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ON THE TIME VALUE OF ABSOLUTE
RUIN WITH DEBIT INTEREST
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Abstract

Assume that the surplus of an insurer follows a compound Poisson surplus process. When
the surplus is below zero or the insurer is on deficit, the insurer could borrow money at
a debit interest rate to pay claims. Meanwhile, the insurer will repay the debts from her
premium income. The negative surplus may return to a positive level. However, when the
negative surplus is below a certain critical level, the surplus is no longer able to be positive.
Absolute ruin occurs at this moment. In this paper, we study absolute ruin questions by
defining an expected discounted penalty function at absolute ruin. The function includes
the absolute ruin probability, the Laplace transform of the time to absolute ruin, the deficit
at absolute ruin, the surplus just before absolute ruin, and many other quantities related
to absolute ruin. First, we derive a system of integro-differential equations satisfied by
the function and obtain a defective renewal equation that links the integro-differential
equations in the system. Second, we show that when the initial surplus goes to infinity,
the absolute ruin probability and the classical ruin probability are asymptotically equal
for heavy-tailed claims while the ratio of the absolute ruin probability to the classical
ruin probability goes to a positive constant that is less than one for light-tailed claims.
Finally, we give explicit expressions for the function for exponential claims.
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1. Introduction

Let U(t) = u + ct − ∑N(t)
n=1Xn, t ≥ 0, be the compound Poisson surplus process for an

insurer, where u ≥ 0 is the initial surplus, c > 0 is the premium rate, {N(t), t ≥ 0} is a Poisson
process (with Poisson rate λ > 0) denoting the number of claims up to time t , and {Xn, n ≥ 1}
(representing the sizes of claims and independent of {N(t), t ≥ 0}) is a sequence of independent
and identically distributed nonnegative random variables with a common distribution function
F(x) that satisfies F(0) = 0 and has a positive mean µ = ∫ ∞

0 F̄ (x) dx > 0. Here, F̄ (x) =
1 − F(x) is the survival function of the distribution function F(x).

We assume that when the surplus is negative or the insurer is on deficit, the insurer could
borrow an amount of money equal to the deficit at a debit interest force δ > 0, or, equivalently,
at a debit interest rate eδ−1 > 0. Meanwhile, the insurer will repay the debts continuously from
her premium income. Thus, the surplus of the insurer is driven under the debit interest force
δ when the surplus is negative. The negative surplus may return to a positive level. However,
when the negative surplus attains the level −c/δ or is below −c/δ, the surplus is no longer
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able to be positive, because the debts of the insurer at this time are greater than or equal to
c/δ, which is the present value at that time for all premium income available after that point.
Absolute ruin occurs at this moment.

Absolute ruin has attracted attention in the literature. The absolute ruin probability with
exponential claims has been studied by Dassios and Embrechts (1989) using the martingale
approach. Embrechts and Schmidli (1994) discussed the absolute ruin probability in a general
insurance risk model using the theory of piecewise deterministic Markov processes. Further-
more, Dickson and Egídio dos Reis (1997) considered the effect of interest on the negative
surplus. In addition, the effect of interest on the positive surplus has been studied extensively
in the literature. See, for example, Asmussen (2000), Cai (2004), Cai and Dickson (2002),
Sundt and Teugels (1995), and many others. However, many questions related to absolute ruin
have not yet been solved, such as the behavior of the absolute ruin probability with heavy-tailed
claims, the relationship between the absolute ruin probability and the classical ruin probability,
the Laplace transform of the time to absolute ruin, the deficit at absolute ruin, the surplus just
before absolute ruin, and so on. In this paper, we study absolute ruin questions by defining an
expected discounted penalty function at absolute ruin. The function includes the absolute ruin
probability, the Laplace transform of the time to absolute ruin, the deficit at absolute ruin, the
surplus just before absolute ruin, and many other quantities related to absolute ruin. It allows
us to study the effect of debit interest on the negative surplus in a unified approach.

We denote the surplus of the insurer at time t with the debit interest force δ by Uδ(t). This
is the solution to

dUδ(t) = (c + δUδ(t) 1{Uδ(t)<0}) dt − dY (t), Uδ(0) = u,

where Yt = ∑N(t)
i=1 Xi and 1{C} means the indicator function of an event C. Furthermore,

we denote the absolute ruin time of the surplus process {Uδ(t), t ≥ 0} by Tδ . Now, Tδ =
inf{t ≥ 0 : Uδ(t) ≤ −c/δ} and Tδ = ∞ if Uδ(t) > −c/δ for all t ≥ 0. Thus, |Uδ(Tδ)| is the
deficit at absolute ruin. Furthermore, let Uδ(T

−
δ ) denote the surplus just before absolute ruin.

Notice that the deficit at absolute ruin is at least c/δ and the surplus just before absolute ruin
could be in the range of (−c/δ,∞). Thus, we define the expected discounted penalty function
at absolute ruin by

�(u) = E(e−αTδ w(Uδ(T −
δ ), |Uδ(Tδ)|) 1{Tδ<∞} | Uδ(0) = u), (1.1)

where w(x1, x2), x1 > −c/δ, x2 ≥ c/δ, is a nonnegative function which denotes the penalty
due at absolute ruin, u > −c/δ is the initial surplus, and α ≥ 0 can be viewed as the argument
for the Laplace transform of Tδ or an interest force for the calculation of the present value of
the penalty. In particular, the absolute ruin probability, denoted by

ψ(u) = P(Tδ < ∞ | Uδ(0) = u),

satisfies ψ(u) = �(u) when α = 0 and w(x1, x2) = 1 in �(u).
The function (1.1) is the counterpart of the expected discounted penalty function at ruin or

the Gerber–Shiu function at ruin in the compound Poisson surplus process {U(t), t ≥ 0}, which
was introduced by Gerber and Shiu (1997), (1998). The Gerber–Shiu function has become a
standard method used to study ruin theory in different risk models.

