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Abstract

Background: Rapid molecular diagnostics, such as the BIOFIRE® Blood Culture Identification 2 (BCID2) panel, have improved the time to
pathogen identification in bloodstream infections. However, accurate interpretation and antimicrobial optimization require Infectious
Disease (ID) expertise, which may not always be readily available. GPT-powered chatbots could support antimicrobial stewardship programs
(ASPs) by assisting non-specialist providers in BCID2 result interpretation and treatment recommendations. This study evaluates the
performance of a GPT-4 chatbot compared to ASP prospective audit and feedback interventions.

Methods: This prospective observational study assessed 43 consecutive real-world cases of bacteremia at a 399-bed VA Medical Center from
January to May 2024. The GPT-chatbot utilized “chain-of-thought” prompting and external knowledge integration to generate
recommendations. Two independent ID physicians evaluated chatbot and ASP recommendations across four domains: BCID2 interpretation,
source control, antibiotic therapy, and additional diagnostic workup. The primary endpoint was the combined rate of harmful or inadequate
recommendations. Secondary endpoints assessed the rate of harmful or inadequate responses for each domain.

Results: The chatbot had a significantly higher rate of harmful or inadequate recommendations (13%) compared to ASP (4%, p = 0.047). The
most significant discrepancy was observed in the domain of antibiotic therapy, where harmful recommendations occurred in up to 10%
(p <0.05) of chatbot evaluations. The chatbot performed well in BCID2 interpretation (100% accuracy) but provided more inadequate
responses in source control consideration (10% vs. 2% for ASP, p = 0.022).

Conclusions: GPT-powered chatbots show potential for supporting antimicrobial stewardship but should only complement, not replace,
human expertise in infectious disease management.

(Received 13 March 2025; accepted 15 May 2025)

Manuscript background

The rapid identification of pathogens in bloodstream infections
is essential for improving patient outcomes and antibiotic
optimization.1 Culture-based techniques for organism identifica-
tion and susceptibility testing are time-consuming, which may
delay appropriate antimicrobial therapy in multi-drug-resistant
infections. Recently, rapid molecular diagnostic tools, such as
the BIOFIRE® Blood Culture Identification 2 (BCID2) panel
(bioMérieux), have emerged as promising solutions, significantly
reducing the time to pathogen identification.2 BCID2 is a multiplex

PCR assay that identifies 43 targets, including 26 bacteria, 7 yeast,
and 10 antimicrobial resistant genes, with results typically available in
an hour after a positive Gram stain is reported.3 However, accurate
interpretation of these results to optimize antibiotic therapy often
requires specialized expertise from InfectiousDisease (ID) physicians
or antimicrobial stewardship programs (ASPs), as evidence suggests
that rapid diagnostic tests are associated with decreased mortality
and length of stay, but only in combinationwithASP interventions.4,5

ASPs are critical in optimizing antibiotic use across healthcare
settings, but these interventions are resource-intensive and time-
sensitive.6,7 Currently, there is a demand for ID specialty care that
exceeds the supply and is expected to worsen.8 Compounding this
issue, microbiologic and other diagnostic results may be reported
at inconsistent and non-standardized times when immediate ASP
coverage is unavailable. These constraints underscore the need for
validated tools to support non-specialist healthcare providers in
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stewardship efforts, particularly in facilities with limited ASP
resources.

Artificial Intelligence (AI) offers a potential solution to bridge
these gaps. Leveraging AI to assist ASPs, particularly in prospective
audit and feedback (PAF) interventions, could enable faster, data-
driven support for frontline providers.9 A branch of AI known as
Large Language Models (LLMs) holds significant potential for
applications in healthcare.10 One widely recognized application of
LLMs is Generative Pretrained Transformer (GPT)-powered
chatbots.11 ChatGPT by OpenAI, first released in 2022, was the
first of many publicly available LLM-powered chatbots.12 While
not specifically designed for medical use, potential areas for
applications include provider documentation of patient encoun-
ters, automated patient responses, clinical decision-making, and
diagnostic interpretation.13–18 GPT-powered chatbots enable users
to converse using speech or written natural language, known as
prompting, to receive responses to complex queries.19 However,
validating the chatbot’s response to a user’s prompt for healthcare
use is crucial, as they have an inherent tendency to “hallucinate,”
generating responses that appear credible but may be incorrect.
LLMs that power chatbots generate responses by predicting the
next words based on patterns in their training data, rather than
verifying factual accuracy. This can lead to hallucinations, which
are misleading or off-topic responses that could be harmful in
clinical decision-making if not recognized.20 Despite their
potential, few studies have evaluated the utility of GPT-powered
chatbots in supporting direct ID consultations or pharmaco-
therapy recommendations, underscoring the need for rigorous
validation before integration into clinical practice.18,21–23

