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Discrete Space-time and Lorentz
Transformations

Gerd Jensen and Christian Pommerenke

Abstract. Alfred Schild established conditions where Lorentz transformations map world-vectors
(ct, x , y, z) with integer coordinates onto vectors of the same kind. _e problem was dealt with in
the context of tensor and spinor calculus. Due to Schild’s number-theoretic arguments, the subject
is also interesting when isolated from its physical background.

Schild’s paper is not easy to understand. _erefore, we ûrst present a streamlined version of his
proof which is based on the use of null vectors. _en we present a purely algebraic proof that is
somewhat shorter. Both proofs rely on the properties of Gaussian integers.

1 Introduction

_e points of theMinkowski space-time and the Lorentz transformations are usually
written in the form X⃗ = (t, x , y, z)⊺⊺⊺ ∈ R4 and X⃗′ = LX⃗, where L is a real 4 × 4 matrix
and t′2 − x′2 − y′2 − z′2 = t2 − x2 − y2 − z2. _e speed of light is here assumed to be 1.
An equivalent representation is obtained by the vector space

M ∶=
⎧⎪⎪⎨⎪⎪⎩
X = ( t + z x + iy

x − iy t − z ) ∶ t, x , y, z ∈ R
⎫⎪⎪⎬⎪⎪⎭

(1.1)

ofHermitianmatrices X. _ey satisfy detX = t2−x2−y2−z2. Given such aHermitian
matrix X, write X⃗ for the associated Lorentz vector (t, x , y, z)⊺⊺⊺. If

Γ ∶=
⎧⎪⎪⎨⎪⎪⎩
A = (a b

c d) ∶ a, b, c, d ∈ C, ∣detA∣ = 1
⎫⎪⎪⎬⎪⎪⎭

(1.2)

and A ∈ Γ, then X′ ∶= AXA∗ is again Hermitian and has a form analogous to X in (1.1)
with uniquely determined t′ , x′ , y′ , z′. Because detX′ = detX, the linear mapping

X′ = AXA∗(1.3)

is a Lorentz transformation. It uniquely determines a real 4 × 4 matrix LA such that

(1.4) X⃗′ = LAX⃗ .

In [7], A. Schild found conditions that all components of LA are integers; an equiv-
alent formulation is that LA maps the lattice Z4 onto itself. His main result is the
following theorem.
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124 G. Jensen and C. Pommerenke

_eorem 1.1 (Schild) (i) Let A ∈ Γ, detA ∈ {1, i,−1,−i}, and either
(a) a, b, c, d ∈ Z + iZ and ∣a∣2 + ∣b∣2 + ∣c∣2 + ∣d∣2 even or
(b) a, b, c, d ∈ Z + iZ + 1

2 (1 + i).
_en LA deûned by (1.4) has integer components.

(ii) For every B ∈ Γ such that the components of LB are integers, there is u ∈ C, ∣u∣ = 1
such that A ∶= uB fulûlls the conditions in (i).

If η ∈ {1, i,−1,−i}, and A satisûes the conditions in (i), then so does ηA. Because
det(ηA) = η2 detA = ±detA, one can assume that det(ηA) = 1 or det(ηA) = i.
_erefore the conclusion detA ∈ {1, i,−1,−i} in (ii) can be replacedwith detA ∈ {1, i}.
_is is no loss of generality for multiplication with a suitable power of (1 + i)/

√
2

converts A ∈ Γ into an element of SL(2,C).
For Schild the physical aspects were essential, so the problem was dealt with in

the context of tensor and spinor calculus. However,mainly because of Schild’s num-
ber theoretic arguments, the subject is also interestingwhen isolated from its physical
background. _erefore, a streamlined presentation, which is reduced to the quintes-
sential mathematical features,might be useful.

In the following, Schild’s proof is presented using only simplematrix calculus. His
method is geometrical in nature; the problem is translated to mapping properties of
the spin transformations A. Additionally, a more direct, algebraic proof is given. It
must be emphasized, however, that Schild’s method points to aspects and problems
that could hardly be found in the course of a diòerent reasoning. Some of these, e.g.,
the question of the equivalence of timelike vectors with integer components under
Lorentz transformationswith integer components, are dealtwith in [7]; further, there
are outlined unpublished results ofH. S. M. Coxeter concerning the generators of the
discrete group; see also [4].
Bothproofs rest upon theunique factorization in the ring ofGaussian integers. _e

crucial step in revealing the structure of the transformation matrices is in each case
the comparison of the factorizations of a number that is both a square and a product
of two diòerent numbers (in the proofs of_eorem 3.4 and Lemma 4.3).
At the outset, integral Lorentz matrices are deûned as those elements of Z4×4 that

satisfy the 10 orthogonality conditions for the columns. _eorem 1.1 disentangles the
complexity signiûcantly and brings it down to 8 integer parameters and 2 constraints;
what ismore, the smaller set of parameters allows deeper insight into the group struc-
ture. Another interesting and explicit method was presented by J. D. Louck in [5],
based on the biquaternionic parametrization of SL(2,C).

