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Asymptotic homogenisation via the method of multiple scales is considered for problems in

which the microstructure comprises inclusions of one material embedded in a matrix formed

from another. In particular, problems are considered in which the interface conditions include

a global balance law in the form of an integral constraint; this may be zero net charge on the

inclusion, for example. It is shown that for such problems care must be taken in determining

the precise location of the interface; a naive approach leads to an incorrect homogenised

model. The method is applied to the problems of perfectly dielectric inclusions in an insulator,

and acoustic wave propagation through a bubbly fluid in which the gas density is taken to

be negligible.

Key words: homogenisation; multiple scales; perfect dielectric; rigid inclusions; bubbly fluid;

effective medium; averaging; coarse graining

1 Introduction and motivation

The technique of asymptotic homogenisation via multiple scales is widely used for a variety

of problems involving a (locally) periodic microstructure for which bulk or effective equa-

tions are required [5–7]. Typical applications include the derivation of Darcy flow from

the Stokes equations, homogenisation of a rapidly varying porosity/conductivity/diffusion

coefficient, effective elastic properties of composite materials, and the transmission of

acoustic waves through bubbly fluids.

Our interest in this paper lies with problems for which the unit cell contains more than

one region; for example, the unit cell may contain two materials in which the (perhaps

different) field equations must be solved, separated by an interface. Such microstructures

arise naturally and frequently; the examples of composite materials and bubbly liquids

above fall into this category. If the conditions on the interface between these regions are

natural, representing for example continuity of flux, and the field equations are the same

on both sides of the interface, then such interfaces pose no additional complication over

and above the usual multiple scales procedure. In fact, if the interface arises simply through

a discontinuous coefficient in the field equation (the Young’s modulus for example), the

multiple scales procedure can be carried out assuming a smoothly varying coefficient, and

the sharp interface limit taken subsequently (the two limiting procedures commute).

However, if the interface conditions involve a global balance in the form of an integral

constraint, then more care needs to be taken: we will see that a naive approach leads to an

incorrect homogenised model. Such a constraint appears for example when considering

https://doi.org/10.1017/S0956792514000412 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000412


596 S. J. Chapman and S. E. McBurnie

an array of electrically conducting inclusions in an insulating matrix: the net charge on

each inclusion must be zero. We give more examples in Section 3.

Our motivation for the present study came from a claim in [2] that the multiple scales

limit did not commute with the limit of small gas density for the problem of acoustic

waves in a bubbly fluid. We will show that in fact the limits do commute, but that a

careful handling of the interface is necessary when the small gas density limit is taken

first.

We note that the method of multiple scales is just one approach to deriving effective-

medium equations for problems with a detailed microstructure. A related technique is

volume averaging [10], which often results in the same effective-medium equations [3].

An entirely different approach involves treating the microstructure as stochastic, and

averaging not over space but over realisations of the microstructure [1, 9]. It is usually

very difficult to estimate the effective properties from such a description, since doing

so requires an infinite set of statistical correlation functions, which are generally never

known [8]. Nevertheless, variational methods can often be used to obtain upper and lower

bounds on the effective material properties [4]. We are not aware of any attempt to apply

either of these methods to problems involving integral constraints on microinclusions.

We first present a one-dimensional paradigm problem which enables us to illustrate the

failings of the naive multiple scales approach, as well as the way to correct it. We then

present in Section 3 a number of physical examples in which integral constraints arise.

In Section 4, we use one of these examples to illustrate the application of the method in

three dimensions. In Section 5, we return to the problem of acoustic wave propagation

through a bubbly fluid. Finally, in Section 6, we present our conclusions.

2 A one-dimensional paradigm problem

We consider the following one-dimensional paradigm problem:

d

dx

(
a
(x

ε

) dy

dx

)
= f

(x

ε

)
, (2.1)

where a(X) is assumed 1-periodic in X and is given by

a (X) =

⎧⎪⎪⎨
⎪⎪⎩

a1 if 0 � X < 1
3
,

a2 if 1
3
< X < 2

3
,

a1 if 2
3
< X < 1,

(2.2)

and the source term f(X) is assumed 1-periodic in X and is given by

f (X) =

⎧⎪⎪⎨
⎪⎪⎩

f1 if 0 � X < 1
3
,

f2 if 1
3
< X < 2

3
,

f1 if 2
3
< X < 1.

(2.3)
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For ease of exposition, we assume that the fi and ai (i = 1, 2) are constant, though the

modification if this is not the case is easy to make. At the interfaces x/ε mod 1 = 1/3, 2/3

both y and a dy/dx should be continuous.

Introducing the fast scale X = x/ε, writing y = y(x,X) with y 1-periodic in X and

treating x and X as independent as is usual in multiple scales gives(
ε

∂

∂x
+

∂

∂X

)(
a(X)

(
ε

∂y

∂x
+

∂y

∂X

))
= ε2f (X) . (2.4)

Expanding y = y0 + εy1 + · · · gives at leading order

∂

∂X

(
a(X)

(
∂y0

∂X

))
= 0,

for which the relevant solution is y0 = y0(x). At next order in (2.4) we find

∂

∂X

(
a(X)

(
dy0

dx
+

∂y1

∂X

))
= 0,

so that
dy0

dx
+

∂y1

∂X
=

Q(x)

a(X)
,

say. Integrating over X and using the periodicity of y1 gives

dy0

dx
= Q(x)

∫ 1

0

dX

a(X)
.

