LATTICE AUTOMORPHISMS OF SEMI-SIMPLE LIE ALGEBRAS

Dedicated to the memory of Hanna Neumann

D. W. BARNES

(Received 12 April 1972)

Communicated by M. F. Newman

1. Introduction

Let L be a Lie algebra over the field F. A lattice automorphism of L is an automorphism $\phi \colon \mathcal{L}(L) \to \mathcal{L}(L)$ of the lattice $\mathcal{L}(L)$ of all subalgebras of L. We seek to describe the lattice automorphisms in terms of maps $\sigma \colon L \to L$ of the underlying algebra. A semi-automorphism σ of L is an automorphism of the algebraic system consisting of the pair (F, L), that is, a pair of maps $\sigma \colon F \to F$, $\sigma \colon L \to L$ preserving the operations. Thus $\sigma \colon F \to F$ is an automorphism of F and $(x + y)^{\sigma} = x^{\sigma} + y^{\sigma}$, $(xy)^{\sigma} = x^{\sigma}y^{\sigma}$, $(\lambda x)^{\sigma} = \lambda^{\sigma}x^{\sigma}$ for all $x, y \in L$ and $\lambda \in F$. Clearly, any semi-automorphism of L induces a lattice automorphism. To study a given lattice automorphism ϕ , we select a semi-automorphism σ such that $\phi \sigma^{-1}$ fixes certain subalgebras, and so we reduce the problem to the investigation of lattice automorphisms leaving these subalgebras fixed.

Except where otherwise stated, we suppose that F is an algebraically closed field of characteristic 0 and that L is semi-sin ple of rank $r \ge 3$. For $x \in L$, we denote by x_s , x_n the semi-simple and nil parts¹ respectively of x. We shall prove

Theorem. Let L be a semi-simple Lie algebra of rank ≥ 3 over an algebraically closed field F of characteristic 0. For $t \in F$, $t \neq 0$, let $\tau(t): L \to L$ be the map defined by $x^{\tau(t)} = x_s + tx_n$ for $x \in L$. Let ϕ be a lattice automorphism of L. Then there exists a unique semi-automorphism σ of L and a unique $t \in F$, $t \neq 0$ such that $\sigma \tau(t)$ induces ϕ . Conversely, for all semi-automorphisms σ and all $t \in F$, $t \neq 0$, the map $\sigma \tau(t)$ induces a lattice automorphism of L.

If A is a subset of L, we denote by $\langle A \rangle$ the subspace spanned by A. We denote by $\langle \langle A \rangle \rangle$ the subalgebra generated by A. We say that the lattice automorphism ϕ fixes the subalgebra A if $A^{\phi} = A$. Let A be any sul space of L. We say that ϕ is the identity on A if $U^{\phi} = U$ for all subalgebras U of L contained in A, that is, if $\langle a \rangle^{\phi} = \langle a \rangle$ for all $a \in A$. We say that ϕ is linear (semi-linear) on A if

^{1.} See Jacobson [3] p. 98.

there exists a linear (respectively semi-linear) transformation $\sigma: A \to A$ such that $\langle a \rangle^{\phi} = \langle a^{\sigma} \rangle$ for all $a \in A$.

We note that, if A is a subalgebra fixed by ϕ , dim $A \ge 3$, and if every subspace of A is a subalgebra, then by the Fundamental Theorem of Projective Geometry, ϕ is semi-linear on A. If ϕ is semi-linear on A and there exists a 2-dimensional subspace $B \subseteq A$ on which ϕ is linear, then ϕ is linear on A.

2. Reduction

Let H be a Cartan subalgebra of L. We denote by h_{α} the scaled star vector defined by

$$(h, h_a) = \alpha(h)/(\alpha, \alpha)$$

for all $h \in H$. This departure from the usual notation is convenient for our purposes. For any choice of root vector e_{α} , we have $h_{\alpha}e_{\alpha}=e_{\alpha}$. We now choose root vectors e_{α} such that $e_{-\alpha}e_{\alpha}=h_{\alpha}$ and such that all the multiplication constants $v_{\alpha,\beta}$ (defined when $\alpha,\beta,\alpha+\beta$ are roots by $e_{\alpha}e_{\beta}=v_{\alpha,\beta}$ $e_{\alpha+\beta}$) are rational. We choose an order relation < on the roots in the usual way. We put $K_{\alpha}=\ker \alpha$.

DEFINITION 2.1. We say that the lattice automorphism ϕ is reduced with respect to H, $\{e_{\alpha} \mid \alpha \text{ root}\}$, < if ϕ is the identity on H and fixes $\langle h_{\alpha} + e_{\alpha} \rangle$ for every fundamental root α .