2 Preliminaries

2.1 Four-vectors

_e connection between (1.3) and (1.4) can be made explicit by means of the Kro-
necker product and the vectorization of matrices ([3, Chap. 4]). For 2 × 2 matrices
A = ( a11 a12

a21 a22 ) and B, theKronecker productA⊗B is the 4×4 blockmatrix ( a11B a12B
a21B a22B ) ,

and vecA is the vector (a11 , a21 , a12 , a22)⊺⊺⊺ obtained by stacking the columns of A on
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top of one another. If C, D, X are also 2 × 2 matrices, then

vec(AXB⊺⊺⊺) = (B ⊗ A) vecX ,(2.1)
(A⊗ B)(C ⊗ D) = AC ⊗ BD,(2.2)

det(A⊗ B) = (detA)2(detB)2 .(2.3)

_e points of space-time have the equivalent representations X, X⃗, and vecX =
(t + z, x − iy, x + iy, t − z)⊺⊺⊺. _e vectors X⃗ and vecX are connected by a unitary
matrix T :

(2.4)
vecX√

2
= T X⃗ with T ∶= 1√

2

⎛
⎜⎜⎜
⎝

1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1

⎞
⎟⎟⎟
⎠
.

Using (2.1), relation (1.3) becomes

vecX′ = (A⊗ A) vecX ,
and with (2.4), it follows that thematrix LA in (1.4) has the representation

(2.5) LA = T∗(A⊗ A)T .

From (2.5), (2.3), and (1.2) one obtains

(2.6) det LA = 1 for A ∈ Γ.

With (2.2) it follows from (2.5) that

LBA = LBLA, L−1
A = LA−1 .

By substituting special matrices X in (1.3), one easily shows the following lemma.

Lemma 2.1 LA = LB holds if and only if B = uAwith u ∈ C, ∣u∣ = 1.

From (2.5) (in its expanded form (4.3)) and (2.6) it is seen that LA belongs to the
group SO+(1, 3) of restricted Lorentz transformations. Actually themapping A→ LA
produces a double cover of SO+(1, 3) by SL(2,C) (see, for instance, [1, Sec. 6.3]),
so _eorem 1.1 characterizes all members of SO+(1, 3) with integer components. For
technical reasons, following Schild, we deal with Γ instead of SL(2,C), because this
allows for a smaller number of case distinctions. Moreover,multiplicationwith a suit-
able power of (1 + i)/

√
2 converts A ∈ Γ into an element of SL(2,C).

2.2 Gaussian Integers

Let Z[i] = Z + iZ denote the ring of Gaussian integers and E = {1, i,−1,−i} its group
of units. _e associates of x ∈ Z[i] are x, ix, −x, and −ix.

_e prime elements ofZ[i] are calledGaussian primes. _eGaussian integers form
a unique factorization domain ([2, Sec. 12.8]), which will be simply referred to by
UFD; two factorizations of an integer are associates of each other. A natural number
that is prime inZ is aGaussian prime if and only if it is congruent to −1 (mod 4) (see
[2, Sec. 15.1]); otherwise, it is the product of two complex conjugateGaussian primes.
If the greatest common divisor of real integers r, s, . . . is determined inZ and inZ[i],
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the results are associates; the positive value will be denoted by gcd(r, s, . . . ). For X as
in (1.1) with t, x , y, z ∈ Z, let
(2.7) δ(X) ∶= gcd(t, x , y, z).
Because 2 = (1+i)(1−i), all real Gaussian primes are odd. Forw ∈ Z[i] the product

ρ(w) of its positive Gaussian prime factors is odd and has a factorization

(2.8) ρ(w) = σ(w)r(w)2

with square-free σ(w). All factors of ρ(w) are congruent to −1 (mod 4).
For a ∈ Z[i] the parity π(a) ∈ {0, 1} is deûned by

π(a) ≡ Re a + Im a (mod 2).
If π(a) = 0, then a is called even; if π(a) = 1, then a is called odd. _at extends the
terminology for Z, for Im a = 0 if a ∈ Z, hence π(a) = 0 for even and π(a) = 1 for
odd a. Furthermore, π is a ring homomorphism Z[i]→ Z2. _e set

(2.9) Z[i]20 ∶= {(ξ0 , ξ1)⊺⊺⊺∶ π(ξ0) = π(ξ1)}
is a submodule of the Z[i]-module Z[i]2. It contains the vectors

e0 ∶= (1 + i
0 ) , e1 ∶= ( 0

1 + i) , e2 ∶= (11) ;(2.10)

{e0 , e2} is a basis of Z[i]20. Each w ∈ Z[i] has a representation w = (1 + i)ŵ + ε with
uniquely determined ŵ ∈ Z[i] and ε ∈ {0, 1}. _en ε = π(w), hence π(w) = 0 if and
only if (1 + i) ∣ w. Moreover,

(2.11) (ξ0 , ξ1)⊺⊺⊺ ∈ Z[i]20 ⇐⇒ ξ0 = (1 + i)ξ̂0 + ε, ξ1 = (1 + i)ξ̂1 + ε.
In _eorem 1.1, the parity requirement in (a) is automatically fulûlled in (b).

