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§1. Introduction

Let X = (X,,0<t< o) be a Lévy process on the Euclidean space R?,
that is, a process on R? with stationary independent increments which has
right continuous paths with left limits. We denote by P® the probability
measure such that P*(X, = x) = 1 and by E° the expectation relative to P~*.
The process is characterized by the exponent ¥ through

E%expiz, X,>) = exp(— t¥(2)).

The A-energy E%(yv) of a measure v on R? for X is defined by
By() = [Re(ld + ¥@1)|Fv(@)fdz,

where % denotes the Fourier tranform on R?. A nice explanation of the
reason why it is called the 1-energy is given in Rao [11]. Throughout
the paper Fv(z) is defined by Jexpi(z, x> v(dx) and we write Fu(z2) in
place of Fudx(z) if v(dx) = u(x)dx. So our 2-energy differs from Rao’s
by a constant multiple.

The space-time process Y = (Y,,0 < t < o) over X is a Lévy process
on R!' X R? defined on the probability space (R!' X 2, P"%), where 2 is the
path space of X and P"® = §,® P?, 5, being the Dirac measure at r ¢ R
The trajectory Y,(r, ») is (r + ¢, X,(»)) and the exponent of Y is ¥(2) — it.
So the 2-energy Ej(p) of a measure p on R' X R* for Y is

By(p) = [[Re(ld + V(@) — itl)| Fp(t, ) dt dz,

where % denotes the Fourier transform on R' X R¢.
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If we assume the existence of a transition probability density p(t, x)
of X relative to the Lebesgue measure dx, that is, P’(X, ¢ dx) = p(t, x)dx,

the Z-resolvent density U#x) of X is Jm exp(— A)p(t, x)dt and the 2-
0

resolvent density WA*(t, x) of Y relative to the Lebesgue measure dtdx on
R' x R? is

exp(— A) 1y, (Dp (@, x) .

In this paper we show

THEOREM. Let X be a Lévy process on R® with a transition probability
density, and Y be the space-time process over X. Let p be a bounded
measure on R' X R® of compact support.

(I) Assume that the 2-energy of p for Y is finite. Then we have
the following.

(i) The R*-marginal p, of p (i.e. p(B) = p(R' X B)) has finite 2-
energy for X.

(ii) If the R'-marginal p, of p (i.e. (B) = p(B X R%) is singular to
the Lebesgue measure on R, then the R*-marginal u, does not charge any
semipolar set.

(IT) Consider the case that p is of the direct product form n®v.

(1) If p has finite 2-energy for Y and v is carried by a semipolar set
for X, then 5 has a L’-density relative to the Lebesgue measure on R'.

(i1) If v is a bounded measure of compact support on R® with finite
A-energy for X and it does not charge any semipolar set for X, then we
can find a singular measure 5 of compact support so that p = 7p®v has
finite A-energy for Y.

Using Theorem, we can get a new characterization of semipolar sets,
which is announced for a more general class of Markov processes with
transition probability density [9].

CoroLLARY. Let X be a Lévuy process on R? which has a transition
probability density. Then a closed set B in R* is semipolar if and only if

P*(X,e B for some tc A) =0
for every xe R? and every set A C 10, o[ of Lebesgue measure 0.

Remark. The above Corollary does not hold if we do not assume
the existence of a transition probability density. Indeed, let X be the
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space-time Brownian motion on R' X R* and let B = {(t, x), x€ R*}. Then
PYX, e B) =1, but B is semipolar.

In §2 we shall prepare some notations and several lemmas. The
proof of Theorem and Corollary will be given in the subsequenct sections.

§ 2. Preliminaries

Throughout this section we assume that the Lévy process X has a
A-resolvent density U*x), that is,

f " exp(— ) PUX, e dx)dt = Ux)dx .
0

But we do not assume the existence of a transition probability density.
So all the results in this section hold for the space-time process Y over
X, if X has a transition probability density. We note that U* is always
chosen to be lower semicontinuous. See Hawkes [4]. The convolution

A8 2

operation is written as “x”’. The symbol “~" is used to denote the
reflection, that is, (dy) = pu(— dy), f(x) = f(— x). The symmetrized 2-
resolvent density is written as Uj:

Ui(x) = {UXx) + UH(— x)}/2
Then
F (U (2) = Re(2 + ¥ ()],

where ¥ is the exponent of X.
The celebrated theorem of Bochner plays an important role in the
proof of Theorem. So we repeat it here:

Let f be bounded in a neighborhood of the origin and belong to L.
If F(f) is nonnegative, then F(f) belong to L' and = F Y(F(f))
almost surely.