In §4, we shall show that the concept of a reduced lattice automorphism is in fact independent of the choices of H, $\{e_{\alpha} \mid \alpha \text{ root}\}$ and of \langle . If $\langle e_{\gamma} \rangle$ is a root space for H, then $\langle e_{\gamma} \rangle^{\phi}$ is a root space for H^{ϕ} by Barnes [1], Lemma 4. If ϕ is reduced, we have that ϕ fixes $\langle h_{\alpha} \rangle$, $\langle h_{\alpha} + e_{\alpha} \rangle$ and so also $\langle e_{\alpha} \rangle$ for each fundamental root α . Since ϕ also preserves sums of roots ([1], proof of Theorem 2), it follows that ϕ fixes $\langle e_{\gamma} \rangle$ for all roots γ .

Lemma 2.2. Let ϕ be a lattice automorphism of L. Then there exists a unique semi-automorphism σ of L such that $\phi^{\sigma-1}$ is reduced with respect to given H, $\{e_{\alpha}\}$, <.

PROOF. H^{ϕ} is a Cartan subalgebra, $\langle e_{\alpha} \rangle^{\phi}$ is the root space of a root α^{ϕ} for H^{ϕ} , and the correspondence $\alpha \to \alpha^{\phi}$ preserves sums. Therefore there exists an automorphism σ_1 of L such that $H^{\sigma'} = H^{\phi}$ and $\langle e_{\alpha}^{\sigma'} \rangle = \langle e_{\alpha} \rangle^{\phi}$ for all roots α . Thus $\phi \sigma_1^{-1}$ fixes H and all the root spaces $\langle e_{\alpha} \rangle$. This implies that $\phi \sigma_1^{-1}$ fixes $\langle h_{\alpha} \rangle$ for all α . Since H is abelian and dim $H \geq 3$, $\phi \sigma_1^{-1}$ is semi-linear on H. Let $\alpha_1, \dots, \alpha_r$ be the fundamental roots and put $h_i = h_{\alpha_i}$. The semi-linear transformation fixes all the $\langle h_i \rangle$, and so has the form

$$\sum_{i=1}^{r} x_i h_i \to \sum_{i=1}^{r} \lambda_i x_i^{\dagger} h_i$$

where τ is an automorphism of F and $\lambda_1, \dots, \lambda_r \in F$. We now prove $\lambda_i = \lambda_j$ for all i, j.

Suppose $\alpha_i + \alpha_j = \beta$ is a root. Then $h_{\beta} = xh_{\alpha_i} + yh_{\alpha_j}$, where $x = (\alpha_i, \alpha_i)/(\beta, \beta)$ and $y = (\alpha_j, \alpha_j)/(\beta, \beta)$. Since x, y are rational, $x^{\tau} = x$, $y^{\tau} = y$ and the semi-linear transformation sends h_{β} to $\lambda_i x h_{\alpha_i} + \lambda_j y h_{\alpha_j}$. But $\langle h_{\beta} \rangle$ is fixed by $\phi \sigma_1^{-1}$ and therefore $\lambda_i = \lambda_j$.

Suppose $\alpha_i + \alpha_j$ is not a root. Then $e_{\alpha_i} e_{\alpha_j} = 0$, $\langle e_{\alpha_i}, e_{\alpha_j} \rangle$ is a subalgebra fixed by $\phi \sigma_1^{-1}$ and it follows that $\phi \sigma_1^{-1}$ permutes the subalgebras $\langle e_{\alpha_i} + x e_{\alpha_j} \rangle$ for $x \neq 0$. The subalgebra $\langle h_i + y h_j \rangle$ generates with $\langle e_{\alpha_i} + x e_{\alpha_j} \rangle$ a 2-dimensional subalgebra ff and only if y = 1. Since this property is preserved by $\phi \sigma_1^{-1}$, $\langle h_i + h_j \rangle$ is fixed by $\phi \sigma_1^{-1}$ and we have $\lambda_i = \lambda_j$.

We have now shown that $\phi \sigma_1^{-1}$ is given on H by the semi-linear map

$$\sum_{i=1}^{r} x_i h_i \to \sum_{i=1}^{r} x_i^{\tau} h_i.$$

We define $\sigma_2: L \to L$ by

$$\left(\sum_{i=1}^{r} x_i h_i + \sum_{\text{vroot}} y_{\gamma} e_{\gamma}\right)^{\sigma_2} = \sum_{i=1}^{r} x_i^{\tau} h_i + \sum_{\text{vroot}} y_{\gamma}^{\tau} e_{\gamma}.$$

Since the multiplication constants are rational, they are fixed under τ and σ_2 is a semi-automorphism. We now have that $\phi \sigma_1^{-1} \sigma_2^{-1}$ is the identity on H and fixes all the $\langle e_{\gamma} \rangle$.