We point out that �(u) has different sample paths for u ≥ 0 and −c/δ < u < 0. Hence,
we distinguish the two situations by writing �(u) = �+(u) for u ≥ 0 and �(u) = �−(u)
for −c/δ < u < 0. Similarly, we write ψ(u) = ψ+(u) for u ≥ 0 and ψ(u) = ψ−(u)
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for −c/δ < u < 0. In addition, we denote the ruin time of the compound Poisson surplus
process {U(t), t ≥ 0} by T and the classical ruin probability in the compound Poisson surplus
process {U(t), t ≥ 0} by φ(u). Now, T = inf{t ≥ 0 : U(t) < 0} and T = ∞ if U(t) ≥ 0 for
all t ≥ 0. Furthermore, φ(u) = P(T < ∞ | U(0) = u).

In this paper, we assume that the safety loading factor defined by θ = c/(λµ)−1 is positive.
Obviously, T ≤ Tδ and ψ+(u) ≤ φ(u) for u ≥ 0. Under the assumption of the positive safety
loading factor, we have limu→∞ ψ+(u) = 0 and 0 < ψ+(u) ≤ φ(u) < 1 for u ≥ 0. Also, we
assume that limu→∞�+(u) = 0. This holds naturally when w(x1, x2) is a bounded function.

The rest of the paper is organized as follows. In Section 2, we derive a system of integro-
differential equations for�+(u) and�−(u) and determine boundary conditions for�+(u) and
�−(u). In Section 3, we obtain a defective renewal equation for�+(u)when α = 0. This case
includes the absolute ruin probability, the deficit at absolute ruin, the surplus just before absolute
ruin, the claim amount causing absolute ruin, and many others. The defective renewal equation
links the integro-differential equations in the system. Based on the defective renewal equation,
in Section 4 we show that when the initial surplus goes to infinity, the absolute ruin probability
ψ+(u) and the classical ruin probability φ(u) are asymptotically equal for heavy-tailed claims
while the ratio of the absolute ruin probabilityψ+(u) to the classical ruin probability φ(u) goes
to a positive constant that is less than one for light-tailed claims. Finally, in Section 5 we give
explicit expressions for �+(u) and �−(u) for exponential claims.

2. Integral and integro-differential equations for �+(u) and �−(u)

First, we derive the integral equations for �+(u) and �−(u) in the following theorem.

Theorem 2.1. When u ≥ 0, we have

�+(u) = λ

c
e(λ+α)u/c

∫ ∞

u

e−(λ+α)x/c

×
[∫ x

0
�+(x − y) dF(y)+

∫ x+c/δ

x

�−(x − y) dF(y)+ A(x)

]
dx, (2.1)

and, when −c/δ < u < 0, we have

�−(u) = λ(δu+ c)(λ+α)/δ
{ ∫ 0

u

(δx + c)−1−(λ+α)/δ
[∫ x+c/δ

0
�−(x − y) dF(y)+ A(x)

]
dx

+ c−1−(λ+α)/δ
∫ ∞

0
e−(λ+α)z/c

×
[∫ z

0
�+(z− y) dF(y)

+
∫ z+c/δ

z

�−(z− y) dF(y)+ A(z)

]
dz

}
, (2.2)

where the function A(x) is given by

A(x) =
∫ ∞

x+c/δ
w(x, y − x) dF(y). (2.3)
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Proof. By conditioning on the time and amount of the first claim and discounting the
expected values to time 0 at the interest force α, when u ≥ 0 we obtain

�+(u) =
∫ ∞

0
λe−(λ+α)t

[ ∫ u+ct

0
�+(u+ ct − y) dF(y)+

∫ u+ct+c/δ

u+ct
�−(u+ ct − y) dF(y)

+
∫ ∞

u+ct+c/δ
w(u+ ct, y − (u+ ct)) dF(y)

]
dt. (2.4)

Equation (2.4) for �+(u) involves �−(u) for −c/δ < u < 0. When the initial surplus
is negative, the surplus is driven under the debit interest force δ before the surplus returns
to the level zero. Thus, for −c/δ < u < 0, let t0 = t0(u) be the solution to hδ(t, u) =
u eδt + c(eδt − 1)/δ = 0, namely t0 = t0(u) = log(c/(c+ δu))1/δ, which is the time when the
surplus returns to the level zero if no claim occurs prior to time t0. Furthermore, hδ(t, u) < 0
for t < t0 and hδ(t0, u) = 0. Moreover, hδ(t, u) is the surplus at time t ≤ t0 if no claim occurs
prior to time t0. Thus, by conditioning on the time and amount of the first claim and discounting
the expected values to time 0 at the interest force α, when −c/δ < u < 0 we obtain

�−(u) =
∫ t0

0
λe−(λ+α)t

[∫ hδ(t,u)+c/δ

0
�−(hδ(t, u)− y) dF(y)

+
∫ ∞

hδ(t,u)+c/δ
w(hδ(t, u), y − hδ(t, u)) dF(y)

]
dt

+
∫ ∞

t0

λe−(λ+α)t
[∫ c(t−t0)

0
�+(c(t − t0)− y) dF(y)

+
∫ c(t−t0)+c/δ

c(t−t0)
�−(c(t − t0)− y) dF(y)

+
∫ ∞

c(t−t0)+c/δ
w(c(t − t0), y − c(t − t0)) dF(y)

]
dt. (2.5)

Now, changing variables x = u + ct in (2.4), we obtain (2.1). Moreover, first changing
variables x = hδ(t, u) in the integrals with respect to t from 0 to t0 in (2.5), and then changing
variables z = c(t − t0) in the integrals with respect to t from t0 to ∞ in (2.5), we obtain (2.2).

