollary
3.1. Assume that the assertion has been proved for j > 1. We see that

uj = vjt1 = vj = Pufvj, vj] — Pyfvj1, 0]
v—1
14
= Z (l>¢>l[uj_1, Uj—l]-
=0

Corollary 3.1 implies that u; € K and

v—1
v —1 l
luslle < 3= () Canllug-al- o
=0

Since vjy1 = v;j + u;, the fact vj;1 € K follows from the induction hypoth-
esis. [
We now begin the proof of Theorem 2.1 with vy = m, Ko = ﬁ,

where Cj is the constant in Lemma 3.1 and Cy = >/ (7)02712”.
Without loss of generality, let Cy, Cy > 1.
First we define

Aj=lvjllk, Bj=llulle, j=0,1,....

Then we have the following estimates.
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LEMMA 3.3. There exist positive constants Cy, Cy such that
Aji1 < Coy + CoA3
for every 5 =0,1,....
Proof. From Lemma 3.1 and Corollary 3.1, we have
vl = [lvo + @y [vj, vj]llx < [lvollx +[|Pu[v;, v5]llk
< Collfllz + Caullvjllic < Coy + Callvjlik.

which completes the proof. The constant Cy = ), Co,;2". b

Let v = m, Ko = 50-. From Lemma 3.3 we see that if v < 7o,

205
then we have

1-— \/1 — 40002")/

</ﬁ?0:w(’}/0)zi<1

A; < =
] — w(ﬁ” 202 202
for every 7 =1,2,..., by induction on j.
From Lemma 3.2 we obtain
v—1 U
B = llwlle = 3 (7 ) Carllscall- sl
=0
v—1 U
v—I[—1
<3 () Car Qo + lor-alhe) ™"~ sl

=0

v—1
1%
< (Z)Cz,zQW(’Y)”_lle

1
< Cob(7)Bj—1 < Coto(v0)Bj—1 = 5 Bi-1,

for every j = 1,2,..., which implies that } 7, B; < co. It follows
that Zf:o u;(t,-) converges in M, , N M, as k — oo for almost

p
every t € R, and that there exists a function v(¢,-) € K such that
vo(t, ) + 2720 u;(t,-) = v(t,-) for almost every ¢ > 0. Moreover, we
have the estimate

1—\/1—40002")/<H _¢( )_L
20, 0TI T o0y,

ol <
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Hence from the formula v;41(¢,-) = vo(t,-) + ®,[vj, v;](t, ) it follows
that v satisfies the integral equation (2.1). This completes the proof
of the existence and the required sharper estimate (2.2) in Theorem
2.1.

Next we will show the uniqueness of the solutions of (2.1). Let
u(t,z) be another solution of (2.1) such that ||u||x < ko. Putting
w(t,z) = u(t,z) — v(t,x), we have

v—1
(V)q)lw v|(t,-).
1=0

Corollary 3.1 implies that

v—1

v—1
v _ 1% _
lolle < 3 (7 ) Carltolic et < 3 () oz ul
=0 =0

1
< Caonolfwllic = 5w,

we have ||w||x = 0, which implies u = v. This proves the uniqueness
of the solutions of (2.1).

LEMMA 3.4. wv(t,x) is Hélder-continuous in t with values in M, , N
Mg ar.
P

Proof. For every s,t such that s <t < s+ 1, we have
o(t, ) —v(s,) =L +Ip + 13,

where

nv

First we consider [[v(t,-) — v(s,")|[m,,. Denote o1 = %

— 2 then we
P
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have 0 < 01 < 2 and

t
Lillae,, < c/ lexp((t — ) A) {u(r. ) Hlyo, dr

t
<C [ llew((t = DAY o) Yz, dr
s oD

<c / (t—7)"F ol ) iy, dr

v pu?

t
_a »
< [ (t= 0 F (el o o
s 'z

< Ot =)' 2 Ju(r )y,

21
qr SC(t—S)l 2,
P

t
LEIE / lexp(t = )A)F (7. ) yo.dr

t
< [t I llypagedr < Ol = )l

On the other hand, choosing o5 so that 0 < oy < min {6, % — pﬂo}, we apply
Lemma 3.1 and Proposition 3.1 to get

t
Tallu,, < [
S

t
_ 22
<C [ (=9 Fluls, s, dr

<C(t—9)7(Ifllc+lollE) <Ot —s)7.

% exp((r — 5)A)u(s, -)HMW dr

In view of the inequalities above, we conclude that

B o) = vl <C{E=0F =977}
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Next we consider ||v(t,-) — v(s, ')HMq g -

t
il o <€ [ llexpl(t = D) o(r ) e, dr
s P

t
<C [lles(t =AY s dr

NS

<c/t—T Tl M o dr
<Ot — )" o]l

Moreover, it is easy to obtain the following estimates in the same way
as in (3.1).