At next order in (2.4), we find

∂

∂x

(
a(X)

(
dy0

dx
+

∂y1

∂X

))
+

∂

∂X

(
a(X)

(
∂y1

∂x
+

∂y2

∂X

))
= f (X) ,

i.e.

dQ

dx
+

∂

∂X

(
a(X)

(
∂y1

∂x
+

∂y2

∂X

))
= f (X) ,

Integrating over X (and using the continuity of a(X)(∂y1/∂x + ∂y2/∂X)) gives

dQ

dx
=

∫ 1

0

f(X) dX.

Thus the leading-order homogenised problem is

d

dx

(
1∫ 1

0 a(X)−1dX

dy0

dx

)
=

∫ 1

0

f(X) dX.

For our particular case of a and f being step functions this reduces to

3a2a1

2a2 + a1

d2y0

dx2
=

2f1 + f2

3
. (2.5)
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In the limit a2 → ∞, (2.5) becomes

3a1

2

d2y0

dx2
=

2f1 + f2

3
. (2.6)

Our aim is to show that this result can be obtained by first passing to the limit a2 → ∞,

and then using a multiple-scales expansion, though care needs to be taken.

2.1 The limit a2 → ∞

Taking a2 → ∞ in (2.1) gives

a1
d2y

dx2
= f1 for

x

ε
(mod1) ∈ (0, 1/3) ∪ (2/3, 1), (2.7)

d2y

dx2
= 0 for

x

ε
(mod1) ∈ (1/3, 2/3), (2.8)

with y continuous at x/ε mod 1 = 1/3, 2/3 and

dy

dx
= 0 at

x

ε
(mod1) =

1

3

+

and
2

3

−
. (2.9)

It is clear immediately that this limit problem is not well-posed, and an additional condition

needs to be given. Equations (2.8) and (2.9) give that in each middle third of the periodic

cell y is constant, and continuity of y then links the values of y at x/ε(mod1) = 1/3−

and 2/3+. However, we have no information on the derivative at these points, and this

is the extra information which must be supplied. We expect this information to depend

on f2, since this constant appears in the limiting homogenised problem (2.6), but does

not appear in (2.7)–(2.9). To derive this extra condition, we integrate (2.1) over x from

x = εn + ε/3 to x = εn + 2ε/3 for some n ∈ � to give

a2

[
dy

dx

]ε(n+2/3)−

ε(n+1/3)+
=

∫ ε(n+2/3)

ε(n+1/3)

d

dx

(
a2

dy

dx

)
dx =

∫ ε(n+2/3)

ε(n+1/3)

f2 dx =
ε

3
f2.

We can then use the continuity of flux to give

a1
dy

dx

∣∣∣∣
ε(n+2/3)+

− a1
dy

dx

∣∣∣∣
ε(n+1/3)−

=
ε

3
f2. (2.10)

This condition is retained in the limit a2 → ∞, and is the extra piece of information we

need to make (2.7)–(2.9) well-posed.

Now the equation y = constant for x/ε(mod1) ∈ (1/3, 2/3) is not suitable for multiple

scales (the constant may be different in different cells). To perform a multiple-scales

analysis it is crucial to write instead

dy

dx
= 0 when

1

3
<

x

ε
mod 1 <

2

3
. (2.11)
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Converting (2.7) and (2.11) into multiple scales form, introducing X as before, we have

a1

(
ε

∂

∂x
+

∂

∂X

)2

y = ε2f1 for X ∈ (0, 1/3) ∪ (2/3, 1), (2.12)(
ε

∂

∂x
+

∂

∂X

)
y = 0 for X ∈ (1/3, 2/3), (2.13)

with y continuous at X = 1/3, 2/3. We expand write y = y(x,X) with y 1-periodic in X

and expand

y = y0(x,X) + εy1(x,X) + · · · . (2.14)

As before we find y0 = y0(x). At O(ε) we find

a1
∂

∂X

(
∂y1

∂X
+

dy0

dx

)
= 0 for X ∈ (0, 1/3) ∪ (2/3, 1), (2.15)(

∂y1

∂X
+

dy0

dx

)
= 0 for X ∈ (1/3, 2/3). (2.16)

Thus

a1

(
∂y1

∂X
+

dy0

dx

)
=

{
QL(x) for X ∈ (0, 1/3),

QR(x) for X ∈ (2/3, 1),
(2.17)

say. Now by periodicity and by continuity of y at X = 1/3, 2/3, we have

0 =

∫ 1

0

∂y1

∂X
dX =

1

3

(
QL

a1
− dy0

dx

)
+

1

3

(
QR

a1
− dy0

dx

)
− 1

3

dy0

dx
,

so that
dy0

dx
=

(QL + QR)

3a1
. (2.18)

At O(ε2), equation (2.12) gives

a1
∂

∂X

(
∂y2

∂X
+

∂y1

∂x

)
+

dQL

dx
= f1 for X ∈ (0, 1/3), (2.19)

a1
∂

∂X

(
∂y2

∂X
+

∂y1

∂x

)
+

dQR

dx
= f1 for X ∈ (2/3, 1). (2.20)