Lemma 2.2 Let a, b, c, d ∈ Z[i]+ 1
2 (1+ i) and ad−bc ∈ E. _en π(a+b+c+d) = 0.

Proof Write a = a′ + 1
2 (1 + i) with a′ ∈ Z[i] and likewise for b, c, d. _en

ad − bc = a′d′ − b′c′ + 1
2 (1 + i)(a′ + d′ − b′ − c′),

a + b + c + d = a′ + b′ + c′ + d′ + 2(1 + i)
= (1 − i)( ad − bc − (a′d′ − b′c′)) + 2(b′ + c′) + 2(1 + i).

Since ad−bc ∈ E, this is inZ[i] and is divisible by 1+ i, hence π(a+b+ c+d) = 0.

2.3 Integrity

If X ∈ M has integer components, then the components of X⃗ are integers if and only
if the diagonal elements of X are both even or both odd. Let

(2.12) M0 ∶= {X ∈M∶ X⃗ ∈ Z4},

Γ0 ∶ = {A ∈ Γ∶ LA(Z4) ⊂ Z4}.(2.13)

_e next lemma follows immediately from the deûnition (2.13).
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Discrete Space-time and Lorentz Transformations 127

Lemma 2.3 LA has integer components if and only if A ∈ Γ0.

Clearly Γ0 is a semigroup. Because LA−1 = L−1
A and (2.6), we have A−1 ∈ Γ0 if A ∈ Γ0.

Hence, Γ0 is a group.

3 Schild’s Proof

_e fundamental entities in this proof are null vectors (see [6, Chap. I]). _ey span
theMinkowski space-time and can be represented by vectors inC2. Lorentz transfor-
mations are already determined by their action on the null vectors and correspond to
linear homogeneous transformations of C2 (spin transformations).

3.1 Null Vectors

X ∈ M is called a null vector if t2 − x2 − y2 − z2 = 0. From det(AXA∗) = detX for
A ∈ Γ, we have the following lemma.

Lemma 3.1 For A ∈ Γ and X a null vector, X′ = AXA∗ is a null vector.

For ξ ∈ C2,

ξξ∗ = (ξ0ξ1
)(ξ0 ξ1) = (ξ0ξ0 ξ0ξ1

ξ1ξ0 ξ1ξ1
)(3.1)

is a null vector. If X is future-pointing (t ≥ 0), the converse also holds.

Lemma 3.2 A future-pointing null vector X has the form (3.1), and ξ̂ ξ̂∗ = ξξ∗ holds
if and only if there is u ∈ C with ∣u∣ = 1 and ξ̂ = uξ.

Proof If t > ∣z∣, then X = ξξ∗ with ξ0 =
√

t + z and ξ1 = (x − iy)/
√

t + z; if t2 = z2,
then x = y = 0 and X = ξξ∗ with ξ0 =

√
t + z and ξ1 =

√
t − z. _e simple proof of

the second assertion is omitted.

Deûnition 3.3 Let V0 be the set of future-pointing null vectors in M0 (see (2.12)),
i.e.,

V0 ∶= {X ∈M0∶ t2 − x2 − y2 − z2 = 0, t ≥ 0}.

If ξ ∈ Z[i]2, then
ξξ∗ ∈M0 ⇐⇒ ξ ∈ Z[i]20 .

_eorem 3.4 (i) If ξ ∈ Z[i]20 and r ∈ N, then rξξ∗ ∈ V0.
(ii) Conversely, for each X ∈ V0 there is ξ ∈ Z[i]20 such that

X = sξξ∗(3.2)

and s is a square-free product of positive Gaussian primes. _en ξ is uniquely
determined up to a factor u ∈ C with ∣u∣ = 1. Further, s = σ(δ(X)) (with δ and σ
as deûned in (2.7) and (2.8)).
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Proof (i) is trivial. (ii) is proved in three steps.
1. We suppose at ûrst that δ(X) = 1. Let ρ(t + z) = σr2 and ρ(t − z) = σ ′r′2 be the

factorizations according to (2.8). _en

ρ((t + z)(t − z)) = σσ ′r2r′2 .