Applying this theorem to our case, we have

LemMA 2.1. The 2-energy Ei(yn) of @ measure p for X is finite if and
only if Uixpxj is bounded. If E%(y) is finite, then

Usxpx g = F '[Re([2 + ¥ F [
almost everywhere, and so

Ul x px i(0) < (22)"Ex() -
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The last inequality follows from the lower semicontinuity of U} * px* g
and the continuity of the right-hand side of the equality. Using this
lemma we can prove

CoroLLARY OF LEMMA 2.1. If E%(p) is finite, then E%(y) is monotone
decreasing as 2 increases. If u = p, + p,, where y,, i =1, 2, are measures.
then E%(p) > Ei(n,), i =1, 2.

The first assertion follows from the monotone decreasingness of
Uix pxfji(x) in 2 for every fixed x. The second statement follows from
the inequality U} x px* i(x) > U4 % p, % ji,(x) for every x.

Let CHK) be the 2-capacity of a Borel set K, that is, the total mass
of the uniquely determined measure = on the closure of K such that
U? % z(x) = E*(exp(— AT%)), where Ty = inf(t > 0, X, e K). The following
lemma is proved essentially by Kanda [5] and Hawkes [4] without explicit
mentioning. The explicit statement (proved from a very different point
of view) is given by Rao.

LEMMA 2.2 Rao ([11]). Let K be a compact set and v be a bounded
measure on K. Then

E3(v) > 2a)* [v(K)[/2CHK) .

We say that a Borel set B is thin if E*(exp(— 1T5)) < 1 for every
xe Ré. The set B is semipolar if B is a countable union of thin sets.
The set B is called polar if E*(exp(— 1T3)) = 0 for every x. Then we can
give a characterization of polar sets using 2-energy.

LEmmA 2.3 (Kanda [6], Hawkes [4] and Rao [11]). A Borel set B is
non-polar if and only if there exists a bounded measure whose support is
in B with finite 2-energy for X.

The next lemmas show some peculiarity for sets which are non-polar
but semipolar.

Lemma 2.4 (Kanda [6], Rao [11]). Let K be a compact set such that
Kc{x; E*(exp(— 1T%)) < 6} for some 6 <1. Then CXK)1 C as 21 oo for
some finite constant C.

LemMmA 2.5 (Kanda [8], Fitzsimmons [3]). Let K be a closed set such that
K C {x; E*(exp(— 1T%)) < 4, E*(exp(— ZTK)) < 8} for some §<1. Then a
subset B of K is polar if and only if z(B) = 0, where n is the 2-capacitary
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measure of K for X, that is, the uniquely determined measure on K such
that U*x z(x) = E*(exp(— AT%)).

In the above we used the dual process of X with the symbol “A”
attached. But recently Fitzsimmons noted that K C{x; E(exp(— 1T%)) < §}
is sufficient for the statement [3].

The following lemma gives a relation between a measure which does
not charge semipolar sets and its energy.

LEmMA 2.6 (Rao [12], Kanda [7]). If v is a bounded measure which
charges no semipolar sets and Ei(v) < oo, then E%(v) | 0 as 11 oo.

Finally we give a lemma which is essential in the proof of (II) of
Theorem.

LeMma 2.7 (Zabezyk [14]). Let U be a real function on R? of class L.
Then there exists a singular measure 7 (relative to the Lebesgue measure)
such that Uxy equals a continuous function on R® except on a set of
Lebesgue measure 0.

§3. Proof of Theorem (I)

In the subsequent sections, the process X is a Lévy process on R?
with the exponent ¥ which has a transition probability density. Hence
the space-time process Y over X is a Lévy process on R' X R® with the
A-resolvent density Wi(t, x) as is explained in §1. We denote by # the
Fourier transform on R! X R*. We add the suffixes x and ¢ for the Fourier
transforms on the variable x of R* and on the variable ¢ of R!, respectively.
Thus

F(Us*xvx0)(2) = Re([2 + T(] | F v,
F(Wixux ), 2) = Re([2 + U(z) — it] )| F u(t, s)F .

In what follows, we assume for simplicity that
1 is a probability measure on R' X R*.
Then p is disintegrated as
p(dsdx) = p,(dx)p(ds, x) ,

where p,(dx)(= p(R' X dx), the Ré-marginal of p) and w(ds, x) are pro-
bability measures on R? and R!, respectively.
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Proof of i) of the part (I). Set

ft, ) = F.(eu(o, )@ .