Integrating (2.19) and (2.20) and using periodicity gives

2

3
f1 − 1

3

(
dQL

dx
+

dQR

dx

)
=

∫ 1
3

−

0

(
f1 − dQL

dx

)
dX +

∫ 1

2
3

+

(
f1 − dQR

dx

)
dX

= a1

(
∂y2

∂X
+

∂y1

∂x

)∣∣∣∣
1
3

−
− a1

(
∂y2

∂X
+

∂y1

∂x

)∣∣∣∣
2
3

+
. (2.21)

To evaluate the right-hand side, we turn to our extra flux condition (2.10). It seems natural

that in multiple scales form this equation should become

a1

(
ε

∂y

∂x
+

∂y

∂X

)∣∣∣∣
X= 2

3

+
− a1

(
ε

∂y

∂x
+

∂y

∂X

)∣∣∣∣
X= 1

3

−
=

ε2

3
f2. (2.22)

https://doi.org/10.1017/S0956792514000412 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000412


600 S. J. Chapman and S. E. McBurnie

If this were true then at O(ε) it implies QL = QR , while at O(ε2) it gives

a1

(
∂y1

∂x
+

∂y2

∂X

)∣∣∣∣
X= 2

3

+
− a1

(
∂y1

∂x
+

∂y2

∂X

)∣∣∣∣
X= 1

3

−
=

f2

3
. (2.23)

Substituting this into (2.21) gives

2f1 + f2

3
=

1

3

(
dQL

dx
+

dQR

dx

)
, (2.24)

which combines with (2.18) to give

a1
d2y0

dx2
=

2f1 + f2

3
. (2.25)

Comparing with (2.6), we see that the right-hand side is correct, but that the effective

diffusivity is incorrect by a factor of 3/2.

The mistake arose when we naively put the left-hand side of (2.22) into multiple scales

form. We must be careful to take account of the O(ε) drift in x between X = 1/3 and

X = 2/3. For ease of notation we write

Q = a1
dy

dx
.

Given an arbitrary point x, the interior interfaces in the unit cell lie at xL = x − εb+ ε/3

and xR = x − εb + 2ε/3, where b = x/ε − �x/ε� is the phase shift between x and the

periodic structure. Then, equation (2.10) becomes

Q

((
x − εb +

2ε

3

)+
)

− Q

((
x − εb +

ε

3

)−
)

=
ε

3
f2. (2.26)

In multiple scales form this gives

ε

3
f2 = Q

(
x + ε

(
−b +

2

3

+)
,
2

3

+)
− Q

(
x + ε

(
−b +

1

3

−)
,
1

3

−)

= Q

(
x,

2

3

+)
+ ε

(
−b +

2

3

)
Qx

(
x,

2

3

+)
+ · · ·

− Q

(
x,

1

3

−)
− ε

(
−b +

1

3

)
Qx

(
x,

1

3

−)
+ · · · , (2.27)

At O(1) equation (2.27) gives

Q0

(
x,

2

3

+)
− Q0

(
x,

1

3

−)
= 0, (2.28)

which, with (2.17), gives QL(x) = QR(x). Then at O(ε) equation (2.27) gives

Q1

(
x,

2

3

+)
− Q1

(
x,

1

3

−)
=

f2

3
− 1

3

dQL

dx
, (2.29)
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which is

a1

(
∂y1

∂x
+

∂y2

∂X

)∣∣∣∣
X= 2

3

+
− a1

(
∂y1

∂x
+

∂y2

∂X

)∣∣∣∣
X= 1

3

−
=

f2

3
− 1

3

dQL

dx
.

Note the extra term on the right-hand side by comparison with (2.23). This extra term is

just what we need so that after substituting into (2.21) and using (2.18) we arrive at (2.6).

2.2 Flux formulation

In the analysis above the flux Q arises as a natural variable. It is illustrative to perform

the same multiple-scales procedure after recasting the equations using Q as a dependent

variable. We write the equations as

Q = a
dy

dx
,

dQ

dx
= f, (2.30)

with y and Q continuous at the interfaces x/ε mod 1 = 1/3, 2/3. In multiple scales form

with our particular choice of a and f this becomes

QX + εQx = εf1 for X ∈ (0, 1/3) ∪ (2/3, 1), (2.31)

QX + εQx = εf2 for X ∈ (1/3, 2/3), (2.32)

a1yX + a1εyx = εQ for X ∈ (0, 1/3) ∪ (2/3, 1), (2.33)

yX + εyx = 0 for X ∈ (1/3, 2/3). (2.34)

Note that in this case, since we have retained (2.32), we have not needed to impose an

additional integral condition. We expand

y = y0(x,X) + εy1(x,X) + · · · , Q = Q0(x,X) + εQ1(x,X) + · · · , (2.35)

and assume that each term is 1-periodic in X. At leading order we find ∂y0/∂X =

∂Q0/∂X = 0, which, with continuity at X = 1/3 and X = 2/3, gives y0 = y0(x),

Q0 = Q0(x). Equating O (ε) terms in (2.31)–(2.34) gives

∂Q1

∂X
+

∂Q0

∂x
= f1 for X ∈ (0, 1/3) ∪ (2/3, 1), (2.36)