[
IEollat, g < Clt =931 le.

((r — s)A)v(s,-)H dr

[Mslla1, o <
g N

qr
4p

<0 [0 =0 F ot ar
q,ﬂ,l
<Ct—)Z(|fllc +vl) < Clt— )7

Hence we have

72 _ro
(32) o) = vl Ml < {E—9)F + -9}
TP
By (3.1) and (3.2), v(t,x) is Holder-continuous with values in M, N
M ar. a
p

ProOPOSITION 3.2. If f(t,-) is Holder-continuous with wvalues in
N2 ﬂ/\/q_é o then the solution v(t,z) € K of (2.1) also solves the equa-
L

p,r,00

tion (1.1).

Proof. Tt is enough to show the required Holder continuity of the func-
tion I'(¢,-) = v(¢,-)” + f(¢,-). Then we can complete the proof in the same
way as in Theorem 5.1 of [19].

By Lemma 3.4 there exists a positive number 6 such that

lo(t,-) = v(s, )y, < CE=5)", lo(t,-) = v(s,)llum, e <O(t—s),
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for every s,t such that s <t < s+ 1.

Therefore

lo(t,)” = (s, |2

v—1
v b
<03 ()t = oo ) uts s,
1=0 n+2p’ n+2p’ ™
v—1
v vl l
< O3 ()00t = olos ) ol oy
—0 n+2p’ n+2p
v—1
v Y1
< O3 ()t ol vt (8 ) =005, )00 v g
=0 v—1’"(v—1)p
v—1 v
[% v—1-1 l
<O (7)€ it:) ol M 1005 v,y
< C(t - 8)97

7
L

IN
Q

V> 1(o(t,) = v(s, )" v(s, ) o,y

n+2q° (nt2q)p >

o~

T
_ O

AN
I

[1(w(t, ) = (s, ) "0, ) 1M ng—ngr

n+2q° (n+2q)p

~
I
= O

AN
|

3
N

IN

Q
2 TR 2R
N——
=

(t.) = vls, w4

o~
I
o

X t, ) , v—1-I , ! ,
(006 = o) ol vt g
v—1
v "] v—1-1 l
< O3 (7)€ te) ot ! b 1005 v,y
<CO(t—s),
which complete the proof. 0

In order to prove the uniqueness of the solution of (1.1), we need
the following proposition.

PROPOSITION 3.3. Assume that the solution v(t,z) € K of (1.1) enjoys
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the estimate (2.2) and is Hélder-continuous in t with values in My, .N\M, ar .
TP
Then v(t,x) solves (2.1).

Proof. Put u(t,z) = vo(t,z) + ®,[v,v](t,x). Then Lemma 3.1 and
Corollary 3.1 implies that u(t,z) € K. Moreover, the Hélder continuity of
v(t,x) implies that of ®,[v,v|(t,z). Hence u(t,x) satisfies the differential

equation
0
8—1: = Au+” + f.
Denote w(t, x) = u(t,z) — v(t,x), then w(t,z) € K and
ow
T _ Aw.
at

Hence, for every s,t € R such that s < t, we have the estimate

t,- . < Ol|wlt,- < Cllwlt ) 55
ot I, g < Cllwtt Mo, | < Cllwte ) 3
< C(t—s)2 2 lus,)l|no,
<Ot —s)2 2||w(s,")||m,, -

Since ||w(s, -)||m,,,. is bounded from above, we see that the right-hand side
of the formula above tends to 0 as s — —oo for every fixed t € R. Hence
[lw(t, ')HMq + = 0 for every t € R, which yields w = 0. Hence v = u =

volt, ) + @ v, 0](t, z). Tt follows that v(t, z) solves (2.1). 0

Remark 3.1. Proposition 3.3 and the uniqueness of the solutions of
(2.1) imply the uniqueness of the solutions of (1.1).

Finally, it remains only to show the continuity of the mapping
T : f(t,x) — v(t, x) to prove Theorem 2.1. Suppose that v(¢, z) is the
unique solution of (2.1) with ||v||x < ko for f € L such that || f||z < 7o,
and that u(t, x) is the unique solution of (2.1) with ||u|[x < ko with
f(t,x) replaced by g(t,z) € £ such that ||g||z < 7o.

Since

u—v=1uy+ P, u,ul — (vo + ®,[v,])

= (ug — vo) + 1 (?)@l[u — 0,1,

=

o
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Lemma 3.1 and Corollary 3.1 imply that

l|uo — vol|lc < Collf = 9llez,

Vzl (j)q)l[u—v,v]

=0

v—1
< ()||¢>lu—vv||,c
1=0
v—1
V | 2
<3 () Coutlele + et ol — ol
1=0
v—1
I
< ( )0212 Ko” ||U—U||;C—§/£0V u — vk

=0

It follows that

2C)

ﬁ”f 9llc,

lu—olle < 5

which proves the continuity of the mapping T : f(¢,z) — v(t, x).
Thus we have completely proved Theorem 2.1.