At our institution, ASP PAF interventions are routinely
conducted following the publication of BCID2 results to ensure
prompt and appropriate antimicrobial selection, but may not be
able to respond to all results in real-time. This proof-of-concept
study serves as an initial step in validating ChatGPT-4 for potential
future use to assist non-ID providers in interpreting BCID2 results
and providing initial treatment recommendations in a timely
manner. We attempted to minimize hallucinations from the
chatbot by implementing both “chain-of-thought” (COT) prompt-
ing, and external knowledge integration (EKI). COT prompting is
a technique where the user guides the chatbot’s responses in a step-
by-step thought process. EKI provides the chatbot with access to
data beyond its pretrained model to improve its response. We
uploaded reference documents developed with local and national
guidelines for the treatment of bacteremia to enhance the chatbot’s
recommendations.

The goal of this study was to assess the performance of the ASP
PAF intervention against the chatbot in real-world clinical settings
for patients with BCID2 results. This was achieved by evaluating the
quality of BCID2 interpretations and treatment recommendations
for the two groups. By undertaking this study, we hope to assess AI’s
viability for future use as a supplementary tool for non-specialists to
optimize antimicrobial therapy in patients with bacteremia.

Methods

Primary endpoint

The primary end point of this study was the combined rate of
recommendations that could cause patient harm by the chatbot
versus ASP PAF interventions for patients with BCID2 results. This
included incorrect BCID2 result identification and harmful or
inadequate antibiotic recommendations. Secondary endpoints
included individual assessment of the rate of harmful or inadequate

recommendations for BCID2 interpretation, source control con-
siderations, antibiotic therapy, and additional diagnostic workup.

Study design and participants

This prospective, observational study was conducted from January
to May 2024 at a 399-bed tertiary care Veteran Affairs Medical
Center in Richmond, Virginia. It included all adult in patients and
out patients with positive BCID2 results during the study period.

The ASP teamwas comprised of two Board-Certified Infectious
Diseases Clinical Pharmacists and two ID-trained physicians. At
this institution, ASP PAF interventions follow a structured
workflow initiated by an alert in the electronic health record
(EHR) of a positive Gram stain from a blood culture. BCID2 results
are generally reported an hour after the positive Gram stain. The
ASP pharmacist then determines appropriate antimicrobial
therapy and documents the PAF as blood culture notification
note in the EHR (Figure 1 and to Supplementary Figure S1 for an
example of mock ASP Blood Culture Notification Note).

Chain-of-thought prompting and external knowledge
integration

This study utilized a GPT-4 chatbot with COT prompting to
generate patient-specific treatment recommendations based on
BCID2 results and anonymized patient data. COT prompting was
used to enhance the chatbot’s reasoning process, attempting to
produce more structured and clinically relevant responses.
Furthermore, we aimed to utilize EKI by uploading reference
documents developed with local and national guidelines for the
management of bacteremia.24–31 This allowed the chatbot to
incorporate institutional protocols and best practices into its
recommendations. By leveraging both COT prompting and EKI,
the chatbot could generate responses aligned with the four key
domains of the ASP note: BCID2 results interpretation, source
control considerations, antibiotic therapy, and additional diag-
nostic workup (refer to Supplementary Table S1–S2 for our COT
prompts and EKI reference documents).

Patient data entry followed HIPAA’s 18-point de-identification
standard to ensure anonymity. The patient’s ASP note was not
used as input into the chatbot. Instead, the chatbot required BCID2
results and at least three of six patient characteristics before
generating recommendations (Figure 1). The chatbot’s output,
structured as a conversation, was printed for retrospective analysis
but excluded from clinical decision-making and is not part of the
patient EHR (an example of a mock conversation is included in
Supplementary Table S3).