Remark 2.1. We point out that the integral equations (2.1) and (2.2) allow us to consider
the differentiability of the functions �+(u) and �−(u). For instance, it is easy to see from
(2.1) and (2.2) that �+(u) and �−(u) are differentiable on (0,∞) and (−c/δ, 0) respectively.
Furthermore, they satisfy the following condition:

�+(0) = �−(0−). (2.6)

Based on (2.2), we can determine boundary conditions for �−(u).

Proposition 2.1. If

lim
u↓−c/δ

∫ 0

u

(δx + c)−1−(λ+α)/δA(x) dx = ∞, (2.7)

then

lim
u↓−c/δ �−(u) = λ

λ+ α
A

(
−c
δ

)
. (2.8)
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If

lim
u↓−c/δ

∫ 0

u

(δx + c)−1−(λ+α)/δA(x) dx < ∞, (2.9)

then
lim

u↓−c/δ �−(u) = 0. (2.10)

Proof. From (2.2), we notice that if

lim
u↓−c/δ

∫ 0

u

[
(δx + c)−1−(λ+α)/δ

∫ x+c/δ

0
�−(x − y) dF(y)

]
dx < ∞,

then

lim
u↓−c/δ λ(δu+ c)(λ+α)/δ

∫ 0

u

[
(δx + c)−1−(λ+α)/δ

∫ x+c/δ

0
�−(x − y) dF(y)

]
dx = 0. (2.11)

Furthermore, if

lim
u↓−c/δ

∫ 0

u

[
(δx + c)−1−(λ+α)/δ

∫ x+c/δ

0
�−(x − y) dF(y)

]
dx = ∞,

then l’Hôpital’s rule yields

lim
u↓−c/δ λ(δu+ c)(λ+α)/δ

∫ 0

u

[
(δx + c)−1−(λ+α)/δ

∫ x+c/δ

0
�−(x − y) dF(y)

]
dx = 0.

Hence, (2.11) always holds. Thus, letting u → −c/δ in (2.2) yields

lim
u↓−c/δ �−(u) = lim

u↓−c/δ λ(δu+ c)(λ+α)/δ
∫ 0

u

(δx + c)−1−(λ+α)/δA(x) dx. (2.12)

Therefore, if (2.7) holds, by l’Hôpital’s rule and (2.12) we obtain (2.8). Furthermore, if (2.9)
holds, then (2.12) yields (2.10).

As we will see in Section 5, the boundary conditions given in Proposition 2.1 are necessary
when we solve the integro-differential equations or differential equations satisfied by�−(u) to
obtain explicit expressions for �−(u).

Now, by differentiating the integral equations (2.1) and (2.2), we obtain the integro-differen-
tial equations for �+(u) and �−(u) in the following theorem.

Theorem 2.2. When u ≥ 0, we have

�′+(u) = λ+ α

c
�+(u)− λ

c

[∫ u

0
�+(u− y) dF(y)+ B(u)

]
, (2.13)

and, when −c/δ < u < 0, we have

�′−(u) = λ+ α

δu+ c
�−(u)− λ

δu+ c

[∫ u+c/δ

0
�−(u− y) dF(y)+ A(u)

]
, (2.14)

where

B(u) =
∫ u+c/δ

u

�−(u− y) dF(y)+ A(u). (2.15)

In addition, the boundary conditions for�+(u) and�−(u) are given by (2.6), Proposition 2.1,
and limu→∞�+(u) = 0.
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We remark that the equation (2.14) for�−(u) is independent of�+(u). However,�−(u) is
subject to the boundary condition (2.6) which is involved with �+(u). Furthermore, it is easy
to see from (2.6), (2.13), and (2.14) that �+(u) and �−(u) satisfy

�′+(0) = �′−(0−). (2.16)

3. The link between �+(u) and �−(u) via a defective renewal equation

When α = 0, we derive a defective renewal equation for �+(u) in the following theorem.

Theorem 3.1. When α = 0, �+(u) satisfies the defective renewal equation

�+(u) = λ

c

∫ ∞

u

B(t) dt + 1

1 + θ

∫ u

0
�+(u− y) dFe(y), u ≥ 0, (3.1)

where Fe(y) = ∫ y
0 F̄ (x) dx/µ, y ≥ 0, is the equilibrium distribution function of F(x) and

θ = c/(λµ)− 1 > 0 is the safety loading factor. In particular, for any u ≥ 0 we have

�+(u) = 1 + θ

θ

∫ u

0
z(u− x) dG(x), (3.2)

where

z(x) = λ

c

∫ ∞

x

B(t) dt (3.3)

and

G(x) =
∞∑
n=0

θ

1 + θ

(
1

1 + θ

)n
F (n)e (x)

is a compound geometric distribution function. Here, F (n)e is the n-fold convolution of Fe with
itself.