84. Stability of time-global solutions

In this section we prove the stability of the time-global solutions of
(1.1) given in Theorem 2.1 by applying the successive approximation.
Since the solution w(t,z) depends on t, it is hard to apply the per-
turbation theory of semigroups as in [19]. But w(t, z) has both better
decay property and better smoothness than the general elements of

M, ror, so we can use the heat semigroup to control the perturba-
TP

tions.

In the sequel we always assume that p,q,r and [, m, « satisfy the
condition (Hy), and w(t, z) € K4 is a solution of (1.1) with ||w||x, <1
given in Theorem 2.1. Let T' be either a positive number or co. We
introduce the set

Sup t%_%”u(t’ )HMal,am < OO}
o<t<T

Tor = {u(t, x)
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equipped with the norm

ol = sup £ ot ) ot

The integral equation corresponding to (2.3)—(2.4) is as follows.

u(t, ) :exp(tA)b(x)+/0t exp((t —7)A VZI (Z) ) Fw(T, - )Edr.
We also define
W[u](t, ) = /0 ep((t— 1)A) S (Z) u(r, )R (r, .

Then we have the following proposition.

PROPOSITION 4.1.  For every o such that 7 — 27 <o < 7 — 2, there
exists a positive constant C' independent of w 6 /C+ and T 6 (0, 00] such
that the estimate

1@ [u] = ¥v]|lne, |
v—1v—k—1
<C Z Cogoi([ull g + [0l e)” N0l lllR,

/o (¢ =i e 55 G m T lu(r, ) — (7, ) s BT

v—1lv—k—1
k—
+CY N Copy(llullgar + 0llg ) F N0l Hewllf,
k=1 3=0
t n_nv—k) nk_o ERY
[ R D ) (g
S
v—1
+C > Coi(llull gar + lollgae)” M0l ,
7=0

t
/ (t - T)%_E_ETE_IHU(T? ) - U(T7 ')”Mal,amd,r
0

holds for all u,v € Jo1 and every t € (0,T), where s = max{0,t — 1},
v\ (v—Fk v
Cokj = (k)( j ) and Cyj = Cyo,5 = (j)
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Proof. By definition, we have
Ylul(r,-) = ¥o(7,-) =T + I + I,

where

<
|

—

<

-
—

Il
M

—1
Cons / exp((t—)A) (ulr, ) —v(r, )" F o, Y, ¥ dr,

k=1 3=0 0
v—1v—k-—1 t ' '
=3 3 Cuny [ expl((t=r)A)u(r ) =o(r ) (e ulr, )
k=1 j=0
vV— 1 t ) '
=Y Cuy [ (e = DA (u(r.) — o7 ) Folr.
j=0 0
and s = max{0,t — 1}, Cp; = (}) (”;k), Cpj= (g)
We first estimate I3. Since u,v € Jy 7, it follows that
Tl |
l/—l t
<Y Cug [ llexpl(t = AW (ulr. ) —o(r, )" ol ¥l
j=0
I/—l t
< CZCu,j/O (¢ =) B E S (u(r, ) = ol ) o, Pl e
=0 m,
<oy, /0 (t— 1) 55 ||(u(r, ) — (7, ) 0T, Y gy B
§=0
I/—l t )
<CYCoy [ (=B E un ) — oG, 00 e, 07
j=0
v—1
<Y Cuyllullger + ol 7 Il ,
7=0

t
|t R ) — ol g
0
Next we estimate Iy. Observing that w(t, ) € M, 2, we put

1 v—Fk k 17V—k+pkj
pp ol ¢ @ am  qr’
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then we have po <[ and

k=1 7=0
{(u(r,-) = v(r, )" o(r, Y w(r, ) Hine,, dr
v—1v—k—1 t n nw—k) nk o
S Cl/k,]/ (t_T)Ql 2al 2qg 2
k=1 3=0 s
1(u(r,-) = o(r, ) o(r, Ywlr, |y ae-n awdr
‘A/l,lm,oo ol !
v—1v—k—1 t n n—k) ko
S Cl/k,]/ (t_T)Ql 2al 2qg 2
k=1 3=0 $
ur, ) = v(r, ) Fo(r, Yulr, Pl dr
v lv bl t n_n=k) nk_o
< ka,j/ (t_T)zz 2al 2q 2
k=1 j=0 $
—k—j j k
() = o7 I 10T Mt 10T R, o A7
’p
v—1v—k-—1 '
=< Cokj([[ull gz + 0l 7)™ 0l w0l
k=1 3=0
t n (v=Ek) nk o A
(t— )3 mm s G m T () — (7, ) M

k
where 5 — =5~ — 5/ — % > -1, (55 — 50)(v — k) > —1, for each

We finally estimate I;. If ¢ < 1, then we have I} = 0. Suppose that
t>1. Put

Pl al P q1 am r’
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then we have p; <[ and