∂Q1

∂X
+

∂Q0

∂x
= f2 for X ∈ (1/3, 2/3), (2.37)

a1
∂y1

∂X
+ a1

∂y0

∂x
= Q0 for X ∈ (0, 1/3) ∪ (2/3, 1), (2.38)

∂y1

∂X
+

∂y0

∂x
= 0 for X ∈ (1/3, 2/3). (2.39)

Integrating (2.36) and (2.37) and using periodicity and continuity of Q1 and X = 1/3 and

X = 2/3 gives

0 =

∫ 1

0

∂Q1

∂X
dX =

2f1 + f2

3
− ∂Q0

∂x
. (2.40)
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Now integrating (2.38) and (2.39) and using periodicity and continuity of y1 yields

0 =

∫ 1

0

∂y1

∂X
dX =

2

3

Q0

a1
− dy0

dx
. (2.41)

Eliminating Q0 from (2.40) and (2.41) gives

3a1

2

d2y0

dx2
=

2f1 + f2

3
, (2.42)

as required.

Although the flux formulation works very well in one-dimension, it does not generalise

easily to higher dimensions. In particular, in the bubble fluid problem which follows, it is

not possible to use u and p as variables and avoid integral constraints because of a lack

of information on u inside the bubble. In one dimension, the flux Q is independent of the

fast scale to leading order; the same is not true in higher dimensions.

3 Physical examples of problems involving integral constraints

In addition to the propagation of acoustic waves through a bubbly fluid mentioned in

the introduction, there are a number of other physical situations which lead to a spatially

uniform field within an inclusion, whose value is determined by an integral constraint. In

particular, we note the following examples.

3.1 High contrast diffusion

If a material Ωe with low thermal conductivity contains closed regions Ωi in which there

is a much higher conductivity then the conductivity may be taken to be infinite in the

inclusions, so that the temperature T is constant there. In that case

ρece
∂T

∂t
= ke∇2T in Ωe,

[T ]ei = 0,

T = Ti(t) in each Ωi,

where ρ, c and k are density, specific heat and thermal conductivity respectively, and [·]ei
denotes the jump in the enclosed quantity across the interface. The temperature in each

inclusion determined by the global energy balance

|Ωi|ρici
dTi

dt
= ke

∫
∂Ωi

∂T

∂n

∣∣∣∣
e

dS.
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3.2 Rigid inclusions in an elastic material

If an elastic material Ωe contains rigid inclusions Ωi, then in the dynamic case

ρe
∂2u

∂t2
= (λe + μe)∇(∇ · u) + μe∇2u in Ωe,

[u]ei = 0,

u = Ui(t) + Ri(t) ∧ (x − xGi
) in each Ωi,

where xGi
is the position of the centre of mass, ρ is the density and λ and μ are the

Lamé constants. The displacement and rotation of each inclusion determined by force

and torque balances. For example, the force balance is

|Ωi|ρi
d2ui

dt2
=

∫
∂Ωi

σ · n|e dS,

i.e.

|Ωi|ρi
∂2ui,k

∂t2
=

∫
∂Ωi

(
λe

∂uk
∂xk

nk + μe

(
∂uk
∂xj

+
∂uj
∂xk

)
nj

)∣∣∣∣
e

dS,

where the summation convention is applied.

3.3 Electrically conducting inclusions in an insulator

If an insulating material Ωe contains closed regions Ωi of conducting material then the

electric field is zero in each inclusion, so that the electric potential φ is constant there. In

that case

∇2φ = 0 in Ωe,

[φ]ei = 0,

φ = φi(t) in each Ωi.

The value in each inclusion determined by the condition of zero net charge

∫
∂Ωi

∂φ

∂n

∣∣∣∣
e

dS = 0.

3.4 Perfectly dielectric inclusions

Our final example is a material with perfectly dielectric inclusions. In general, the electric

field in a dielectric material satisfies Poisson’s equation

∇ · (ε∇φ) = −ρ, (3.1)

where φ is the electric potential, ε is the permittivity, and ρ is the charge density (which

we suppose is given). If the material contains inclusions Ωi of permittivity εi embedded in
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a matrix Ωe of permittivity εe then at the boundary between the two regions

[φ]ei = 0, (3.2)[
ε

∂φ

∂n

]e

i

= 0. (3.3)

In the limit εi → ∞ the inclusions are perfectly dielectric and

εe∇2φ = −ρ in Ωe, (3.4)

∇φ = 0 in Ωi, (3.5)

with boundary condition

[φ]ei = 0, (3.6)

Thus φ is constant on each inclusion (corresponding to zero electric field there as

expected); however, the constant may be different on different inclusions. To close the

problem, we need to add back the information which we have lost in taking the limit.

Integrating (3.1) over Ωi and using (3.3) gives

∫
∂Ωi

εe
∂φ

∂n

∣∣∣∣
e

dS = −
∫
Ωi

ρ dx. (3.7)

4 A paradigm problem in three dimensions

We use the example of perfectly dielectric inclusions described in Section 3.4 to demon-

strate the method developed in Section 2 in higher dimensions. We suppose that ε and ρ

are periodic with period ε, and that

ε = εi, in Ωi, (4.1)

ε = εe, in Ωe, (4.2)

where εi, εe are constant.