Proof. Replacing u by t in (2.13), integrating both sides of the equation from 0 to u with
respect to t , and performing integration by parts, for u ≥ 0 we obtain

�+(u) = �+(0)− λ

c

∫ u

0
B(t) dt + λµ

c

∫ u

0
�+(u− y) dFe(y)+ α

c

∫ u

0
�+(t) dt. (3.4)

When α = 0, (3.4) is reduced to

�+(u) = �+(0)− λ

c

∫ u

0
B(t) dt + λµ

c

∫ u

0
�+(u− y) dFe(y). (3.5)

By the boundary condition limu→∞�+(u) = 0, the dominated convergence theorem, and
letting u → ∞ in (3.5), we obtain

�+(0) = λ

c

∫ ∞

0
B(t) dt. (3.6)

Thus, substituting (3.6) into (3.5) yields

�+(u) = λ

c

∫ ∞

0
B(t) dt − λ

c

∫ u

0
B(t) dt + λµ

c

∫ u

0
�+(u− y) dFe(y),

which implies (3.1). Equation (3.1) is a defective renewal equation. Hence, by Theorem 2.1 of
Resnick (1992), we immediately obtain (3.2).
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Note that the expression (3.2) of �+(u) depends on B(u) which is a function of �−(u).
Once�−(u) is obtained, the expression for�+(u) is given by (3.2). Furthermore, (3.1) allows
us to discuss the properties of �+(u) based on those for defective renewal equations. As
applications of Theorem 3.1, in Section 4 we derive asymptotical formulae for the absolute ruin
probability when claims are heavy-tailed and light-tailed. To do so, we recall that the classical
ruin probability φ(u) is given by

φ(u) = 1

θ

∫ u

0
F̄e(u− x) dG(x), u ≥ 0. (3.7)

4. Asymptotic results for heavy-tailed and light-tailed claims

A claim size distribution is said to be heavy-tailed if the moment generating function of the
distribution does not exist. We first recall some classes of heavy-tailed distributions that will
be used in this section. A distribution F is said to be subexponential, written F ∈ S, if, for any
n ≥ 2, limx→∞ F̄ (n)(x)/F̄ (x) = n, where F̄ (n)(x) = 1 − F (n)(x). A distribution F is said to
be long-tailed, written F ∈ L, if, for any y > 0, limx→∞ F̄ (x−y)/F̄ (x) = 1, or, equivalently,
for any y > 0, limx→∞ F̄ (x + y)/F̄ (x) = 1. It is well known that S ⊂ L. Throughout this
paper, a(u) ∼ b(u) means a(u)/b(u) → 1 as u → ∞.

Lemma 4.1. Consider a defective renewal equation

Z(x) = v(x)+ β

∫ x

0
Z(x − y) dF(y), x ≥ 0,

where 0 < β < 1, F(x) is a distribution function supported on [0,∞), and v(x) is a locally
bounded function defined on [0,∞). Assume that v(x) ≥ 0 is right-continuous and decreasing
with limx→∞ v(x) = 0. If F ∈ S, W ∈ S, and supx≥0{F̄ (x)/W̄ (x)} < ∞, then

Z(x) ∼ v(x)

1 − β
,

whereW(x) = (v(0)−v(x))/v(0) = 1−W̄ (x) is a distribution function supported on [0,∞).

Proof. The proof is given in Theorem 3.1(i) of Yin and Zhao (2006), which is based on
Proposition 1.1 (c) of Cai and Tang (2004) and other results about heavy-tailed distributions in
the class S.

Theorem 4.1. Let f (x) be the density function of the distribution function F(x) and r(x) =
f (x)/F̄ (x) be the failure rate function. If r(x) → 0 as x → ∞ and Fe ∈ S, then

ψ+(u) ∼ 1

θ
F̄e(u). (4.1)

Proof. For w(x1, x2) = 1 and α = 0, we have �−(u) = ψ−(u) and A(u) = F̄ (u + c/δ).
Thus, by (2.15) we obtain

B(u)

F̄ (u)
=

∫ 0

−c/δ
ψ−(t)r(u− t)

F̄ (u− t)

F̄ (u)
dt + F̄ (u+ c/δ)

F̄ (u)
. (4.2)

Note that 0 < ψ−(t) < 1 and 0 ≤ F̄ (u− t)/F̄ (u) ≤ 1 for any −c/δ < t < 0. Obviously,
r(x) → 0 as x → ∞ implies that r(x) is bounded on [x0,∞) for some constant x0 > 0.
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Furthermore, as pointed out in the paragraph after Proposition 2 of Embrechts and Villasenor
(1988), r(x) → 0 as x → ∞ implies that F ∈ L. Also see Bingham et al. (1987, p. 12).

Thus, by the dominated convergence theorem and F ∈ L, we know that the first
term in (4.2) goes to zero and the second term in (4.2) goes to one as u → ∞. Hence,
limu→∞ B(u)/F̄ (u) = 1, which, together with l’Hôpital’s rule and (3.3), implies that

lim
u→∞

z(u)

F̄e(u)
= λµ

c
lim
u→∞

B(u)

F̄ (u)
= λµ

c
= 1

1 + θ
. (4.3)

Therefore, the survival function H̄ (x) defined by H̄ (x) = z(x)/z(0) = 1 −H(x) satisfies

lim
u→∞

H̄ (u)

F̄e(u)
= 1

(1 + θ)z(0)
, (4.4)

which means that the distributionH ∈ S becauseFe ∈ S and the class S is preserved under tail-
equivalence. Note that both H̄ (x) and F̄e(x) are continuous on (0,∞)with H̄ (0) = F̄e(0) = 1.
Thus, (4.4) implies that supx≥0{H̄ (x)/F̄e(x)} < ∞. Finally, note that ψ+(u) satisfies the
defective renewal equation (3.1). Thus, by Lemma 4.1 and (4.3), we obtain

ψ+(u) ∼ 1 + θ

θ
z(u) ∼ 1

θ
F̄e(u),

which yields (4.1).

Remark 4.1. For the classical ruin probability φ(u), if Fe ∈ S then

φ(u) ∼ 1

θ
F̄e(u). (4.5)

Hence, Theorem 4.1 shows that for heavy-tailed claims, the absolute ruin probability and the
classical ruin probability are asymptomatically equal, namely

ψ+(u) ∼ φ(u). (4.6)

This result confirms that large or heavy-tailed claims are very dangerous in the sense that large
claims will cause ruin and absolute ruin with the same probability when the initial surplus is
sufficiently large. Furthermore, the result implies that if a heavy-tailed claim is large enough
to cause classical ruin then it is large enough to cause absolute ruin as well.