IMllag,,
v—1v—k—1 s
< Cuts [ llexp((t=7)A)
k=1 j=0 0
{(U(Tv ) - /U(T’ ‘))Vﬁkijv(Tv ')jw(T’ ')k}HN’fm’ldT
v—1v—k-1 s n -k nk_o
< Cu,k,j/ (t _ 7—) 21 2al 2p 2
k=1 j= 0

7=0
(U(Ta ) - U(Tv '))V_k_jv(’]—? ')jw(Tv )kH n_n(v—k) n_de
P

v—1v—k—1 s n nv=k) nk o
< Cu,k,j/ (t—7)2 zr
k=1 j=0 0
1(u(r, ) = v(r, )" o, Yw(r, g, dr
v—1v—k—1 s n nw—k) nk o
5 by [
k=1 j=0 0
—k—7j j k
[lu(T, ) = o7, ), 2 o ), o 10T, dT
v—1v—k-—1
—k—1—j j k
<Y Corg(lullgyr + 10l ! ol ,lwllx,
k=1 j=0

5 n_n=k) nk_o (n __n\y_ L
|- nE R A ) (e, |ty
0
This completes the proof. 0

PROPOSITION 4.2. For every o such that 7 — %7 <o < 7 — 2, there

exists a positive constant C' independent of w € K4 and T € (0,00] such
that the estimate

sup ¢34 30 || Wlu] — Wlollwg,,

o<t<T
v—1 v—k-1
—k—1—j j k
<Cllu—vllze Y. S Congllullg o +lollg, )"l ol
k=0 j5=0

holds for every u,v € Jo 1.
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Proof. 1t is enough to estimate the integrals in Proposition 4.1. Denote

s no_ n oy, _j_

i [ (6 E R I () — o)Lt
0
t n

b= [ (= D E TSR D ) ol )0
St B

= [ = E R () = ol g

where k =1,2,...,v — 1 and s = max{0,¢ — 1}.

For13,51ncea<——ﬂl,wehave—1<%—;—O'jl—%<0and—1<
2 — W 0. It follows that

2al 2p

n n 1 ny nv
(41) 1y < ¢33 ||u—v|rJaT/0 (1 - 0)8~ #5933 gp

<pllX_™®™_ 9., ™ ™. 4 tzz‘#_iHu_vHJ
- " 2al  2pg ot

We next estimate I} . (k = 1,2,...,v — 1). If t < 1, then we have
I) , = 0. Suppose that ¢ > 1. Then we have

n_ nv—=k) nk o n—k) n(v-k)

t—1
(4.2) ll,kSHU—U|Ja,T/ (t—7)2 2l =27 2l 20 (r,
0

If1<t§2,wehavet—1§%and

=1 n_nw—k) nk_g nl=k) n—Fk)
(43) / (t — 7—) 21 2al 2p 27T 2al 2pg d7-
0

% n_n—k) nk_o nw=k)_ nr=k)
< (t—7)2" 220 "2 27 2 %0 dr.
0

=1 n_nw—k) _nk_o nw=h) _nv—k)
(44) (t—T)Ql 2al 2p 2 2al 2pg dT
0

% n_nw—k) nk_ o n—k)_ n(v—k)

_/ (t_T)Z_l_ 2ol 2p 27 2dl 20 dr
0

n_ nv—k) nk o n—k) n(v-k)

t—1
_|_/ (t_T)z_z_ 20l 2p 24 2al  2pg (.
1
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Furthermore, observing that ¢ > 1 and p < pg, we have

: n n(—k) nk_o n—k)_n(w—k)

(4.5) /Q(t—f)a—z—Tz—%—ET %o dr
0

n_n g p(n_n) 2 n_nv—k) nk_o n—k) n—k)
< Ot 2o 2 2pg  2p (1_9)21 2al 2p 26 2ol 2p0 (6
0

n a

< mE

If t > 2, we can estimate

-1 n nv—k) nk o nw—k) n—k)
(46) / (t — 7-)2_1_ 2al 2p 27 2al 200 dr
t

2

n(v—k) n(w—k) % n_nv—k) nk_o
< Ot 2o 2p( 21 2al 2p 20
1

n_n g p(n_n e n n(v—k) nk o
2073 2 3 2 n o_ _nk _ o
Ctn ZO g 4 k( ZO :)7 o 2al 2p 2 +1>0,
n_n g pn _n . n(v—k) k_ o
21 2 2 2 2 n _ _nk _ O —
<{Ct PO ro 27 Int, if g 2ol 5 — 2 +1=0,
) 1o 2ad 2 2 :