We first apply the standard multiple-scales technique to the problem (3.1)–(3.3) with

finite εi, before taking the limit εi → ∞. We then apply multiple scales to the limiting

problem (3.4)–(3.7), and show that the limits commute providing the integral constraint

(3.7) is handled correctly.

4.1 Standard multiple scales

As usual, we write φ = φ(x,X) and suppose that φ is periodic in X with unit period,

treating x and X as independent. The equation then becomes(
∇x +

1

ε
∇X

)
·
(
ε(X)

(
∇x +

1

ε
∇X

))
φ = −ρ(X),
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with boundary conditions

[φ]ei = 0,[
εn ·

(
∇x +

1

ε
∇X

)
φ

]e

i

= 0,

Expanding φ = φ0 + εφ1 + · · · gives at leading order

∇2
Xφ0 = 0 in Ω ≡ Ωi ∪ Ωe,

with boundary conditions

[φ0]
e
i = 0,

[εn · ∇Xφ0]
e
i = 0,

and φ0 1-periodic in X. The only solution is for φ0 to be constant in X, so that φ0 = φ0(x).

At next order

∇2
Xφ1 = 0 in Ω,

with boundary conditions

[φ1]
e
i = 0,

[εn · ∇Xφ1]
e
i = − [ε]ei n · ∇xφ0,

and φ1 1-periodic in X. The solution is

φ1 = Ψ · ∇xφ0 + φ̄1(x),

where Ψ = (Ψ1, Ψ2, Ψ3) satisfies the cell problem

∇2
XΨj = 0 in Ω, (4.3)

with boundary conditions

[
Ψj

]e

i
= 0, (4.4)[

εn · ∇XΨj

]e

i
= − [ε]ei n · ej , (4.5)

with ej the unit vector in the j-direction, along with

∫
Ω

Ψj dX = 0. (4.6)

At next order

εi∇X · (∇Xφ2 + ∇xφ1) + εi∇x · (∇Xφ1 + ∇xφ0) = −ρ(X) in Ωi,

εe∇X · (∇Xφ2 + ∇xφ1) + εe∇x · (∇Xφ1 + ∇xφ0) = −ρ(X) in Ωe,
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with boundary conditions

[φ2]
e
i = 0,

[εn · ∇Xφ2]
e
i = − [εn · ∇xφ1]

e
i .

and φ2 1-periodic in X. Integrating over the unit cell Ω gives

∇x · (ε∇xφ) = −ρeff,

where

ρeff =

∫
Ω

ρ(X) dX,

and the components of the effective conductivity tensor ε are

εij =

∫
Ω

ε

(
δij +

∂Ψj

∂Xi

)
dX. (4.7)

4.2 The limit εi → ∞

If we let εi → ∞ in the cell problem (4.3)–(4.5), we find

∇2
XΨj = 0 in Ω, (4.8)

with boundary conditions

[
Ψj

]e

i
= 0, (4.9)

n · ∇XΨ
i
j = −n · ej , (4.10)

which implies

Ψ = −X + constant in Ωi.

The constant must be chosen so that (4.6) is satisfied.

We must also manipulate the expression for the conductivity tensor (4.7) which gives

zero times infinity in the inclusion. We have

εij =

∫
Ω

ε

(
δij +

∂Ψj

∂Xi

)
dX

=

∫
Ωi

εiδij dX +

∫
∂Ωi

εiXi

∂Ψj

∂n
dS +

∫
Ωe

εeδij dX −
∫

∂Ωi

εeXi

∂Ψj

∂n
dS +

∫
∂Ω

εeXi

∂Ψj

∂n
dS

= εi|Ωi|δij + εe|Ωe|δij + [ε]ei

∫
∂Ωi

Xinj dS +

∫
∂Ω

εeXi

∂Ψj

∂n
dS

= εi|Ωi|δij + εe|Ωe|δij + [ε]ei

∫
Ωi

δij dS +

∫
∂Ω

εeXi

∂Ψj

∂n
dS

= εe|Ω|δij +

∫
∂Ω

εeXi

∂Ψj

∂n
dS. (4.11)

We can now safely take the limit εi → ∞.
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4.3 Direct multiple scales

We now apply the method of multiple scales directly to the limit problem (3.4)–(3.7). We

first remark that, as in our one-dimensional example, it is crucial to write (3.5) as ∇φ = 0

and not as φ = constant.

As usual, we write φ = φ(x,X) and suppose that φ is periodic in X with unit period,

treating x and X as independent. Then

εe

(
∇x +

1

ε
∇X

)2

φ = −ρ(X) in Ωe,(
∇x +

1

ε
∇X

)
φ = 0 in Ωi,

with boundary condition

[φ]ei = 0.

Expanding φ = φ0 + εφ1 + · · · gives at leading order

∇2
Xφ0 = 0 in Ωe,

∇Xφ0 = 0 in Ωi,

with boundary condition

[φ0]
e
i = 0,

and φ0 1-periodic in X. The only solution is for φ0 to be constant in X, so that φ0 = φ0(x).