From UFD, it follows that ρ(x + iy) = ρ(x − iy), and because
(3.3) (t + z)(t − z) = (x + iy)(x − iy),
wemust have

σσ ′r2r′2 = ρ((t + z)(t − z)) = ρ(x + iy)2 .
As a consequence of UFD it follows that σ ′ = σ and σrr′ ∣ (x + iy). Furthermore,
σrr′ ∣ (x − iy), so σrr′ ∣ 2x and σrr′ ∣ 2y. Now σ is odd, so σ ∣ x and σ ∣ y. From
σ ∣ t + z and σ ∣ t − z it follows that σ ∣ 2t and σ ∣ 2z, hence σ ∣ t and σ ∣ z. But then
σ = 1, since δ(X) = 1.

_e non-real prime factors of t + z and of t − z form pairs (ζ j , ζ j) and (ζ′k , ζ
′
k) of

complex conjugate numbers. With ζ =∏ j ζ j and ζ′ =∏k ζ′k then

t + z = r2ζζ = (rζ)(rζ) and t − z = r′2ζ′ζ′ = (r′ζ′)(r′ζ′).
From (3.3) andUFD, wemay suppose that ζ j ∣ (x + iy), ζ′k ∣ (x + iy) and ζ j ∣ (x − iy),
ζ
′
k ∣ (x − iy). From (3.3) follows further that ρ(x + iy) = ρ(x − iy) = rr′. _en
x+iy = u(rζ)(r′ζ′) and x−iy = u(rζ)(r′ζ′),where u is a unit ofZ[i]. Since δ(X) = 1
and therefore s = σ(δ(X)) = 1, (3.2) holds with ξ ∶= (ruζ , r′ζ′)⊺⊺⊺. From π(ruζ) =
π(r2ζζ) = π(t + z) = π(t − z) = π(r′2ζ′ζ′) = π(r′ζ′), it follows that ξ ∈ Z[i]20.

2. Now let X ∈ V0 be arbitrary and d = δ(X), hence δ(X/d) = 1. _erefore,
X/d = ξξ∗ for suitable ξ = (ξ0 , ξ1)⊺⊺⊺ ∈ Z[i]20. If ρ(d) = σ(d)r2 then X = σ(d)rξ(rξ)∗.

3. Suppose also that X = s1ξ1ξ∗1 with a square-free product s1 of positive Gaussian
primes. Since the highest power of a positive Gaussian prime that divides all compo-
nents of ξξ∗ or all components of ξ1ξ∗1 is even, it must be s1 = s. Now the uniqueness
assertion follows from Lemma 3.2.

_eorem 3.5 A ∈ Γ0 if and only if LA(V⃗0) ⊂ V⃗0 and L−1
A (V⃗0) ⊂ V⃗0.

Proof If A ∈ Γ0, then LA(V⃗0) ⊂ V⃗0 and L−1
A (V⃗0) ⊂ V⃗0 by (2.13) and Lemma 3.1. For

the converse we show that LA maps a basis of Z4 into Z4.
Now X⃗0 ∶= (1,−1, 0, 0)⊺⊺⊺, X⃗1 ∶= (1, 1, 0, 0)⊺⊺⊺, X⃗2 ∶= (1, 0, 1, 0)⊺⊺⊺, and X⃗3 ∶= (1, 0, 0, 1)⊺⊺⊺

belong to V0. For i = 0, 1, 2, 3 at least one component of (t i , x i , y i , z i)⊺⊺⊺ ∶= LA(X⃗ i)
must be odd, for otherwise X⃗ i = 2L−1

A (LA(X⃗ i)/2) ∈ 2Z4 by hypothesis, which is
wrong. Since the square of a real integer leaves a remainder of 1 or 0 on division by 4,
it follows from t2i = x2

i + y2
i + z2

i that t i and exactly one of x i , y i , z i are odd.
Because of the invariance of the bilinear form associated with t2 − x2 − y2 − z2, it

follows that t0 t1 − x0x1 − y0 y1 − z0z1 = 2. Since t0 t1 is odd, at least one of x0x1, y0 y1,
z0z1, say x0x1, is odd. _en t0 , t1 , x0 , x1 are odd and y0 , y1 , z0 , z1 must be even. Hence,
t0 + t1, x0 + x1, y0 + y1 and z0 + z1 are all even, and

LA(1, 0, 0, 0) = LA(
1
2
(X⃗0 + X⃗1)) = 1

2
(LA(X⃗0) + LA(X⃗1)) ∈ Z4 .
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_en

LA(0, 1, 0, 0) = LA(X⃗1) − LA(1, 0, 0, 0),
LA(0, 0, 1, 0) = LA(X⃗2) − LA(1, 0, 0, 0),
LA(0, 0, 0, 1) = LA(X⃗3) − LA(1, 0, 0, 0)

are also in Z4.