Then F(u)(t, 2) = F.(f¢, x)u.(dx))(z). By the assumption, the Ai-energy
of p4 for Y is finite. So IRe([Z-{— U(2) — it] HF (W, 2)|fdz < o for
almost all ¢. Since E4(f(t, x)p(dx)) = JRe([Z + TR HF (i, 2)dz it
follows from the estimate Re([1 + ¥'(z) — it]"!) > CRe([2 + ¥(2)]"!) for
every z, where C is a positive constant (independent of z but dependent
on ?), that E4(f(t, x) u.(dx)) < oo for almost all ¢ But

| F(ft, D @) @F = Gi(t, 2) + Galt, 2),
where Gi(t, 2) = |, (Re f(t, 9 m(dD)@)F + |Z.(m f(t, ) u(dx) (@)} and

Go(t, 2) = 2 J cos(z, x5 Tm f(t, ) 1 (dx) f sin{z, x)Re f(¢, %) 1 (dx)
— 2 f cos(z, xyRe f(t, x) p,(dx) ‘[ sindz, x)Im f(t, x) p(dx) .

Since Re([4 4+ ¥(2)]") = Re([A + ¥(— 2)]™), Gi(t, 2) = G(t, — 2) and G,(¢, 2)
= — Gy(¢, — 2), we have

Jl I>R Re([l + w(z)]—l)Gx(t, Z)dz
-] R+ V@G 2) + Git, Adz < EX(f(t, 1) m(da)) < oo

for every R. Thus E%Ref(t, x)pu(dx)) < oo. Now note that, by compact-
ness of the support of the measure g, there exist constants ¢ >0 and
e > 0 such that Ref(¢, x) > ¢ for every [t| < e and every x. Hence, using
Corollary of Lemma 2.1, we see E%(y;) < oo. The proof of i) is finished.

Proof of ii) of the part (I). Assume that the R'-marginal g, of g is
singular to the Lebesgue measure (we choose a set E of Lebesgue measure
0 such that y(R' — E) = 0). Suppose that R?-marginal u, of p charges
a semipolar set. Then there exist a constant §, 0 < 4§ <1, and a compact
set B such that B C {x; E*(exp(— AT5) <4, E*(exp(exp(— Ty < 6} and
t(B) > 0. Note that B is non-polar for X. Indeed, for the restriction
tels of p, to the set B, E4(u,|s) < oo by E¥(y) < oo and by Corollary of
Lemma 2.1. So B must be non-polar by Lemma 2.3. Let 7, be the 1-
capacitary measure of the set B for X. Then dt®=, is the A-capacitary
measure of the set R! X B for the space-time process Y over X. Indeed,
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[[ e = 5,5 — wydtzn(ay) = [ vy = Daay
— E=(exp(— 1T))
= Ec'x(eXp(— XTRIXB)) s

where Thip = 1inf(t >0, Y, e R* X B). Clearly (dt®unz)(E X B) =0. So,
applying Lemma 2.5 for Y, the set E X B must be polar for Y. But, dis-
integrating u as u (ds)p,(s, dx),

pEXB = ([ (@)l d
B «[J.Rle 11(ds) (s, dx) = p(R' X B) = 1,(B) > 0.

Since the 2-energy of p for Y is finite by the assumption, the set £ X B
must be non-polar for Y by Lemma 2.3. Thus the R‘-marginal p, does
not charge a semipolar set. The proof of ii) is finished.

§4. Proof of Theorem (II)

We use the same symbols as in §3. In the case of g = 7®uv, p(df)
= p(dt) = p,(dt, x), 1.(dx) = v(dx) = p,(¢, dx) and so

By = [ Re(@ + ¥(@) — il ) F mOFIF (2 dtdz.

Proof of i) of the part (II). First note that E4() < oo follows from
Ei(y) < oo by i) of (I). If v charges a semipolar set, then charges a
compact set K such that K C {x; E“(exp(— 1T%)) < 6} for some § < 1. Let
vx be the restriction of vy to the set K. Then Ei(vy) < E%(v) < oo by
Corollary of Lemma 2.1, and therefore K must be non-polar for X by
Lemma 2.3. So CXK) 1 C as 21 oo for some positive finite constant C by
Lemma 2.4. Then it follows from Lemma 2.2 that

lim E4(v) > lim E4(ve) > 2r)*w(K)*/2C .
A1 oo

At
Thus we have
liminf | Re([2 4+ ¥(2) — it] )| Fv(2)|'dz > Cr)*W(K)*/2C
2t oo

for every fixed t. Hence

lim B () = [ |7 ()Fdt(2)*»(KY/2C .
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So &7 belongs to L*(R'), which implies that 5 is absolutely continuous
and that the density belongs to L*(R!). The proof of i) of the part (II)
is finished.