At next order

∇2
Xφ1 = 0 in Ωe, (4.12)

∇Xφ1 + ∇xφ0 = 0 in Ωi, (4.13)

with boundary condition

[φ1]
e
i = 0,

and φ1 1-periodic in X. The solution is

φ1 = Ψ · ∇xφ0 + φ̄1(x),

where Ψ = (Ψ1, Ψ2, Ψ3) satisfies the cell problem

∇2
XΨj = 0 in Ωe, (4.14)

∇XΨj + ej = 0 in Ωi, (4.15)

with boundary condition

[
Ψj

]e

i
= 0, (4.16)
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with Ψj 1-periodic in X, where ej the unit vector in the j-direction, along with∫
Ω

Ψj dX = 0.

At next order

εe∇X · (∇Xφ2 + ∇xφ1) + εe∇x · (∇Xφ1 + ∇xφ0) = −ρ(X) in Ωe, (4.17)

∇Xφ2 + ∇xφ1 = 0 in Ωi, (4.18)

with boundary condition

[φ2]
e
i = 0,

and φ2 1-periodic in X. Integrating (4.17) over Ωe gives

−
∫
Ωe

ρ dX = −εe

∫
∂Ωi

(∇Xφ2 + ∇xφ1) · n dS + εe

∫
Ωe

(
∇x · ∇Xφ1 + ∇2

xφ0

)
dX

= −εe

∫
∂Ωi

(∇Xφ2 + ∇xφ1) · n dS + εe
∂

∂xj

((∫
Ωe

δij +
∂Ψi

∂Xj

dX

)
∂φ0

∂xi

)

= −εe

∫
∂Ωi

(∇Xφ2 + ∇xφ1) · n dS

+ εe
∂

∂xj

((
δij |Ωe| −

∫
∂Ωi

Xj

∂Ψi

∂n
dS +

∫
∂Ω

Xj

∂Ψi

∂n
dS

)
∂φ0

∂xi

)
. (4.19)

To evaluate the first integral on the right-hand side, we need to use the integral condition

(3.7). As we saw in Section 2.1, we must take care when placing this condition in the

multiple-scales framework.

4.4 Dealing with the integral

As before, it seems natural to write∫
∂Ωi

∂φ

∂n
dS =

∫
∂Ωi

(
1

ε
∇Xφ + ∇xφ

)
· n dS, (4.20)

where ∂Ωi is the outer boundary of the inclusion in the unit cell [−1/2, 1/2]3. However,

this is incorrect, as it neglects the small variation in x around ∂Ωi.

Given an arbitrary point x̂, the interface is given by

{x : x = x̂ − εb + εX where X ∈ ∂Ωi},

where b = x̂/ε − �x̂/ε�. For ease of notation, we let Q = εe∇φ. Then∫
∂Ωi

Q · n dS = ε2

∫
∂Ωi

Q (x̂ − εb + εX,X) · n dS

= ε2

∫
∂Ωi

Q(x̂,X) · n dS + ε3

∫
∂Ωi

(b + X) · ∇x̂Q(x̂,X) · n dS + O
(
ε4

)
. (4.21)
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Expanding Q = Q0 + εQ1 + · · · we have

Q0 = εe (∇Xφ1 + ∇xφ0) , Q1 = εe (∇Xφ2 + ∇xφ1) . (4.22)

Using (4.21) in (3.7) gives, at O(ε2),∫
∂Ωi

Q0(x̂,X) · n dS = 0, (4.23)

which is consistent with (4.12), and at O
(
ε3

)
,∫

∂Ωi

Q1(x̂,X) · n dS +

∫
∂Ωi

X · ∇x̂Q0(x̂,X) · n dS

+

∫
∂Ωi

b · ∇x̂Q0(x̂,X) · n dS = −
∫
Ωi

ρ dX. (4.24)

However, from (4.23) ∫
∂Ωi

b · ∇x̂Q0(x̂,X) · n dS = 0,

while ∫
∂Ωi

X · ∇x (∇xφ0) · n dS =

∫
Ωi

∇X · (X · ∇x (∇xφ0)) dX

=

∫
Ωi

∇2
xφ0 dX = |Ωi|∇2

xφ0. (4.25)

Also, ∫
∂Ωi

(X · ∇x (∇Xφ1)) · n dS =

∫
∂Ωi

Xj

∂

∂xj

∂φ1

∂Xk

nk dS

=
∂

∂xj

∫
∂Ωi

Xj

∂Ψi

∂Xk

∂φ0

∂xi
nk dS

=
∂

∂xj

((∫
∂Ωi

Xj

∂Ψi

∂n
dS

)
∂φ0

∂xi

)
. (4.26)

Thus∫
∂Ωi

Q1(x̂,X) · n dS = −
∫
Ωi

ρ dX − εe|Ωi|∇2
xφ0 − εe

∂

∂xj

((∫
∂Ωi

Xj

∂Ψi

∂n
dS

)
∂φ0

∂xi

)
. (4.27)

Returning to (4.19) and using (4.22) and (4.27)

−
∫
Ωe

ρ dX =

∫
Ωi

ρ dX + εe|Ωi|∇2
xφ0 + εe

∂

∂xj

((∫
∂Ωi

Xj

∂Ψi

∂n
dS

)
∂p0

∂xi

)

+ +εe
∂

∂xj

((
δij |Ωe| −

∫
∂Ωi

Xj

∂Ψi

∂n
dS +

∫
∂Ω

Xj

∂Ψi

∂n
dS

)
∂p0

∂xi

)
. (4.28)

Simplifying gives

∇x · (ε∇xφ) = −ρeff,
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where

ρeff =

∫
Ω

ρ(X) dX,

and the effective conductivity tensor is

εij = εe|Ω|δij + εe

∫
∂Ω

Xi

∂Ψj

∂n
dS, (4.29)

in agreement with (4.11).