Observe that ¢ > 1 and p < pg, so we have

n(v—k) _n(v—k) no__n_ n__n _o
t 2al 0 < g2l 20 < ¢2 220 2, k=1,2,...,v— 1

Hence (4.6) implies that

t=1 n_nw—k) nk_o nlv=k) n—k) n__n _o
(4.7) (t—7)2 2l "2 27 2ad 200 dr < Ct2 200 2,

t

2

It follows from (4.2), (4.3), (4.4), (4.5) and (4.7) that

n

(4.8) e <O R lu—vl| g, k=1,2,.. 01,

n_ nv=k) nk o n—k) nw-k)

t
(4.9) IIQ,IC S Hu—’U|‘7a’T/ (t—T)Q_l_Tal_%_ET 2al 2pg dT.
S
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The assumptions o < 7 — 2% and p > V(;:Vl)jl po imply that
n nv—=~k nk o nv—k n(v—k
IRl ) )————<0, L ) _nl )<0,
21 2al 2g 2 2al 2po
fork=1,2,...,v—1.
If 0 <t <2, we have
t n_ -k nk_o nv—k)_n—k)
(4.10) / (t—7)2" "2l 20 2p 2al 0 dr
S
t n_nv=k)_nk_o n—k) n(v—k)
< / (t — 7') 21 2al 29 27T 2al 2pQ dT
0
< Otz "7y~ 2 TF(3p5 7 2g) < Ct2 303

t n_nw=k) _ nk_o nw—k) n—k
(4.11) (t—7)2" 2l "2 27 2al 0 dr
S

n(v—k) nw—k) t n_nv—k) nk_o
<(t—1) 2o 2po (t—7)2  2al 2¢ 2Tt

n(v—k) nw—k)
t 2al 2po n_ n
S C (5) S Ct2al 2pg

It follows from (4.9), (4.10) and (4.11) that

o

(4.12) b SO B0 2 lu—l|g k=12, 0L
Summing up (4.1), (4.8) and (4.12) we obtain the conclusion. U

COROLLARY 4.1. Ifv € Jo 1, then we have U] € Jor. Furthermore,
there exists a positive constant C, 3 independent of w € Ky and T € (0, oo
such that the estimate

W [u] = O[]ll7, 7 < Cas(lwllic, + lullzez + [[0ll7.2)llw =l 7,

holds for every u,v € Ja1 satisfying ||ull7, » < 1,||v||7, » < 1.
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. o n ..
Proof. Putting o = 7 — 27 in Proposition 4.2, we have

Wlu] = o]l Mo am
< O ¥fu] = lo]|] pro

al,am,1

< Cllfu] ~ Wlelll Ly
l,m,1

<
|

N " 1 v—k—-1
< Ct2al " 2 Copi(llull oz + 0l 70 7) ¥
0 7=0

‘ k
x|l 7, llwllic, v = vllg, -

b
Il

< Cast> 2 ([[wllx, + lullg, » + [[0ll7, 2)llv = vl g, 7
This implies the conclusion. 0

COROLLARY 4.2. For every B such that 1 < 8 < «, there exists a
positive constant Cy g independent of w € Ky and T' € (0, 00] such that the
estimate

sup 200 27| W[o][|mg 5 < Capllwllicy + 0l 0l 7,
o<t<T

holds for every v € Juo 1 with |[v||7,, < 1. In particular, we have W[v] €
Is,1-

Proof. This is proved in the same way as in Corollary 4.1. U

COROLLARY 4.3. Suppose that v € ja T satisfying ||v]| 7, . < 1. Then
we have Uvl(t,-) — 0 weakly* in Boooo as t — +0.

Proof. Let a(z) be a function in B9 11 and let € be a positive number.
Then there exists a function p(z) € S such that supp F [©](€) is a com-

pact subset of R™ away from the origin and that ||ja — || . At < e. From
1 1

Proposition 4.2 with v = 0 and o0 = 7 — p—o, it follows that

(4.13) (a, o] (t,) — (p, Plel(t, )]
< lla = oll e 191Gl

< Cel[¥[ol(t, )H -z < Clv)e.
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Moreover, in view of Proposition 4.2 with v« = 0 and ¢ = o¢ €
n nv n n
(T_J7T_p_o ,Wehave

o WD < el oot 1N -

< n . o
< Cllgllyenr 1900l

n n ol

< C(’U)tﬂ 2p( 70.
This, together with (4.13), implies that

limsup |(a, Y[v](¢, )] < C(v)e.
t—+0

Since € > 0 is arbitrary, we obtain the conclusion. H
LEMMA 4.1.  For every b(z) € Boo'%, we have exp(tA)b — b weakly*
n B;@o as t — +0.