Evaluation

The evaluation team consisted of four ID physicians from our
hospital who were not involved in the patient’s management. Each
case was assigned separately to two evaluators for independent
review. The evaluators were provided with a printed copy of the
ASP note and instructed to retrospectively and independently
review the patient’s EHR up to the date and time of the completion
of the ASP’s Blood Culture Notification Note. They were also
provided with a printed copy of the chatbot’s responses. The two
evaluators then independently applied a rubric that evaluated how
the chatbot’s and the ASP’s note compared to their own
retrospective assessment, which represents this study’s “gold
standard” (Figure 1). No cases were excluded due to discrepancies
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Figure 1. Study design. Illustrates the study design, outlining three key phases. Part 1 details the antimicrobial stewardship program (ASP)’s real-time documentation of BCID2-
positive blood culture cases, including history of present illness, BCID2 interpretation, source control considerations, antibiotic therapy, and additional diagnostic workup. Part 2
describes the ASP provider inputting anonymized patient data into the chatbot, which then generates a response structured similarly to the ASP note. Part 3 involves a
retrospective comparison of the ASP note and chatbot response by two independent ID physicians, using a standardized scoring rubric. The diagram visually represents the
workflow from clinical documentation to AI evaluation and comparison.

Figure 2. Evaluation rubric. Displays the evaluation rubric used to assess the accuracy and appropriateness of BCID2 result interpretation, source control considerations,
antibiotic therapy recommendations, and additional diagnostic workup. The table outlines seven measures (M1–M7) across four domains, specifying scoring classifications such
as appropriate, non-optimal, overly broad, or inadequate/harmful responses. This rubric provides a structured framework for evaluating the performance of ASP and chatbot
recommendations.
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between evaluators to reduce bias and represent real-world
provider management styles and treatment preferences.

The evaluation rubric contained four domains with a total of 7
individual measures (Figure 2). Measures were assessed into one of
three categories: optimal, non-optimal or broad, and inadequate or
harmful responses. Measures 1, 5, and 6 carry high clinical
significance when assessing for potential patient harm, and any
inadequate or harmful score in these measures was considered a
failure overall (refer to Supplement Table S4 for a comprehensive
table for domain and measure definitions).

Statistical analyses

The statistical analysis was designed to compare the rate of
recommendations that could cause patient harm by the chatbot
versus ASP PAF interventions. The primary end point combined
measures 1, 5, and 6 from the domains of BCID2 Results
Interpretation and Antibiotic Recommendations due to these
having the highest clinical significance when assessing for
potential patient harm. If one or more of the above 3 measures
were categorized as harmful by a single evaluator, then the entire
case was considered harmful. The secondary endpoints indi-
vidually assessed the rate of harmful or inadequate recommen-
dations for each domain and individual measure for all 84
evaluations. Fisher’s exact test was used to assess differences in
counts of harmful or inadequate responses between the two
groups with a P ≤ .05. All analysis was completed using R
software (v4.4.2).

Ethics

This study was approved by our local Investigational Review
Board. No written informed consent was required. All patient data
entry followed HIPAA’s 18-point de-identification standard to
ensure anonymity. No chatbot output was used to direct patient
care or documented in the patient’s EHR.

Results

A total of 43 cases of bacteremia were analyzed in this study and a
total of 84 evaluations were included (2 cases only had one
evaluator). Most patients were male (98%) with a median age of
74 years (Table 1). The primary end point of the combined rate
of evaluations classified as harmful or inadequate was signifi-
cantly higher in the chatbot group (13%) compared to the ASP

PAF interventions (4%), with a P value of .047 (Table 2). In
the ASP group, two evaluations in the domain of BCID2
Result Interpretation (M1: Organism Identification Accuracy)
were classified as inadequate, whereas the chatbot had none.
This discrepancy stemmed from an error in the ASP note template,
where Klebsiella aerogenes was mistakenly selected instead of
Klebsiella pneumoniae. However, the recommended treatment
remained appropriate, and no actual patient harm occurred. For
Antibiotic Therapy and Additional Diagnostic Workup (M5 and
M6), the chatbot had eight cases with a total of 11 harmful or
inadequate evaluations, compared to only one case in the ASP
group (Table 3). The single harmful classification in the ASP group
was in M6, where one evaluator rated the case as inadequate. This
involved a patient with a coagulase-negative Staphylococcus sp.
[CoNS] in 1/4 bottles presumed to be a contaminant. The evaluator
classified the recommendation as inadequate because no alter-
native treatment was suggested in case the CoNS represented a true
bloodstream infection.