5 Acoustic waves in a bubbly fluid

Let us finally return to the problem of acoustic waves in a bubbly fluid, to show that,

contrary to the claim in [2], the multiple scales limit commutes with the limit of small gas

density.

The equations for linearised motion about a periodic array of bubbles with centres (i, j)

are

ζ∗

C2

∂p

∂t
+ ∇ · u = 0, (5.1)

∂u

∂t
+ ζ∗∇p = 0, (5.2)

in the liquid region x : |x − xj | > δ, and

1

γ

∂p

∂t
+ ∇ · u = 0, (5.3)

τ
∂u

∂t
+ ζ∗∇p = 0, (5.4)

in the gas. At the interfaces p and u · n are continuous. Here length, time, pressure and

velocity have been nondimensionalised with λ, 1/f, p0 and c̄ respectively, where λ and

f are the wavelength and frequency of the propagating wave, p0 is the pressure in the

undisturbed fluid, c̄ = λf is the effective wavespeed, C = cl/c̄ where cl is the wavespeed

of the liquid, δ is the nondimensional bubble radius, ζ∗ = p0/ρlc̄
2, τ = ρg/ρl , and γ is the

ratio of specific heats in the gas, and ρg and ρl are the undisturbed densities of the gas

and liquid respectively1

If we eliminate u as in [2] we find

1

C2

∂2p

∂t2
= ∇2p, (5.5)

in the liquid region x : |x − xj | > δ, and

1

ζ∗γ

∂2p

∂t2
=

1

τ
∇2p, (5.6)

with p continuous and n · ∇p|l = τ−1n · ∇p|g on the interface.

1 Note that in [2] velocity is nondimensionalised with δ2c̄, which leads to leading-order nondi-

mensional velocities of O(δ−2). However, in [2] u is eliminated to that velocity is not considered

further.
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In [2] a multiple-scales analysis is performed and effective equations derived. They find

that the leading-order pressure satisfies

3∑
i,j=1

qij
∂2p

∂xi∂xj
=

(
|ΩB |
γζ∗ +

|ΩF |
C2

)
∂2p

∂t2
, (5.7)

where

qij =

〈
a

(
∂χi
∂Xj

+ δij

)〉
, (5.8)

and χi = χi(X) are solutions of the cell problems

∇X · (a(X)(∇Xχi + ei)) = 0 in Ω, (5.9)

where

a (X) =

{
τ−1 if X ∈ ΩB,

1 if X ∈ ΩF,
(5.10)

where ΩB and ΩF are the bubble and fluid regions of the unit cell Ω = ΩB∪ΩF respectively.

It is claimed in [2] that the multiple-scales limit ε → 0 is not interchangeable with the

low gas-bubble-inertia limit τ → 0. Here we aim to show that this is not the case, that is,

the limits are interchangeable, providing the analysis is performed carefully.

If we let τ → 0 in the cell problem (5.9), we find that χi satisfies

∇Xχi + ei = 0 X ∈ ΩB, (5.11)

∇2
Xχi = 0 X ∈ ΩF, (5.12)

with χi continuous across the bubble interface Γ , and 1-periodic in X. However, it is not

so straightforward to see the contribution to qij in (5.8) from the bubble region (since it

involves zero times infinity). Following the same procedure as in (4.11), we find

qij =

(
|ΩB |
τ

+ |ΩF |
)
δij +

1

τ

∫
ΩB

∂χi
∂Xj

dX +

∫
ΩF

∂χi
∂Xj

dX

=

(
|ΩB |
τ

+ |ΩF |
)
δij −

∫
Γ

Xj

[
a

∂χi
∂n

]+

−
dS +

∫
∂Ω

Xj

∂χi
∂n

dS

=

(
|ΩB |
τ

+ |ΩF |
)
δij +

∫
Γ

Xj [ani]
+
− dS +

∫
∂Ω

Xj

∂χi
∂n

dS

= δij +

∫
∂Ω

Xj

∂χi
∂n

dS. (5.13)

5.1 Integral constraint

In the limit τ → 0, (5.5), (5.6) become

1

C2

∂2p

∂t2
= ∇2p, (5.14)
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in the liquid region x : |x − xj | > δ, and

∇p = 0, (5.15)

with p continuous. As in our paradigm problem, in this limit we have lost a boundary

condition, and need to add an integral condition to complete the formulation. Integrating

(5.6) over the bubble surface Γ gives this condition as

∫
Γ

∂p

∂n

∣∣∣∣
F

dS =

∫
ΩB

1

ζ∗γ

∂2p

∂t2
dV =

|ΩB |
ζ∗γ

∂2pg

∂t2
, (5.16)

since p is uniform in the bubble by (5.15).