Proof. For every ¢ € Bﬁ_ol, the strong continuity of the semigroup
exp(tA) on the space BlpTOl implies

(4.14) (0, exp(tA)b = D) = [(exp(tA)p — ¢, b)|
< [[exp(tA)e — SOIIBﬁl

o0

[
B!
— 0 as t— +0.

This implies the conclusion. a

Now we prove the main results on the stability of time-global so-
lutions. First we have the following theorem.

THEOREM 4.1. Let 0 < T < oo and w € K4 be a solution of (1.1)
satisfying the estimate ||w|[x, < ﬁ Then for every b(z) € S', the
solution u(t,x) € Jo1 of the equation
(4.15) u(t,) = exp(tA)b + Ylul(t,-)
satisfying the conditions

1
4Ca,3

(4.16) lullz, » <1, limsup ||ullz, » <
T—+0

1S unique.
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Proof. Assume that ui(t,z),us(t,z) € Ja,r enjoy (4.15) and (4.16)
with w = u;,j = 1,2. Let ug = u; — up, we have ug = \Il[ul] — Ulug].
Form (4.16) we can take To > 0 such that [[u;]|7, -, < 40 ~ for j =1,2.
Corollary 4.1 implies that

[uol| 7o zy < Casllwllicy + llutllz, 2, + [lvallg. )| 1woll 7, 2, -

Moreover, it follows from the assumptions that

Caa(||wllicy, + lluill gy z, + llu2ll 7, z,) <1

We have [|uo||, 5, = 0, which implies that u1 = ug on (0,7p) x R.

% and the inclusion

Next, in view of Proposition 4.1 with ¢ =
relation ./\/ll ol N?

n
l

alam.1 C Mt am, we have

(417) ||U0(t, ')”Mal,am
v—1

t
<SS ck) / Fr(t — )20 205 g (7 ) |y
=1 0

ol

t
+C/ (t =) B B o (7, ) pts o,
0

where Fj,(0) = min{é?_%+k(2l“_%),9 p0+k(gi_2n)} (k=1,2,...,v—1).
If we take € > 0 so small that

v—1

l/ 20 _ 0 1
{Zc(k) a1~ k= 1>/ Fy,(0)df + CTyar 1/ 9 i?de}g§
k=1 0

)

holds, then
v—1 t

(4.18) S k) / Fio(t — 7)r'zar ) E ) g
k=1 s

l\DlH

t
+C/(t—7’ alTal ld

holds for every s,t such that Th < s <t<s+e<T.
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Now suppose that uo(t,z) = 0 on (0,s) x R?, for some s > Ty. Let
t € [s,s+¢). Then

|| ( HMal am

/ Fk t _ 7_ (2al QPO)(Vikil)HUO(Ty ')HMal,ade

??‘

+C/ (t=7) 7S e g (7, ) | Mg A7
S

< sup ||uo(7, )| Maram

s<Tt<s+e
<ZC /Fk t— 77z o) R g +C/ (t—7) atral~ dT)
1
S 5 sup ||U0(7—, ')”Mal,am'
s<T<s+e

Taking the supremum with respect to ¢t € [s, s + €), we obtain

sup ||UO(T’ ‘)HMal,am = 0’
s<T<s5+4¢

which together with the assumption yields that u;(t,z) = ua(t,z) on (0, s+
e) x R, Starting at t = Ty and repeating this process, we arrive at t = T
after finite steps, which implies that uq(t,x) = ua(t,z) on (0,7) x R}. []

PROPOSITION 4.3. Let u(t, ) € Ja,r be a solution of (4.15). Then
for every B such that 1 < 8 < a, u(t,-) € Jgr. Moreover, it is Hélder-
continuous in t € (0,T) with values in Mg g, .

n n n

Proof. Since b(z) € l,lm,gg C Nﬁl ,@mooo’ it follows that exp(tA)b €
Jpr for every B € (1,a). Moreover, we can prove that W[u](t,-) € Jsr in
the same way as in Corollary 4.2 without the restriction ||ul| 7, , < 1. Thus
we conclude that u(t,-) € Jg,r for every 8 € (1,a).

We next prove the Holder continuity. Suppose that 0 < s <t < s+ 1.