We note that there is one additional condition for (4.1) as compared with (4.5). The
additional condition of r(x) → 0 as x → ∞ is not very restrictive. Many interesting heavy-
tailed distributions satisfy the conditions of Theorem 4.1 such as Pareto, Burr, and log-normal
distributions. More such distributions can be found in Embrechts et al. (1999). However, we
point out that the main restriction of the condition is that the distribution has to be continuous.

In addition, many sufficient conditions for Fe ∈ S are given in terms of r(x). For ex-
ample, Theorem 3 of Embrechts and Villasenor (1988) means that if limx→∞ r(x) = 0 and
limx→∞ x2r ′(x) = −∞, then Fe(x) ∈ S. Hence, one corollary of Theorem 4.1 is that if
limx→∞ r(x) = 0 and limx→∞ x2r ′(x) = −∞, then (4.6) holds. Many other sufficient
conditions for Fe ∈ S can be found in Embrechts et al. (1999).

Next, we consider the asymptotical behavior of the absolute ruin probability for light-tailed
claims. A claim size distribution is said to be light tailed if the moment generating function of
the distribution exists.
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Theorem 4.2. Assume that there exists a positive constant κ such that
∫ ∞

0 eκx dFe(x) = 1 + θ
and

∫ ∞
0 eκxF̄e(x) dx < ∞. Then we have

ψ+(u) ∼ Cφ(u), (4.7)

for a constant C with 0 < C < 1.

Proof. Under the conditions of Theorem 4.2, using the Lundberg–Cramér asymptotical
formula for the classical ruin probability, we obtain

φ(u) ∼
∫ ∞

0 eκxF̄e(x) dx∫ ∞
0 xeκx dFe(x)

e−κx. (4.8)

Furthermore, we know thatψ+(u) satisfies the defective renewal equation (3.1) and the function
z(x) in (3.3) for ψ+(u) is reduced to

z(x) = λ

c

∫ ∞

x

(∫ t+c/δ

t

ψ−(t − y) dF(y)+ F̄

(
t + c

δ

))
dt.

It is easy to see from 0 < ψ−(u) < 1 that

0 < z(x) <
λ

c

∫ ∞

x

(
F

(
t + c

δ

)
− F(t)+ F̄

(
t + c

δ

))
dt =

(
1

1 + θ

)
F̄e(x), (4.9)

which implies that
∫ ∞

0 eκxz(x) dx < ∞ since
∫ ∞

0 eκxF̄e(x) dx < ∞. Then, by Proposi-
tion 3.11.1 of Resnick (1992), we obtain

ψ+(u) ∼ (1 + θ)
∫ ∞

0 eκxz(x) dx∫ ∞
0 xeκx dFe(x)

e−κx. (4.10)

Hence, (4.8) and (4.10) imply

ψ+(u) ∼ (1 + θ)
∫ ∞

0 eκxz(x) dx∫ ∞
0 eκxF̄e(x) dx

φ(u),

which, together with (4.9), implies that there exists a constant

C = (1 + θ)
∫ ∞

0 eκxz(x) dx∫ ∞
0 eκxF̄e(x) dx

,

such that 0 < C < 1 and (4.7) holds.

It is well known that the positive constant κ is unique provided it exists. However, there exist
distributions that satisfy

∫ ∞
0 eκx dFe(x) < 1 + θ for any κ > 0. See, for example, Embrechts

et al. (1999, p. 33) for details. Theorems 4.1 and 4.2 show that the relationship between the
absolute ruin probability and the classical ruin probability for small claims are different from
that for large claims.
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5. Explicit results for exponential claims

In this section, we assume that F(y) = 1 − e−y/µ, y ≥ 0, is an exponential distribution
function with mean µ. In this case, (2.14) is reduced to

(λ+ α)�−(u)− (δu+ c)�′−(u)− λA(u) = λ

µ
e−u/µ

∫ u

−c/δ
ex/µ �−(x) dx. (5.1)

Differentiating (5.1) with respect to u and then rearranging, we obtain

(a2u+ b2)�
′′−(u)+ (a1u+ b1)�

′−(u)+ b0�−(u) = −λ
(
A′(u)+ 1

µ
A(u)

)
, (5.2)

where

a2 = δ, b2 = c, a1 = δ

µ
, b1 = c

µ
+ δ − λ− α, b0 = −α

µ
.

For α = 0, we can obtain the explicit expression for �−(u) by solving the differential
equation (5.2) and then obtain the explicit expression for �+(u) using (3.2).

Theorem 5.1. Let α = 0 and let F be an exponential distribution with mean µ. If the function
A(x) defined in (2.3) satisfies (2.7) then, for any −c/δ < u < 0, we obtain

�−(u) = C1 −
∫ 0

u

e−x/µ(δx + c)−1+λ/δ
[
C2 +

∫ x

0
ey/µ(δy + c)1−λ/δg(y) dy

]
dx, (5.3)

where the function g(u) is defined as

g(u) = −λ(µA
′(u)+ A(u))

µ(δu+ c)
. (5.4)

Also, the constants C1 and C2 are given by

C1 = −λβ3P(−c/δ)+ λβ2[Q(−c/δ)+ A(−c/δ)]
λβ2 + (c − λβ1)P (−c/δ) , (5.5)