Proof of ii) of the part (II). Let v be a bounded measure with finite
i-energy for X. Assume that the measure v does not charge any semipolar
set. Then, by Lemma 2.6,

(4.1) Ei(»)|0 as 211 oo,
Set

&t %) = f Wilt, y — x)v % 5(dy) .
Then

r gt x)dt = Ul xvx* (%) .

Since Ui xvx ¥ is bounded by Lemma 2.1, g,(¢,0) is L' in t. So it follows
from Lemma 2.7 that there exists a bounded singular measure 5 on R!
(we may suppose its support is compact) such that g,(-, 0) %, » equals a
continuous function on R!, a.e., and therefore g(-,0)x%., » is locally
bounded because of its lower semicontinuity. Hence g,(-, 0) %, 5 %, 7 is
locally bounded in f. Clearly it belongs to L!(R'). Further, for every ¢,

F &+, @) = [F AW+, ) (D) % v *q, 71(0)

by Fubuni’s theorem. (In the above we denote by %, and %, the con-
volution operation in ¢ and x respectively.) On the other hand, since

FWH(E, 2) = F[F (Wi, 0)O](2) = Re(2 + ¥(2) — it] ),
we have, for each fixed ¢,
F A F (Wi, ) (@) #oy v %) 91(2) = Re([2 + ¥ (2) — it] )| F w2} =2 0.
Hence it follows from Bochner’s theorem that, for each fixed ¢,

(4'2) (.?4( Wfs‘(, : ))(t) * (VY *(x)’j)(x)

= F 7 Re(2 + ¥(-) — it] ) F (- )F1(%)
for almost all x. In general the equality does not hold for all x. In the
following we shall show the equality holds for x = 0 (hence it holds

everywhere) by the use of (4.1). Since F,(g(-,0)(t) = (F(Wi(-, - )(®)
K Ve 9)(0), we must show
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(4.3) F &+, ) () = (2n)~¢ J Re([2 + ¥(2) — it] )| F v(2)dz .
Define
Vi(x) = Iexp(itu) Wiu, H)du/2, Vix) = j exp(itu) WH(— u, — x)du/2 .
Then it is easily proved that
Via) - Vi@ = 20 — 2) [ Vi) Vite — 9)dy .

The same equality is also valid for Vf. Setting H¥t, 2)=(Vi+ f’é) * v % D)(2),
we have

HAG, 2) — H¥(t, 2) = 2(0 — 2) j Vi(x + z)[ Vi(y — 2)v* fz(dy)]dx
o — ) f Vigx + z)U Vily — x)v* ﬁ(dy)]dx.

Since f Viy — x)v* d(dy) and jf/é’(y — x)v * b(dy) are bounded measurable,
each term of the right side is a continuous function of z, and so
H(t, z2)— H*(t, z) is continuous. Since H(f, 2) =(F (Wi(-, x)) (D) % v %z ) (2),
it follows from (4.2) that

(F (Wi, 0) () %y v %y D) (2) — (FAWE(-, ) (D) %y v %,y D)(2)
= F;Re( + U(-) — it] HF 2()1(2)
— FRe(V + () — it] )F ()12

for every z. In particular, putting z = 0 and letting 2’ } oo, we have
F (&(-,0)(®) = (2n)~* I Re[( + ¥(2) — it] )| F v(2)['dz
— lim (2r)~¢ { Re([Z + ¥(2) — it]™)|F v(2)[dz.
2 te

But it follows from (4.1) that the last term in the above equality is zero.
Thus the equality (4.3) is proved. Finally we shall prove that the 21-
energy of p = 7®v for Y is finite. Since

9:(49(', 0) Xy N *y 77)(7:) = F(g(-,0) (t)l-g‘utﬂ(t)lz
= (20" j Re([2 + ¥(2) — it] )| F ,v(2)fdz| F 5y (OF > 0

by (4.3), Bochner’s theorem ensures that
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jRe([z + U(2) — il )| F 0 (@) Fd2| F g ()

belongs to L'(R') as a function of #, which implies E{(y®v) < co. The
proof of ii) of the part (II) is now finished.