3.2 Reformulation of the Problem

Deûnition 3.6 Let ∆0 ∶= {A ∈ Γ∶A(Z[i]20) ⊂ Z[i]20 , A−1(Z[i]20) ⊂ Z[i]20} , where
Z[i]20 is deûned in (2.9).

_eorem 3.7 ∆0 ⊂ Γ0. Conversely, for B ∈ Γ0 there is u ∈ C with ∣u∣ = 1 and uB ∈ ∆0.

Proof Let A ∈ ∆0 and X ∈ V0. By _eorem 3.4(ii) there exists ξ ∈ Z[i]20 such that
X = σ(δ(X))ξξ∗ and

X′ = AXA∗ = σ(δ(X))A(ξξ∗)A∗ = σ(δ(X))(Aξ)(Aξ)∗ .

Since Aξ ∈ Z[i]20 by hypothesis, this implies by _eorem 3.4(i) that AXA∗ ∈ V0.
Similarly, A−1X(A−1)∗ ∈ V0. Hence, A ∈ Γ0 by _eorem 3.5.

_e converse is proved in three steps.
1. At ûrst it is shown that for each ξ ∈ Z[i]20 there is u ∈ C with ∣u∣ = 1 and

(3.4) uBξ ∈ Z[i]20 .
Let X ∶= ξξ∗. _en X ∈ V0, so X′ ∶= LB(X) ∈ V0 by _eorem 3.5. From

X′ = B(ξξ∗)B∗ = (Bξ)(Bξ)∗(3.5)

and_eorem 3.4(ii), it follows that σ(δ(X)) = 1 and that there is η ∈ Z[i]20 such that

X′ = σ(δ(X′))ηη∗ .(3.6)

Since LB and L−1
B have integer components, we see that δ(X′) = δ(X), and therefore

σ(δ(X′)) = σ(δ(X)) = 1. Now (3.4) follows from (3.5), (3.6), and Lemma 3.2.
2. Next we show that u can be chosen independent of ξ, i.e., uB(Z[i]20) ⊂ Z[i]20.

For the vectors e0 and e2 (see (2.10)) there exist, by step 1, u0 , u1 ∈ C such that

u0Be0 = e′0 ∈ Z[i]20 , u1Be2 = e′2 ∈ Z[i]20(3.7)

and ∣u0∣ = ∣u1∣ = 1. _en

u0e0 + u1e2 = B−1(e′0 + e′2).

Since B−1 ∈ Γ0, there is, by step 1, u ∈ C with ∣u∣ = 1 and u(u0e0 + u1e2) ∈ Z[i]20.
Hence, there are p, q ∈ Z[i] with π(p) = π(q) and

(1 + i)uu0 + uu1 = p, uu1 = q.

So uu1 ∈ Z[i] and uu0 = 1
2 (1− i)(p−q) ∈ Z[i], the latter because of π(p−q) = 0. _is

is only possible if uu0 , uu1 ∈ E. From (3.7) it now follows that uBe0 = uu0e′0 ∈ Z[i]20
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and uBe2 = uu1e′2 ∈ Z[i]20. Since e0 and e2 are a basis of Z[i]20, we have uB(Z[i]20) ⊂
Z[i]20.

3. Likewise there is v ∈ C with ∣v∣ = 1 and vB−1(Z[i]20) ⊂ Z[i]20. From

uv(Z[i]20) = uB(vB−1(Z[i]20)) ⊂ uB(Z[i]20) ⊂ Z[i]20

it follows that uve2 ∈ Z[i]20, hence uv ∈ E and

u−1B−1(Z[i]20) = (uv)−1vB−1(Z[i]20) ⊂ Z[i]20 .

_eorem 3.7 shows that ∆0 is big enough to substantially represent all elements
of Γ0. _e matrices LA with integer components can therefore be characterized by
mapping properties of thematrices A ∈ ∆0. It follows immediately from the deûnition
that ∆0 is a group. Further properties are given in the following lemma.

Lemma 3.8 If A ∈ ∆0, then
(i) detA ∈ E,
(ii) uA ∈ ∆0 if and only if u ∈ E.

Proof (i) _e columns of M ∶= A( 1+i 1
0 1 ) are in Z[i]20, hence (1 + i)detA = detM ∈

Z[i]. From ∣detM∣2 = 2, it follows that detM ∈ (1 + i)E, so (1 + i)detA ∈ (1 + i)E.
(ii) If u ∈ E, then clearly uA ∈ ∆0. Conversely, let uA ∈ ∆0. _en A−1e2 ∈ Z[i]20,

hence ue2 = uA(A−1e2) ∈ Z[i]20 and therefore u ∈ E.