From the definition, we have

u(tv ) - u(57 ) =1 + I+ 13,
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where
I = (exp((t — s)A) = Du(s, ),
t v—1 »
I, —/ exp((t — 7)A Z( ) VW kw(r, YEdr,
s k=1
t
I — / exp((t — 1) A)u(r, )" dr.
S
Put o = 7 — 2. Since lmf‘l C Nﬁl,@n:lp we have u(t,-) € N,@l,@njl
for every t > 0. It follows that
(119) | Tllatyy, < s )| e
N’O
Bl,Bm,1
<C/ +am 2al||u( N n_ndr
Nisma

_n_

<O )(t—s)%*u

i

where C(s) is a constant depending on s > 0.

Next we consider Iy. Since the condition (Hs) implies that py < ¢
and é < %, we can obtain the following estimate in the same way as in
Proposition 4.1.

(4.20) | L2 [ Mgy 5,

v—1 t
<O [ llewp((t = A utr ()N, g

t nk
<02||u||9a ol | ¢y S g

v—1
< Cl(s) Z(t — 3) +2_al__+2,8l el
k=1
v—1 v
<C'(s) S (t — ) et tGam ) e
k=1

P0+L_n

< O'(s)(t—s)' 0 T

where C’(s) is another constant depending on s > 0.
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We finally estimate I3 in the same way as I5. We have

nv nv

t
(4.21)  |[Tsllpiy 0 < C||“V|”JQ,T/ (t— r) S+ B gy
S
< CO"(s)(t — s) 1= Gt ag—za1

where C”(s) is another constant depending on s > 0.
Thus the Holder continuity follows from (4.19), (4.20) and (4.21). [J

Proof of Theorem 2.2. Let p = ﬁ, u(t,z) be a solution of (2.3) on
(0, T) xR enjoying the assumptions of Theorem 2.2. For every d,tg € (0,7
such that 0 < to, multiply exp((to—t)A) to both sides of (2.3) and integrate
on [d,tg]. Then we have

(422)  ulto,") = exp((ty — )A)u(s, )
to v—1
ex _ w(t. - kaw Nk
4 /5 p((fo t)A)kZ:o ()" Fu(t, )t
= exp((tg — 0)A)u(d, ) + Vlul(to,-)
— exp((to — §)A)[u (5. ).

Let ¢(z) be an arbitrary function in S, then we have

(4.23) (¢, exp((to — 6)A)u(d, ) — exp(toA)b)]

< [(exp((to — 6)A)p — exp(toA)p, u(d,))]
+|(exp(tod)p, u(d,-) —b)|

< [lexp((to — 9)A)p — exp(toA)sOII a|u(d, )l -2

po
1 9 00,00

+|(exp(toA)g, u(d,-) —b)|.

In view of the condition (2.6) and the strong continuity of the semigroup

exp(tA) on Blp 9, together with the inclusion relation M L - C B8 oy We
see that the first term of the right-hand side of (4.23) tends to 0as d — +0.
On the other hand, the condition (2.8) implies that the second term of the
right-hand side of (4.23) tends to 0 as 6 — +0. It follows that the function
exp((to — 0)A)u(d, ) tends to exp(tgA)b in the weak-+ topology of S’ as
6 — +0. This fact and Corollary 4.3 implies that the right-hand side of
(4.22) tends to exp(tpA)b+ W[u](tp, ) in 8" as § — 40. This implies (4.15).

Now the conclusion immediately follows from Theorem 4.1 and Propo-
sition 4.3. [
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Now we prove Theorem 2.3. First we construct a solution of (4.15)
by successive approximation, then show that it is the desired solution
of (2.3).

Define the sequence of functions {u;(t, z)}32, inductively by
ot ) = exp(tA)b,
uj+1(t7 ) = Uo(t, ) + \I/[U]](t, ')’ Jj=0.

Then we have the following lemma.

LEMMA 4.2. There exists a positive constant Cn o such that

Huona,oo < Ca,OHbHN%f% .

lym,00
Proof. This is a direct consequence from the following estimate.

||U0(t, ‘)HMal,am S C|| exp(tA)bHNgl,am,l

< Cllexp(tA)bl] 3 -z
l

,m,1

< O3 %5 |[b]| 5_.
/\/ll Po

,1M,00

Corollary 4.1 immediately yields the following lemma.
LEMMA 4.3. For every j = 1,2,..., we have uj € Juo 00 and

[lur = wol|7u,0c < Caallwllic, +[[uoll7a,00 ) [10l] 74 00

(4.24)
(425) Hu]‘i‘l - ujHJoz,oo
< Cas(llwllic, +lujlla e + w1l ga el = w11l 70 oo -
COROLLARY 4.4. For every j =0,1,..., we have the inequalities
J
< uollge oo + D Mtksr — w7
k=0
j-1 2
< Jwol|Jaeo + Cas <||Uo||Ja,oo + ) kg — UkllJa,oo>
k=0

j-1
+Ca3||w]lic, <HUOHJQ,OQ + > llupsr — UkHJa,oo> -
k=0
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Proof. We proceed by induction on j. The assertion for j = 0 imme-
diately follows from Lemma 4.2 and (4.24). Assume that the conclusion
holds for j > 0. Then (4.25) implies that