§ 5. Proof of Corollary

First we shall prove the “only if” part. Assume that the set B is
semipolar for X. If B is polar, the assertion is trivial. So we assume
that B is non-polar. If there exists a set A in ]0, o[ of Lebesgue measure
zero such that P*(X, ¢ B for some t ¢ A) > 0 for some x. Then the product
set A X B in R' X R? is non-polar for the space-time process Y over X.
So there exists a bounded measure p whose support is compact and in
A X B with finite 2-energy for Y by Lemma 2.3. Then the R'-marginal
w of p is carried by A and the R%marginal p, of px is carried by B.
This contradicts the statement ii) of the part (I) in Theorem.

Before proving the “if”’ part, we prepare

LemMma 5.1. Let B be a non-semipolar closed set. Then there exists
a non-trivial bounded measure v on B of compact support with finite
A-energy for X that charges no semipolar set. Indeed we can choose the
restriction of the regular part (explained below) of the A-capacitary measure
of B for X to some compact subset of B as the measure v.

Proof. We can decompose any bounded measure p as g =y + o, + 5
where p, is carried by a polar Borel set, p, is carried by a semipolar
Borel set but charges no polar set and p; charges no semipolar set. See
Blumenthal and Getoor [1], p. 283. We say that g, is the regular part of p.
We show that the regular part of the A-capacitary measure 7, of B
for X is non-trivial (i.e. (z3); = 0). Suppose, on the contrary, that the
regular part is trivial. Since 7, charges no polar set, we have then r,
= (nz),. Let E be a semipolar Borel subset of B for X such that 7,(B — E)
= 0. Then E is a countable union of thin sets for X by definition. Let
H be any compact subset of one of such thin sets satisfying zz(H) > 0.
Let ¢ and v be the restrictions of z; to B and B — H, respectively. Then
U%y is discontinuous at g-almost all points by Pop-Stojanovic [10]. But
E=(exp(— 2T,) = U*xny(x) = Ut p(x) + U xu(x), and so E*(exp(— 1T5))
is continuous at x if and only if both U’xx and U’xv are continuous
at x, because the both are lower-semicontinuous. Since E(exp(— 1T%))
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is continuous at every point of B7(={x; E“(exp(— 1T%)) = 1}), we see
p(B7) = 0. Therefore ny(B") = 0, because n(B"NH) = p(B") = 0 for every
H and so 0 = 7x(B"NE) = nx(B"N B) = n5(B"). For the last equality we
used the closedness of B. Setting D = B — B’, we have then z|, (=
the restriction of r; to D) < r,, where =, is the i-capacitary measure of
D for X, because

75(S) = 2 I E=(exp(— Z’f‘B), X}B e S)dx <2 I E=(exp(— ZTD), X@D e S)dx
= 7l'D(S)

for Sc D. So E*(exp(— AT5)) = U? % 15| ,(x) < U* % n,(x) = E*(exp(— 2T,)).
Since T, > T'; almost surely, we have P*(Ty = T,) = 1 for every x. But
the set D is semipolar so that almost surely X,e D for only countable
many values of ¢. See Blumenthal and Getoor [1], p. 80. Then it follows
from D= B — B" and T; = T, almost surely that X, e B for only coun-
tably many values of ¢ almost surely. Hence the set B must be semipolar.
See Sharpe [13], p. 281. This contradicts the assumption that B is non-
semipolar.

Now we prove the “if” part of Corollary. Assume that B is non-
semipolar for X. Then there exists a bounded measure v on B of com-
pact support with finite i-energy for X which charges no semipolar set.
For the measure y, by ii) of the part (I) in Theorem, we can find a
singular measure » on R' such that  ®v has finite 2-energy for Y. Then
the product set £ X B is non-polar for Y by Lemma 2.3, where E is a
set of Lebesgue measure zero such that p(R'— E) = 0. This implies
P*(X, e B for some te A) > 0 for some x and for some set A C]0, oo of
Lebesgue measure zero (which is indeed a translation of E). The proof
of Corollary is finished.

Remark. If the process X satisfies Hunt’s condition (H), that is, every
semipolar set for X is polar for X, then a set B is polar if and only if
P*(X,e B for some te A) =0 for every x and every set A C]0,oc0[ of
Lebesgue measure zero.
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