C2 = −λβ3 − (c − λβ1)[Q(−c/δ)+ A(−c/δ)]
λβ2 + (c − λβ1)P (−c/δ) , (5.6)

where

β1 = µ(1 − e−c/(δµ)),

β2 = µ

[
−P(−c/δ) e−c/(δµ) + cλ/δ

λ

]
,

β3 =
∫ 0

−c/δ
ex/µQ(x) dx −

∫ ∞

0
A(t) dt,

P (u) =
∫ 0

u

e−x/µ(δx + c)−1+λ/δ dx,

Q(u) =
∫ 0

u

e−x/µ(δx + c)−1+λ/δ
(∫ x

0
ey/µ(δy + c)1−λ/δg(y) dy

)
dx. (5.7)
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Proof. When α = 0, (5.2) is reduced to

�′′−(u)+ f (u)�′−(u) = g(u), (5.8)

where f (u) = (δu+ c + µ(δ − λ))/(µ(δu+ c)). The general solution to (5.8) is

�−(u) = C1 +
∫

exp

(
−

∫
f (u) du

)(
C2 +

∫
exp

(∫
f (u) du

)
g(u) du

)
du

= C1 − C2P(u)−Q(u), (5.9)

whereC1 andC2 are arbitrary constants. See, for example, Polyanin and Zaitsev (1995, p. 212).
Thus, by (2.15) and (5.9), we obtain∫ ∞

0
B(t) dt = C1β1 − C2β2 − β3. (5.10)

Furthermore, by (2.6) and (3.6), we obtain

�−(0−) = λ

c

∫ ∞

0
B(t) dt, (5.11)

which, together with (5.9), (5.10), P(0) = 0, and Q(0) = 0, implies that

C1 = λ

c
(C1β1 − C2β2 − β3). (5.12)

Moreover, if (2.7) holds, then (2.8) and (5.9) yield

C1 − C2P

(
−c
δ

)
−Q

(
−c
δ

)
= A

(
−c
δ

)
. (5.13)

Therefore, solving (5.12) and (5.13), we obtain (5.5) and (5.6).

We point out that if A(x) satisfies (2.9), then we can also obtain the explicit expression for
�−(u) by replacing (5.13) by C1 − C2P(−c/δ)−Q(−c/δ) = 0. We omit the expression for
�−(u) in this case since most intersecting penalty functions satisfy (2.7).

Next, we illustrate the applications of Theorem 5.1 by giving explicit expressions for the
absolute ruin probability and the (defective) distribution function of the deficit at absolute ruin
when absolute ruin occurs in the following examples.

Example 5.1. (Absolute ruin probability.) When α = 0 andw(x1, x2) = 1, we obtainA(u) =
e−u/µ e−c/(δµ), A(−c/δ) = 1, �−(u) = ψ−(u), and �+(u) = ψ+(u). It is easy to verify that
the function defined in (5.4) satisfies g(u) = 0. Hence, the function defined in (5.7) satisfies
Q(u) = 0 and β3 = −µe−c/(δµ). Thus, (5.5) and (5.6) give

C1 = cλ/δ

cλ/δ + λθP (−c/δ) , (5.14)

C2 = −λθ
cλ/δ + λθP (−c/δ) , (5.15)

which, together with (5.3), imply that the absolute ruin probability satisfies

ψ−(u) = 1 + (λθ/c)
∫ 0
u

e−x/µ(1 + δx/c)−1+λ/δ dx

1 + (λθ/c)
∫ 0
−c/δ e−x/µ(1 + δx/c)−1+λ/δ dx

(5.16)

for −c/δ < u < 0.
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Equation (5.16) yields Equation (3.12) of Dassios and Embrechts (1989). Furthermore, by
(2.15) and (5.11) and noting that F̄ (x) = F̄e(x) = e−x/µ for x ≥ 0, we have

∫ ∞

x

B(t) dt =
∫ ∞

x

∫ t+c/δ

t

ψ−(t − y)
1

µ
e−y/µ dy dt +

∫ ∞

x

A(t) dt

=
(∫ ∞

0
B(t) dt

)
e−x/µ

= c

λ
ψ−(0−)F̄e(x)

for x ≥ 0, which implies that the function defined in (3.3) satisfies z(x) = ψ−(0−)F̄e(x). It
follows from (5.16) that

ψ−(0−) =
(

1 + λθ

c

∫ 0

−c/δ
e−x/µ

(
1 + δx

c

)−1+λ/δ
dx

)−1

.

Hence, for u ≥ 0, (3.2) and (3.7) yield

ψ+(u) = ψ−(0−)1 + θ

θ

∫ u

0
F̄e(u− x) dG(x) = (1 + θ)ψ−(0−)φ(u). (5.17)

It is well known that when F is the exponential distribution, the classical ruin probability
φ(u) is given by

φ(u) = 1

1 + θ
exp

(
−λθ
c
u

)
, u ≥ 0.

Then, by (5.16) and (5.17), we obtain that the absolute ruin probability satisfies

ψ+(u) = exp(−(λθ/c)u)
1 + (λθ/c)

∫ 0
−c/δ exp(−x/µ)(1 + δx/c)−1+λ/δ dx

for u ≥ 0, which recovers Theorem 12 of Dassios and Embrechts (1989).