We write x = εX and p = p(x,X, t) and require that p be 1-periodic in X. Expanding

p = p0(x,X, t) + εp1(x,X, t) + · · · , (5.17)

the procedure is very similar to Section 3.3 and gives p0 = p0(x, t) and

p1(x,X, t) =

3∑
i=1

Ψi(X)
∂p0

∂xi
+ p̄1(x, t) = Ψ (X) · ∇xp0 + p̄1(x, t),

where Ψ satisfies the cell problem

∇2
XΨi = 0 X ∈ ΩF,

∇XΨi + ei = 0 X ∈ ΩB,

with Ψi continuous and 1-periodic in X, and∫
Ω

Ψ (X) dX = 0. (5.18)

Thus Ψi is identical to the limiting χi of (5.11), (5.12) as we would expect. We see that

Ψ = −X + const. X ∈ ΩB. (5.19)

This variation of p1 with X inside the bubble was one of the reasons given in [2] for

the non-commutativity of the limits: the multiple scales expansion appears to give a

non-constant pressure in the bubble, while in the limit τ → 0 the pressure in the bubble

must be constant. However, this variation in p1 with X is to be expected, and is just what

is needed to cancel the variation of p0 with x to give a constant pressure in the bubble.

Equating coefficients at the next order in ε gives, finally,

∇2
Xp2 + ∇X · (∇xp1) + ∇x · (∇Xp1) + ∇2

xp0 =
1

C2

∂2p0

∂t2
X ∈ ΩF, (5.20)

∇Xp2 + ∇xp1 = 0 X ∈ ΩB, (5.21)

with p2 continuous and 1-periodic in X. Integrating (5.20) over the fluid domain in the
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unit cell gives

∫
∂ΩF

(∇Xp2 + ∇xp1) · n dS =
|ΩF |
C2

∂2p0

∂t2
− ∂

∂xj

((
|ΩF |δij +

∫
∂ΩF

Xj

∂Ψi

∂n
dS

)
∂p0

∂xi

)
. (5.22)

For τ > 0 the left-hand side of (5.22) is evaluated through continuity of flux after a

similar integral over the bubble. Here, however, we need to use the integral condition

(5.16). Given an arbitrary point x̂ the bubble surface is given by

{x : x = x̂ − εb + εX where X ∈ ∂ΩB},

where b = x̂/ε − �x̂/ε�. If we let Q = ∇p then, as in Section 3.3, expanding Q =

Q0 + εQ1 + · · · we have

Q0 = ∇Xp1 + ∇xp0, Q1 = ∇Xp2 + ∇xp1, (5.23)

and ∫
∂ΩB

Q1(x̂,X) · n dS(X) +

∫
ΩB

X · ∇x̂Q0(x̂,X) · n dS(X) =
|ΩB |
ζ∗γ

∂2p0

∂t2
. (5.24)

As in Section 3.3 ∫
∂ΩB

X · ∇x (∇xp0) · n dS(X) =

∫
ΩB

∇2
xp0 dX = |ΩB |∇2

xp0. (5.25)

Also, ∫
∂B+

(X · ∇x (∇Xp1)) · n dS(X) =

∫
∂B+

Xj

∂

∂xj

∂p1

∂Xk

nk dS(X)

=
∂

∂xj

∫
∂B+

Xj

∂Ψi

∂Xk

∂p0

∂xi
nk dS(X)

=
∂

∂xj

(∫
∂B+

Xj

∂Ψi

∂n
dS(X)

∂p0

∂xi

)
. (5.26)

Using (5.23)–(5.26) in (5.22) gives

(
|ΩF |
C2

+
|B|
ζ∗γ

)
∂2p0

∂t2
=

∂

∂xj

((
δij +

∫
∂D

Xj

∂Ψi

∂n
dS(X)

)
∂p0

∂xi

)
, (5.27)

as required.

6 Conclusion

We have shown how to handle multiple-scales homogenisation problems in which an

integral constraint is applied over each inclusion. Care must be taken in determining the

location of the integral surface in the multiple scales coordinates: the obvious formulation

leads to incorrect results.
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It is natural to ask why the additional terms we find are not present in all multiple-

scales problems involving interfaces. For example, why are they not also present when the

boundary conditions at the interface are continuity conditions. Although in principle in

this case also care should be taken as to the exact location of the interface, the correction

terms we find evaluate to zero in this case because of the continuity of the underlying

function.

We illustrated the problem and the solution first with a one-dimensional paradigm. We

then showed how to apply the method in three dimensions, using the problem of perfectly

dielectric inclusions as an example. Finally, we applied our methods to show that the

low-gas-density limit and the multiple-scales limit for the propagation of acoustic waves

through a bubbly fluid commute, in contrast to previous claims.

Knowing how to handle correctly, conditions on the interface between fluid and bubble

allows us to consider more complicated scenarios. For example, it makes it easier to

consider the case of surface tension between the bubbles and the liquid, which is difficult

to write in conservation form. The results are not straightforward, and are too involved

to be included here; this will be the subject of a future paper.
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