The secondary analysis examined the rate of harmful or
inadequate responses within each individual domain. In BCID2
Result Interpretation, M1 showed a 2% rate of harmful or
inadequate responses for ASP versus 0% for the chatbot (p= .497).
However, M2 (Background Interpretation of Organism and
Resistance Genes), had a significantly higher rate for the chatbot
compared to ASP (4 v. 1%; p= .001), indicating that while the
chatbot consistently identified BCID2 results correctly, it was more
likely to provide incomplete or overly broad organism background
information.

For Source Control Considerations, M3 (Emphasis on Source
Control Importance) showed a low rate of harmful or inadequate
responses that were not statistically different between the ASP and
chatbot groups (0% v. 2%; p= .534). However, M4 (Organism-
Specific Source Control Guidance) showed a larger difference, with
harmful or inadequate responses occurring significantly more
frequently for chatbot evaluations compared to r ASP (10% v. 2%;
p= .022). This suggests that the chatbot was less reliable in
providing organism-specific guidance for source control, poten-
tially leading to incomplete management.

The largest discrepancy between the ASP and chatbot groups
occurred in Antibiotic Therapy Recommendations. Evaluators
classified 94% of ASP recommendations as optimal, compared to
63% for the chatbot. Harmful or inadequate recommendations
occurred in 8% of chatbot evaluations for M5 (Optimal
Treatment Selection) compared to 0% for ASP (p <.001), and

Table 1. Characteristics of the study population (n = 43)

Patient characteristics (%) Source (%) Organism (%) Resistant genes (%)

Age (years) 74 Urogenital 16 (37) Staphylococcus 19 (44) Mec A/C þ MREJ 1 (2)

Sex 41 (98) Contaminate 8 (19) Enterobacterales 16 (37) Mec A/C 6 (14)

Antimicrobial 7 (16) Pulmonary 6 (14) Negative result 3 (7) CTX-M 2 (5)

Allergy Intra-abdominal 3 (7) Streptococcus 3 (7)

Osteomyelitis 3 (7) Enterococcus 2 (5)

Soft skin
tissue infection

3 (7) Nonfermenting 1 (2)

Line infection 1 (2) Yeast 1 (2)

Postoperative 1 (2)

Presents the characteristics of the study population, including patient demographics, sources of infection, identified organisms, and detected resistant genes. It provides an overview of the
clinical and microbiological profile of the included cases, categorizing patient factors, infection origins, and relevant resistance markers.
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in 10% v. 1% for M6 (Tailoring Treatment to Patient-Specific
Factors) respectively (p = .022). The most common errors in the
chatbot’s harmful responses involved: (1) inadequate antimicro-
bial coverage, particularly in complex cases with polymicrobial
infections or resistant organisms; (2) incorrect dosing adjust-
ments for renal impairment; (3) misdiagnosis of infection

sources, leading to inappropriate antibiotic selection; (4)
ambiguous treatment plans. Additionally, non-optimal chatbot
recommendations were attributed to overly broad-spectrum
antibiotic choices (35%, 15/43). While these regimens were not
immediately harmful, they failed to align with best practices
(Table 3). For Additional Diagnostic Workup (M7: Further