_e lemma shows that each LB , B ∈ Γ0, can be represented by exactly fourmatrices
in ∆0: A = uB, iA, −A, and −iA; then LB = LA = LiA = L−A = L−iA.

3.3 Proof of Theorem 1.1(i)

In case (a) both components of Ae0 are even (see Section 2.2). Because detA ∈ E, the
same holds for A−1e0. _erefore, Ae0 ,A−1e0 ∈ Z[i]20.

In case (b) both components of Ae0 and of A−1e0 are odd. _erefore Ae0 ,A−1e0 ∈
Z[i]20 in this case , too.

In both cases the sumof the components ofAe2 is a+b+c+d, and π(a+b+c+d) = 0
(see Lemma 2.2 in case (b)), so both components of Ae2 have the same parity, hence
Ae2 ∈ Z[i]20. _e sumof the componentsofA−1e2 is in both cases (d−b−c+a)/detA =
(a + b + c + d)/detA− 2(b + c)/detA; since in both cases b + c ∈ Z[i] and detA ∈ E,
this expression is in Z[i] and has parity 0. _erefore, A−1e2 ∈ Z[i]20. Since {e0 , e2}
is a basis of Z[i]20, it follows that A ∈ ∆0. _e assertion now follows from the ûrst
statement in _eorem 3.7.

3.4 Proof of Theorem 1.1(ii)

By Lemma 2.3 the hypothesis stands for B ∈ Γ0. By _eorem 3.7 there is u such
that A ∶= uB ∈ ∆0. Let e0 , e1 , e2 be the Z[i]20-vectors from (2.10). _en we have
Ae0 ,Ae1 ,Ae2 ∈ Z[i]20, since A ∈ ∆0. According to (2.11), Ae0 ∈ Z[i]20 and Ae1 ∈ Z[i]20
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mean that

(1 + i)a = (1 + i)â + ε,(3.8a)
(1 + i)c = (1 + i)ĉ + ε,
(1 + i)b = (1 + i)b̂ + ε′ ,(3.8b)

(1 + i)d = (1 + i)d̂ + ε′

with â, ĉ, b̂, d̂ ∈ Z[i] and ε, ε′ ∈ {0, 1}. Further, Ae2 ∈ Z[i]20 means that

a + b = (1 + i)g1 + ε′′ ,(3.9)

c + d = (1 + i)g2 + ε′′(3.10)

with g1 , g2 ∈ Z[i] and ε′′ ∈ {0, 1}. From (3.9) and (3.8a), it follows that

(1 + i)b = (1 + i)((1 + i)g1 + ε′′ − â − (1 − i)ε) + ε,
and comparing that with (3.8b), one obtains ε = ε′. Furthermore, addition of (3.9)
and (3.10) shows that π(a + b + c + d) = 0. Finally, we note that detA ∈ E by Lemma
3.8(i).

If ε = 0, then a, b, c, d ∈ Z[i] and all requirements in (a) hold. If ε = 1, then (3.8a)
means that a = â+ 1

1+i = (â− i)+ 1+i
2 , and likewise for the other relations (3.8). Hence,

all requirements of (b) are satisûed.

4 Alternative Proof

4.1 Reformulation of the Problem

At the outset, the condition that the components of LA are integers is expressed
through the components of A.

Lemma 4.1 Let A ∈ Γ. _en A ∈ Γ0 if and only if
a1a2 ± a3a4 ∈ Z[i](4.1)

for all permutations (a1 , a2 , a3 , a4) of (a, b, c, d), and
±∣a∣2 ± ∣b∣2 ± ∣c∣2 ± ∣d∣2 ∈ 2Z(4.2)

whenever the number of plus signs is even.

Proof It is A ∈ Γ0 if and only if the components of LA are integers. We need (2.5) to
be expanded at full length:

LA =
⎛
⎜⎜⎜
⎝

1
2 (∣a∣

2+∣b∣2+∣c∣2+∣d ∣2) Re(ab+cd) − Im(ab+cd) 1
2 (∣a∣

2−∣b∣2+∣c∣2−∣d ∣2)
Re(ac+bd) Re(ad+bc) − Im(ad−bc) Re(ac−bd)
Im(ac+bd) Im(ad+bc) Re(ad−bc) Im(ac−bd)

1
2 (∣a∣

2+∣b∣2−∣c∣2−∣d ∣2) Re(ab−cd) − Im(ab−cd) 1
2 (∣a∣

2−∣b∣2−∣c∣2+∣d ∣2)

⎞
⎟⎟⎟
⎠
.(4.3)

Obviously (4.1) and (4.2) are suõcient for A ∈ Γ0. Conversely, if LA has integer com-
ponents, then from (4.3) one obtains (4.2) and ab ± cd , ac ± bd , ad ± bc ∈ Z[i].
From ab + cd = g and ab − cd = p with g , p ∈ Z[i] follows that 2cd = g − p and
2cd − 2dc = g − p − (g − p) = 2i Im(g − p) ∈ 2Z[i], so cd − dc ∈ Z[i], hence
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ab ± dc ∈ Z[i]. Similarly, ac ± db ∈ Z[i] and ad ± cb ∈ Z[i]. _is proves (4.1) for
all permutationswith ûrst term a. By forming complex conjugates and negatives, one
obtains all other expressions (4.1).