Example 5.2. (The deficit at absolute ruin.) Whenα = 0 andw(x1, x2) = 1{x2≤y} for y ≥ c/δ,
we obtain A(u) = e−u/µ(e−c/(δµ) − e−y/µ), A(− c

δ
) = 1 − ec/(δµ) e−y/µ, and

�(u) = P(|Uδ(Tδ)| ≤ y, Tδ < ∞ | Uδ(0) = u) = G(y, u),

which is the (defective) distribution function of the deficit at absolute ruin when absolute ruin oc-
curs. It is easy to see thatA(u) satisfies (2.7) and the function defined in (5.4) satisfies g(u) = 0.
Hence, the function defined in (5.7) satisfiesQ(u) = 0 and β3 = −µ(e−c/(δµ)−e−y/µ). Thus,
(5.5) and (5.6) give

C1 = cλ/δ(1 − ec/(δµ) e−y/µ)
cλ/δ + λθP (−c/δ) , (5.18)

C2 = −λθ(1 − ec/(δµ) e−y/µ)
cλ/δ + λθP (−c/δ) . (5.19)

Notice that the function g(u) = 0 in (5.3) and the constants in (5.14) and (5.15) are
proportional to those in (5.18) and (5.19) respectively, by the same factor 1 − ec/(δµ) e−y/µ.
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Thus, by (5.3), for −c/δ < u < 0 and y ≥ c/δ, we obtain

G(y, u) = ψ−(u)(1 − ec/(δµ) e−y/µ)

= 1 + (λθ/c)
∫ 0
u

e−x/µ(1 + δx/c)−1+λ/δ dx

1 + (λθ/c)
∫ 0
−c/δ e−x/µ(1 + δx/c)−1+λ/δ dx

(1 − ec/(δµ) e−y/µ). (5.20)

Furthermore, by (2.15) and (5.11) and noting that∫ ∞

x

A(t) dt = µe−x/µ(e−c/(δµ) − e−y/µ)

and F̄ (x) = F̄e(x) = e−x/µ for x ≥ 0, we have
∫ ∞

x

B(t) dt =
∫ ∞

x

∫ t+c/δ

t

�−(t − y)
1

µ
e−y/µ dy dt +

∫ ∞

x

A(t) dt

=
(∫ ∞

0
B(t) dt

)
e−x/µ = c

λ
�−(0−)F̄e(x)

for x ≥ 0, which implies that the function defined in (3.3) satisfies z(x) = �−(0−)F̄e(x) =
G(y, 0−)F̄e(x) for y ≥ c/δ and x ≥ 0. It follows from (5.20) that, for y ≥ c/δ,

G(y, 0−) = 1 − ec/(δµ) e−y/µ

1 + (λθ/c)
∫ 0
−c/δ e−x/µ(1 + δx/c)−1+λ/δ dx

.

Hence, for u ≥ 0 and y ≥ c/δ, (3.2) and (3.7) yield

G(y, u) = G(y, 0−)1 + θ

θ

∫ u

0
F̄e(u− x) dG(x)

= (1 + θ)G(y, 0−)φ(u)

= (1 − ec/(δµ) e−y/µ) exp(−λθ
c
u)

1 + (λθ/c)
∫ 0
−c/δ e−x/µ(1 + δx/c)−1+λ/δ dx

.

Therefore, the conditional distribution function of the deficit at absolute ruin, given that
absolute ruin occurs, satisfies

P(|Uδ(Tδ)| ≤ y | Tδ < ∞) = G(y, u)

ψ+(u)
= (1 − ec/(δµ) e−y/µ)

for u ≥ 0 and y ≥ c/δ. Thus, the expected deficit at absolute ruin, given that absolute ruin
occurs, satisfies

E(|Uδ(Tδ)| | Tδ < ∞) = 1

µ

∫ ∞

c/δ

yec/(δµ) e−y/µ dy = µ+ c

δ
(5.21)

for u ≥ 0. Equation (5.21) means that when the claim size distribution F is the exponential
distribution,

E(|Uδ(Tδ)| | Tδ < ∞) = E(|U(T )| | T < ∞)+ c

δ
, (5.22)

since E(|U(T )| | T < ∞) = µ in this case. However, we do not know if (5.22) holds for
general claim size distributions.
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Similarly, we can obtain explicit expressions for the distribution functions of the surplus
just before absolute ruin and the amount causing absolute ruin when absolute ruin occurs
by, respectively, setting w(x1, x2) = 1{x1≤x}, for x > −c/δ, and w(x1, x2) = 1{x1+x2≤y}, for
y > 0, in Theorem 5.1. More results related to absolute ruin can also be obtained by considering
suitable penalty functions.

When α > 0, the general solutions to the second-order differential equation (5.2) are
available but more complicated. We illustrate the solutions to (5.2) by deriving explicit
expressions for the Laplace transform of the time to absolute ruin.

Example 5.3. (The Laplace transform of the time to absolute ruin.) When w(x1, x2) = 1, we
obtain A(u) = e−u/µ e−c/δµ, A(−c/δ) = 1, and �(u) = E(e−αTδ 1{Tδ<∞}) is the Laplace
transform of the time to absolute ruin. It is easy to see thatA(u) satisfies (2.7). Thus, it follows
from (2.8) that

lim
u↓−c/δ �−(u) = λ

λ+ α
. (5.23)

Furthermore, it is easy to verify thatA′(u)+(1/µ)A(u) = 0. Thus, by the transforms�−(u) =
y(x) and x = (u+ b2/a2)/(−a2/a1) = −µ(u+ c/δ), for −c/δ < u < 0, (5.2) is reduced to
a confluent hypergeometric equation

xy′′
xx + (b − x)y′

x − ay = 0, x < 0, (5.24)

where

b = a2b1 − a1b2

a2
2

= 1 − λ+ α

δ
and a = b0

a1
= −α

δ
.

The general solution to (5.24) is a linear combination of two independent solutions. Hence, by
Equations (13.1.15) and (13.1.18) of Abramowitz and Stegun (1972), we obtain

y(x) = c1exU(b − a, b; −x)+ c2(−x)1−bexM(1 − a, 2 − b; −x), x < 0,

where M(a, b; x) and U(a, b; x) are the confluent hypergeometric functions of the first and
second kinds respectively, and c1 and c2 are arbitrary constants. Thus,

�−(u) = y

(
−µ

(
u+ c

δ

))
= c1h1(u)+ c2h2(u), −c/δ < u < 0, (5.25)

where

h1(u) = e−µ(u+c/δ) U
(
b − a, b;µ

(
u+ c

δ

))
,

h2(u) =
(
µ

(
u+ c

δ

))1−b
e−µ(u+c/δ) M

(
1 − a, 2 − b;µ

(
u+ c

δ

))
.