Table 2. Comparison of ASP PAF interventions and chatbot performance

End point Measure Evaluation classification ASP Chatbot p value*

Primary safety outcome M1þM5þM6 Safe 96% 87%

Harmful or inadequate 4% 13% .047

Domain Measure Evaluation classification ASP Chatbot p value*

BCID2 result interpretation M1 Adequate 98% 100%

Harmful or inadequate 2% 0% .497

M2 Optimal 96% 87%

Non-optimal 0% 12%

Inadequate 4% 1% .001

Source control considerations M3 Optimal 92% 88%

Non-optimal 8% 10%

Inadequate 0% 2% .534

M4 Optimal 92% 76%

Non-optimal 6% 14%

Inadequate 2% 10% .022

Antibiotic therapy M5 Optimal 94% 63%

Non-optimal 6% 29%

Inadequate 0% 8% .001

M6 Optimal 98% 77%

Non-optimal 1% 13%

Inadequate 1% 10% .022

Additional diagnostic workup M7 Optimal 81% 75%

Non-optimal 16% 20%

Inadequate 4% 5% .680

*The P value represents the difference in the rate of harmful or inadequate responses between the ASP and the Chatbot. Abbreviations:M1: Appropriately interprets organism and resistant gene
targets when identified; M2: Appropriately provides general background information about the organism and resistant gene targets when identified; M3: Appropriately emphasizes the
importance of source control to cure infection;M4: Suggests organism-specific sources of infection that should be investigated when applicable;M5: Appropriately suggests optimal treatment
regimen based on the identified organism includingmedication, dose, and escalation versus de-escalation (when applicable);M6: Appropriately suggests alternative options for patient-specific
factors (e.g., antibiotic allergies, renal impairment, obesity) when applicable;M7: Appropriately suggests additional diagnostic workup when applicable. Compares the performance of ASP PAF
interventions and a GPT-powered chatbot in evaluating BCID2 results and providing treatment recommendations. The table presents results for the primary end point, measuring the combined
rate of harmful or inadequate recommendations (M1þM5þM6), as well as secondary endpoints across four domains: BCID2 result interpretation, source control considerations, antibiotic
therapy, and additional diagnostic workup. Each domain includes specific measures with classification into optimal, non-optimal, or harmful/inadequate responses for both ASP and chatbot
groups. Statistical significance (p-values) is provided for differences in harmful or inadequate responses between ASP and chatbot recommendations.

Table 3. Characterization of cases with non-optimal and harmful chatbot responses for antibiotic therapy recommendations

Category (n) Reason* Percent (n) Comment

Non-optimal (15) Overly broad 100% (15) Due to likely blood culture contaminate or provider preference

Harmful (8) Inadequate coverage 50% (5) Polymicrobial infections or sources

Incorrect dose 20% (2) Incorrect renal impairment dosing

Unclear recommendation 10% (1) Unclear to discontinue current treatment before starting new treatment

Misdiagnosis 10% (1) Ignored co-infection

*Each case canhavemultiple reasons to causenon-optimalor harmful/inadequateclassifications. Presents a classification of chatbot-generated antibiotic therapy recommendations, distinguishing
between non-optimal and harmful responses. It categorizes errors based on reasoning, such as overly broad antibiotic coverage, inadequate coverage, incorrect dosing, unclear recommendations,
and misdiagnosis. The table provides insight into the types of errors the chatbot made in antimicrobial selection, highlighting key areas where AI-assisted decision-making may require further
refinement to align with clinical best practices.
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Diagnostic Evaluation), chatbot recommendations were optimal
in 75% of cases, compared to ASP’s 81%. However, inadequate
responses were similar and not statistically significant (5% v.
4%; p = .68).

Discussion

This study compared the performance of a GPT-powered chatbot
with an ASP in interpreting BCID2 results and providing
treatment recommendations. The chatbot demonstrated strong
potential, particularly in its ability to accurately interpret BCID2
findings and generate structured responses. However, significant
gaps remain in its performance, particularly in antibiotic therapy
recommendations and source control considerations, where
human expertise outperformed AI.

In an indirect comparison to a prior study, our chatbot’s rate of
harmful and inadequate responses across all measures was 37%
(16/43 cases) compared to 59% (26/44) in the previous study.22 For
antibiotic therapy recommendations, harmful or inadequate
responses occurred in 19% (8/43 cases) versus 36% (16/44) for
ASP or ID consult providers in the previous study.22 Despite this
relative improvement, the chatbot still underperformed in optimal
antibiotic selection compared to the ASP. Most harmful responses
involved inadequate antimicrobial coverage, particularly in
complex cases with polymicrobial infections, co-infections, or
contaminants. Additionally, the chatbot rarely recommended
discontinuing antimicrobial therapy even when appropriate, likely
due to difficulty in distinguishing true infections from contam-
inants. This may have been due to the chatbot receiving limited
clinical information, such as the number of positive sets, which
could have helped distinguish true infections from likely
contaminants. Future iterations will require these data points to
improve decision-making in such situations.