4.2 Proof of Theorem1.1(i)

If (a) holds, (4.1) and (4.2) are obvious. In case (b),

(1 + i)a = (1 + i)a′ + 1 (a′ ∈ Z[i])(4.4)

and likewise for b, c, d. It follows that

2i[(ad − bc) − (a′d′ − b′c′)] = (1 + i)(a′ − c′ − b′ + d′).

Because detA ∈ E, this implies that all expressions (1+i)(±a′±b′±c′±d′) are divisible
by 2, the signs being arbitrary. From (4.4) and the analogs for b, c, d it follows that

ab = 1
2 [(1 + i)a′ + 1][(1 − i)b′ + 1] = a′b′ + 1

2 ((1 + i)a′ + (1 − i)b′ + 1),

cd = 1
2 [(1 + i)c′ + 1][(1 − i)d′ + 1] = c′d′ + 1

2 ((1 + i)c′ + (1 − i)d′ + 1),

ab ± cd = a′b′ ± c′d′ + 1
2 (1 + i)(a′ ± c′) + 1

2 (1 − i)(b′ ± d′) + 1
2 (1 ± 1),

= a′b′ ± c′d′ + 1
2 (1 + i)(a′ ± c′ + b′ ± d′) − i(b′ ± d′) + 1

2 (1 ± 1).

All terms on the right are in Z[i]. Likewise, all other relations (4.1) are obtained.
Now let α, β, γ, δ ∈ E and α + β + γ + δ divisible by 2. From (4.4) follows that

(1 + i)(αa + βb + γc + δd)
= (1 + i)(αa′ + βb′ + γc′ + δd′) + α + β + γ + δ
= (1 + i)((α − 1)a′ + (β − 1)b′ + (γ − 1)c′ + (δ − 1)d′ + (a′ + b′ + c′ + d′))
+ α + β + γ + δ.

_en

2 ∣ (1 + i)(αa + βb + γc + δd)

since 1 + i ∣ α − 1, 1 + i ∣ β − 1, 1 + i ∣ γ − 1, 1 + i ∣ δ − 1 and 2 ∣ (1 + i)(a′ + b′ + c′ + d′).
Hence,

(αa + βb + γc + δd)(αa + βb + γc + δd)
= α2∣a∣2 + β2∣b∣2 + γ2∣c∣2 + δ2∣d∣2 + [αβRe(2ab) + γδ Re(2cd)]
+[αγRe(2ac) + βδ Re(2bd)] + [αδ Re(2ad) + βγRe(2bc)]

is divisible by 2. If (α, β, γ, δ) is one of the four combinations (1, 1, 1, 1), (1, 1, i, i),
(1, i, 1, i), or (1, i, i, 1), then α + β + γ + δ is divisible by 2 and αβ = γδ or αβ = −γδ,
αγ = βδ or αγ = −βδ and αδ = βγ or αδ = −βγ. Using (4.1), it is seen that the
expressions in brackets are all divisible by 2. _is proves (4.2).
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4.3 Proof of Theorem 1.1(ii)

Lemmas 4.2 and 4.3 are intermediate steps.

Lemma 4.2 Let A ∈ Γ0. _en 2v1v2 ∈ Z[i] for all v1 , v2 ∈ {a, b, c, d}. If in addition
detA ∈ E, then 2v1v2 ∈ Z[i] for all v1 , v2 ∈ {a, b, c, d}.

Proof _e ûrst assertion follows from (4.1) and (4.2). For t = 1 and x = y = z =
0 we have X = I. _e components of X′ are integers by hypothesis. From (1.3), it
follows that X′ = AA∗ and X′(A∗)−12v = 2Av. By the ûrst part of the lemma, for v ∈
{a, b, c, d}, all components on the le� side of this equation, and hence all components
of 2Av, are in Z[i].

Because UFD, each w ∈ Z[i] has a unique factorization

w = ε(1 + i) j g2γ(4.5)

with the following properties: ε ∈ E, 0 ≤ j ∈ Z, g and γ are odd and γ is square-free.

Lemma 4.3 If A ∈ Γ0 and detA ∈ E, then all components of A have the form

v = 1
2 (1 + i)k+1h(4.6)

or all have the form

v = 1
2

√
2(1 + i)kh(4.7)

with 0 ≤ k ∈ Z and odd h ∈ Z[i].