[t +2]] T oo
< w1l ga e + wjre — wisa[l 7,
i
< uollga oo + D Mtksr = il g oo + Ntz — w11 70 o
k=0

2

j—1
< [uoll7a,00 + Ca3 <|IUOIIJa,N + ) [lupgr — Ukllja,oo>
k=0

j—1
+Casllwllx, (H’ILOHJQ,OO + ) lluggr — UkHJa,oo>
k=0

+Cas(llwllicy + llujillga o + 1] 7000 uj11 = )l 70 o
2

j—1
< [uol|7a,00 + Ca3 <|IUOIIJa,N + ) [lupgr — Ukllja,oo>
k=0

j—1
+Casllwllx, (H’ILOHJQ,OO + ) Mg — UkHJa,oo>
k=0

+Casl|ujr1 — ujl| 7, o

j—1

<||UJH/C+ + 2lto]| 7 o + 2> Ntk — |z oo + 1 — UjllJa,oo>
k=0

2

J
< [uoll 7a 00 + Ca3 (IIUoIIJa,N + 3 [fukgr — Ukllja,oo>
k=0

J
+Ca3l|wllxc, (\IUOHJQ,OO + > ks — UkHJa,oo> :
k=0

which implies the conclusion with j replace by j + 1. 0

Remark 4.1. If ||lw||xc, < ﬁ and [[bl] a_n < m, then

l,m,0c0
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(4.26) implies the estimate

J
k=0

1— \/1 — 16ca,oca,3\yby\ﬁm_§
| n_n | = "
[e% H HA/.l’lm,opoQ 40{173

for every j > 0, which implies that |[u;|[7, .. < 40 - <L

THEOREM 4.2. Suppose that w € K1 with ||wl||x, < ﬁ and b(z) €

ljn: g satisfying the estimate
1
4.28 b n_n < ———.
( ) I ||M,zm‘:;0 16C4,0Ca,3

Then there exists a solution u(t,x) € Jo 0o of the equation (4.15) satisfying
the estimate

1— \/1 —16Ca0Casllbll 35

lym,00
(429) [ullo < <wmr%>= o .

l,m,oc0

Moreover, the function u(t,-) enjoys (2.9), (2.10) with a suitable function
w(t), and (2.11).

Proof. Remark 4.1 imples that u;(t,-) converges in My am as j — 00
for almost every t > 0. Hence there exists a function u(t,z) € Jqa,00 such
that lim;_ou;(t,-) = u(t,z) for almost every ¢ > 0. Moreover, we have
(4.29). From this fact and the definition of u; we conclude that wu(t,x)
satisfies (4.15). This completes the proof of the existence.

The fact (2.9) follows directly from Lemma 4.1 and Corollary 4.3.

Next we prove (2.11). It is easy to obtain the following estimate in the
same way as in Lemma 4.2.

(4.30) Hmmmw|__<cow|%%>

lmoo m,o0
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(4.31) | exp(EA)b] My < Cll exp(EA)B] o,
< Cllexp(tA)d]| -z

lym,1
<Ot |b]| goa,

AR

for every (3 such that 1 < 3 < «. This implies that exp(tA)b € J3 oo-

The inequality (4.31) and Corollary 4.2 yields (2.11) for every g €
(1, ).

Finally, in view of the fact u € J,,7, we can apply Proposition 4.2 with

o= % — = to obtain
PO

>0 o

lym,00

(4.32) supl[ W[t )l g, < O (!\b\!N7n>

l,m,

with some constant C'. This fact and (4.30), together with the equality
(4.15), yield (2.10). 0

Proof of Theorem 2.3. In view of Theorem 4.2, the solution of (4.15)
constructed above satisfies the assumptions of Theorem 2.2 and (2.9), (2.10)
and (2.11). Moreover, the functions w(t,z) and u(t,z) are Holder continu-
ous with respect to ¢t € (0,00), with values in the spaces M, , N ./\/lq,% and

Mgy gm (for every 3 such that 1 < § < «) respectively. Now choose 3 such
that Z < % < m, then the function u(t, )" *w(t,-)* is Holder-continuous

: . .k ren
in ¢ > 0 with values in N3k, ., where

_ _n(k—l) B n(v — k)
Sk 9

Po pl
for every k =0,1,...,v— 1. Then we can prove that the solution u(t,z) of
(4.15) also solves (2.3) in the same way as in Proposition 3.2. [
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