These shortcomings emphasize the need for refinement in COT
reasoning and better integration of EKI, particularly in the
interpretation of contaminants and polymicrobial infections.
Beyond improvements in prompting and reference materials,
LLMs may lack the intuitive pattern recognition and implicit
knowledge that clinicians develop through experience, making it
difficult to fully capture contextual subtleties and clinical judgment
that guide real-world decision-making.

Within BCID2 interpretation, the chatbot performed well in
identifying organisms and resistance genes but lacked contextu-
alization often provided by human experts. In source control
considerations, its recommendations were generalized rather than
case-specific, making it less precise in complex infections that
required targeted interventions. The additional diagnostic workup
domain showed less pronounced differences, though the chatbot
occasionally provided nonspecific or incomplete recommenda-
tions. Even without detailed context, BCID2 interpretation can still
be valuable, especially when immediate ASP input is unavailable,
such as during overnight coverage when quick decisions about
empiric therapy are crucial and further diagnostics are left to other
clinicians.

Impact of prompting, external knowledge integration, and
structured outputs

This study employed COT prompting, which improved response
accuracy compared to previous studies that used standard
prompting.10,21,22,18,32 This was done by customizing a GPT-powered
chatbot by defining its purpose, refining its behavior with natural
language instructions with COT prompting, and integrating external

knowledge sources. COT’s step-by-step reasoning improved the user
experience by eliminating the need for lengthy instructional prompts
at the start of every case. Instead, the chatbot automatically
introduced itself and requested key patient information before
generating responses.

A key advancement of our chatbot, compared to previous
studies, was its ability to integrate external knowledge by
incorporating our local treatment guide developed from national
antimicrobial treatment guidelines and primary literature. These
additional uploads allowed the chatbot to reference evidence-based
recommendations when formulating responses, aligning more
closely with best practices for antimicrobial therapy. This approach
helped mitigate a significant limitation with general LLMs that are
not trained on biomedical data and subject matter expertise. The
ability to reference evidence-based guidelines applied to a local
context represents a critical strength of this study and demon-
strates how LLMs can be customized for specific clinical decision
support roles.

Limitations

Several limitations must be considered. The single-center design
and small sample size restricted the evaluation of less common
organisms included in the BCID2 panel. Evaluators were not
blinded to the source of recommendations (ASP v. chatbot),
introducing potential bias. Clinical practice variability among ID
specialists and evolving guidelines also complicate standardization
of accuracy assessment. Only the ASP used the chatbot; therefore,
we did not assess if non-ID clinicians would be able to effectively
input the required patient characteristics and BCID2 results into
the chatbot. A future study will evaluate the chatbot’s utility for
non-ID clinicians, incorporating safeguards based on the study’s
findings to ensure adequate input for optimal output and support
clinical decision-making.

The chatbot’s responses were assessed in isolation, meaning no
follow-up queries were permitted to refine its output. We did not
assess reproducibility, and each case was entered once. Next, while
COT prompting and EKI were implemented to reduce the risk of
hallucinations, this study did not formally quantify hallucination
frequency in chatbot-generated responses, though none were
reported in the evaluations. Further studies are needed to assess
how frequently hallucinations occur, their clinical impact, and
whether additional refinements, such as real-time error detection
mechanisms, could mitigate this risk.

Conclusion

While the chatbot is not yet capable of replacing human oversight,
its potential as a supportive tool in antimicrobial stewardship is
clear. By mitigating resource constraints, standardizing initial
assessments, and assisting in decision-making, AI could improve
the efficiency and effectiveness of ASP interventions in the future.
However, its clinical application must be approached cautiously,
requiring rigorous validation, ongoing refinement, and an under-
standing of its limitations.

This study demonstrates that GPT-powered chatbots show
promise as adjuncts in the management of bacteremia, particularly
in BCID2 interpretation. However, challenges remain in antibiotic
therapy recommendations and source control considerations,
highlighting the need for more refined prompts, robust EKI, and
the continued importance of human expertise. Future research
should focus on refining AI models, integrating them into clinical
workflows, and conducting larger, multicenter validation studies.
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This could include use of locally-trained biomedical LLMs with
enhanced data security, specifically tailored for a healthcare system.
With continued advancement, AI has the potential to complement
human clinical judgment, improve patient outcomes, and optimize
resource utilization in infectious disease management.

Supplementary material. For supplementary material/s referred to in this
article, please visit https://doi.org/10.1017/ash.2025.10059.
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