Proof Let v1 , v2 ∈ {a, b, c, d , a, b, c, d}. _en 2v2
1 , 2v2

2 , 2v1v2 ∈ Z[i] by Lemma 4.2,
and therefore according to (4.5),

2v2
1 = ε1(1 + i) j1 g2

1 γ1 ,(4.8)

2v2
2 = ε2(1 + i) j2 g2

2γ2 ,(4.9)

2v1v2 = ε3(1 + i) j3 g2
3γ3 .(4.10)

Multiplication of (4.8) by (4.9) gives on the one hand

4v2
1 v2

2 = ε1ε2(1 + i) j1+ j2(g1g2)2γ1γ2 ,(4.11)

and squaring (4.10) on the other hand

4v2
1 v2

2 = ε23(1 + i)2 j3(g2
3γ3)2 .(4.12)

From the uniqueness of the factorization (4.5) follows that γ1 = γ2, since comparison
of (4.11) with (4.12) shows that γ1γ2 has solely double prime factors. One concludes
that the factor γ in 2v2 = ε(1+i) j g2γ is the same for all v ∈ {a, b, c, d , a, b, c, d}. From

2v2 = ε(1 + i) j g2γ,(4.13)

2v2 = ε(1 − i) j g2γ = [ε(−i) j](1 + i) j g2γ,(4.14)

it now follows that γ = γ, so all prime factors of γ are real. Hence, γ = 1 or γ ≥ 3.
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From the comparison of (4.11) with (4.12), it follows that ε21 ε22 = ε43 = 1, so

ε1ε2 = ±1,(4.15)

and that j1 + j2 = 2 j3. Applied to (4.11), this gives 2v1v2 = η(1 + i) j3 g1g2γ with η ∈ E.
_erefore, γ ∣ 2v1v2 for all v1 , v2; in particular, γ ∣ 2(ad − bc). But this implies γ ≤ 2,
so γ = 1. _erefore, all v ∈ {a, b, c, d , a, b, c, d} have a representation

2v2 = ε(1 + i) j g2 .(4.16)

If (4.15) is applied to (4.13) and (4.14), it follows that εε(−i) j = (−i) j = ±1, so
all j are even, j = 2k. As another consequence of (4.15), the set of factors ε in the
representations (4.16) of {a, b, c, d , a, b, c, d} is either

{−1, 1} = {η2∶ η ∈ E} or {−i, i} = {( 1
2 η

√
2) 2∶ η ∈ E} .

Having the factors εwritten as squareswe can extract square roots in (4.16) and obtain
(4.7) or (4.6). In each case, h = ηg is odd.

A�er these preparations the proof can be carried out. Let B ∈ Γ0. We choose û
with ∣û∣ = 1 such that det(ûB) = 1 and set Â ∶= ûB. By Lemma 4.3 the components
of Â have the form (4.6) or (4.7). In the ûrst case let A ∶= Â and u ∶= û; then the
components of A satisfy (4.6) and we have detA = 1. In the second case let

A ∶= 1√
2
(1 + i)Â and u ∶= 1√

2
(1 + i)û;

then the componentsofAalso satisfy (4.6) and it isdetA = i. Inboth caseswehaveA =
uB with ∣u∣ = 1, detA ∈ E, and the components of A have the form v j = 1

2 (1+ i)k j+1h j
( j = 1, 2, 3, 4).

If k j ≥ 1, then v j ∈ Z[i]. If k j = 0, then v j = 1
2 (1 + i)h j with odd ih j = (1 + i)h′j + 1

(h′j ∈ Z[i]), hence v j = h′j + 1
2 (1 − i) and ∣v j ∣2 = 1

2 ∣h j ∣2 = q j + 1
2 with q j ∈ Z.

As a consequence of (4.2) we conclude that the number of indices j with k j = 0 is
even. Hence there are three cases to consider.
(i) k j ≥ 1 for all j. _en all components of A are in Z[i]. Since detA ∈ E and

∣a∣2 + ∣b∣2 + ∣c∣2 + ∣d∣2 is even according to (4.2), case (a) is present.
(ii) k j = 0 for exactly two indices j. Assume that k1 = k2 = 0. _en k3 ≥ 1, k4 ≥ 1, so

v3 , v4 ∈ Z[i]. Since v1v2 − v3v4 ∈ Z[i] by Lemma 4.1, it follows that v1v2 ∈ Z[i].
On the other hand, it was shown before that v1 = 1

2 (1 + i)h1 and v2 = 1
2 (1 + i)h2

with odd h1 and h2, hence v1v2 = 1
2 h1h2 where h1h2 is odd. So this case is

impossible.
(iii) k j = 0 for all j. _en v j = h′j − i+ 1

2 (1+ i) with h′j ∈ Z[i] for j = 1, 2, 3, 4. So case
(b) is present.
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