By (2.13) and using arguments similar to those used for (5.2), we can show that �+(u)
satisfies the following second-order differential equation:

c�′′+(u)+
(
c

µ
− λ− α

)
�′+(u)− α

µ
�+(u) = −λ

(
B ′(u)+ 1

µ
B(u)

)
, u ≥ 0. (5.26)

When F is the exponential distribution, it is easy to verify from (2.15) that

B ′(u)+ 1

µ
B(u) = A′(u)+ 1

µ
A(u) = 0.
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Hence, (5.26) is reduced to

�′′+(u)+ p�′+(u)+ q�+(u) = 0, u ≥ 0, (5.27)

where

p = 1

µ
− λ+ α

c
and q = − α

µc
.

Because p2 − 4q > 0, the general solution to (5.27) is

�+(u) = d1 exp

{√
p2 − 4q − p

2
u

}
+ d2 exp

{
−

√
p2 − 4q + p

2
u

}
, u ≥ 0,

where d1 and d2 are arbitrary constants. However, limu→∞�+(u) = 0. Hence, d1 must be
zero. Thus,

�+(u) = d2 exp

{
−p + √

p2 − 4q

2
u

}
, u ≥ 0. (5.28)

To specify the expressions of�+(u) and�−(u), we need to determine the constants c1, c2,
and d2. In doing so, by Equations (13.5.10) and (13.5.12) of Abramowitz and Stegun (1972),
we know that if b �= 0 then limu↓−c/δ h1(u) = 
(1 − b)/
(1 − a), where 
(·) is the gamma
function. Thus, by (2.6), (2.16), (5.23), and limu↓−c/δ h2(−c/δ) = 0, we obtain the following
three equations:

c1h1(0)+ c2h2(0) = d2,

c1h
′
1(0)+ c2h

′
2(0) = −d2

2
(p +

√
p2 − 4q),

c1

(1 − b)


(1 − a)
= λ

λ+ α
. (5.29)

Solving the three equations we determine the required constants as follows:

c1 = λ
(1 − a)

(λ+ α)
(1 − b)
, (5.30)

c2 = −λ
(1 − a)(h′
1(0)+ ((p + √

p2 − 4q)/2)h1(0))

(λ+ α)
(1 − b)(h′
2(0)+ ((p + √

p2 − 4q)/2)h2(0))
, (5.31)

d2 = λ
(1 − a)(h1(0)h′
2(0)− h′

1(0)h2(0))

(λ+ α)
(1 − b)(h′
2(0)+ ((p + √

p2 − 4q)/2)h2(0))
. (5.32)

Using

d

dx
M(a, b; x) = a

b
M(a + 1, b + 1; x) and

d

dx
U(a, b; x) = −aU(a + 1, b + 1; x),
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we obtain explicit expressions for h1(0), h′
1(0), h2(0), and h′

2(0) as follows:

h1(0) = e−µc/δ U
(
b − a, b; µc

δ

)
, (5.33)

h′
1(0) = −µe−µc/δ

[
U

(
b − a, b; µc

δ

)
+ (b − a)U

(
b − a + 1, b + 1; µc

δ

)]
, (5.34)

h2(0) =
(
µc

δ

)1−b
e−µc/δ M

(
1 − a, 2 − b; µc

δ

)
, (5.35)

h′
2(0) = µ

(
µc

δ

)1−b
e−µc/δ

[(
(1 − b)

(
µc

δ

)−1

− 1

)
M

(
1 − a, 2 − b; µc

δ

)

+ 1 − a

2 − b
M

(
2 − a, 3 − b; µc

δ

)]
. (5.36)

Hence, if b �= 0 then the explicit expressions for the Laplace transform of the time to
absolute ruin are given by (5.28) and (5.25) for u ≥ 0 and −c/δ < u < 0, respectively, where
the constants c1, c2, and d2 are specified by (5.30)–(5.36).

Finally, we point out that if b = 0, then Equation (13.5.11) ofAbramowitz and Stegun (1972)
yields limu↓−c/δ h1(u) = 1/
(1 + a). The explicit expressions for the Laplace transforms
are still given by (5.28) and (5.25) for u ≥ 0 and −c/δ < u < 0, respectively. However, the
constants c1, c2, and d2 are specified by replacing (5.29) by c1/
(1 + a) = λ/(λ + α) and
solving the corresponding three equations. We point out that the case of b = 0 or δ = λ + α

is less important in practice since the interest force δ is usually less than one while the Poisson
rate λ is usually larger than one. Therefore, we omit the expressions for the constants c1, c2,
and d2 in this case.

6. Conclusions

We assume that an insurer could borrow money at a debit interest rate when the insurer is
on deficit. With debit interest, absolute ruin may occur, namely, the surplus of the insurer is
no longer able to return to a positive level. It is interesting both in theory and in application to
consider absolute ruin questions and the effect of debit interest on the surplus of an insurer. As
shown in this paper, many absolute ruin questions can be studied in a unified approach by the
expected discounted penalty function. We expect that this approach can be employed to study
absolute ruin questions in other risk models. However, there are still some interesting questions
on this topic that cannot be dealt with by the expected discounted penalty function, such as the
joint distribution of the absolute ruin time and the classical ruin time, the distribution of the
total duration of the negative surplus until absolute ruin, and so on. We leave these issues for
further research.
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