Let $\lambda_1, \dots, \lambda_r$ be non-zero elements of F. For each root

$$\gamma = \sum_{i=1}^{r} m_i \alpha_i, \ (m_i \in \mathbb{Z},) \text{ put } \lambda_{\gamma} = \prod_{i=1}^{r} \lambda_i^{m_i}.$$

Then the map $\sigma_3: L \rightarrow L$ defined by

(*)
$$\left(h + \sum_{\gamma} x_{\gamma} e_{\gamma}\right)^{\sigma_{3}} = h + \sum_{\gamma} x_{\gamma} \lambda_{\gamma} e_{\gamma}$$

for $h \in H$, $x_{\gamma} \in F$, is an automorphism of L and every automorphism of L which is the identity on H has this form. We have $\langle h_i + e_{\alpha_i} \rangle^{\varphi \sigma_1^{-1} \sigma_2^{-1}} = \langle h_i + \mu_i e_{\alpha_i} \rangle$ for some $\mu_i \neq 0$. Put $\lambda_i = 1/\mu_i$ $(i = 1, 2, \dots, r)$ and then $\sigma = \sigma_3 \sigma_2 \sigma_1$ is a semi-automorphism with the required properties.

Suppose σ' is another such semi-automorphism. Then $\sigma'\sigma^{-1}$ is a semi-automorphism of L. For all $h \in H$,

$$\langle h \rangle^\phi = \langle h \rangle^\sigma = \langle h \rangle^{\sigma'}$$

and $\sigma'\sigma^{-1}$ is a scalar multiple of the identity on H. As $\sigma'\sigma^{-1}$ is linear on H, it is also linear on L and so is an automorphism of L. Since we also have $\langle h_i + e_{\alpha_i} \rangle^{\sigma'\sigma^{-1}} = \langle h_i + e_{\alpha_i} \rangle$, it follows that the permutation of the roots given by $\sigma'\sigma^{-1}$ is the identity and hence, that $h^{\sigma'\sigma^{-1}}$ is the scaled star vector of the root α_i , that is $h_i^{\sigma'\sigma^{-1}} = h_i$ and $\sigma'\sigma^{-1}$ is the identity on H. Thus $\sigma'\sigma^{-1}$ is an automorphism of the form (*) above, and, since $\langle h_i + e_{\alpha_i} \rangle^{\sigma'\sigma^{-1}} = \langle h_i + e_{\alpha_i} \rangle$, it follows that $\sigma'\sigma^{-1} = 1$.

3. The algebra \mathfrak{A}_1

Suppose the lattice automorphism ϕ of L is reduced with respect to H. If α is a root, then $\langle h_{\alpha}, e_{\alpha}, e_{-\alpha} \rangle$ is a subalgebra of type \mathfrak{A}_1 and ϕ gives a lattice automorphism of $\langle h_{\alpha}, e_{\alpha}, e_{-\alpha} \rangle$. Consequently it is of interest to determine the lattice automorphisms of \mathfrak{A}_1 .

Let S be the Lie algebra $\langle h, e, f \rangle$ with defining relations he = e, hf = -f, ef = h. We consider the projective plane whose points and lines are the 1 and 2-dimensional subspaces of S. The conic defined by the vanishing of the Killing form is the set of 1-dimensional subalgebras which are not Cartan subalgebras. The 2-dimensional subalgebras are the tangents to the conic, each point of the conic being a root space for the Cartan subalgebras on the tangent at the point.

Let ϕ be a lattice automorphism of S. Then ϕ permutes the points of the conic. Since each point not on the conic is the intersection of two tangents, this permutation determines ϕ completely. Since the tangents are the only 2-dimensional subalgebras, every permutation of the points of the conic gives a lattice automorphism of S.

LEMMA 3.1. Let ϕ be a lattice automorphism of S which fixes $\langle h \rangle$ and is linear on $\langle h, e \rangle$. Suppose $\langle h + e \rangle^{\phi} = \langle h + \lambda e \rangle$. Then ϕ is given by

$$\langle xh + ye + zf \rangle^{\phi} = \langle xh + \lambda ye + \frac{1}{\lambda} zf \rangle$$

for $x, y, z \in F$.

PROOF. For u = xh + ye + zf, $(u, u) = 2(x^2 + 2yz)$. Thus the conic can be expressed parametrically

$$x = \theta, y = -\frac{1}{2}\theta^2, z = 1.$$

The tangent to the conic at $(\theta, -\frac{1}{2}\theta^2, 1)$ has equation $\theta x + y - \frac{1}{2}\theta^2 z = 0$ and meets $\langle h, e \rangle$ in $\langle h + \theta e \rangle$. But $\langle h + \theta e \rangle^{\phi} = \langle h + \lambda \theta e \rangle$. Thus $(\theta, -\frac{1}{2}\theta^2, 1)^{\phi} = (\lambda \theta, -\frac{1}{2}\lambda^2\theta^2, 1)$. The tangents from (x_0, y_0, z_0) meet the conic at its points of intersection with the polar line $x_0x + z_0y + y_0z = 0$, that is at the points $(\theta, -\frac{1}{2}\theta^2, 1)$ for θ satisfying $x_0\theta - \frac{1}{2}z_0\theta^2 + y_0 = 0$. The tangents from $(x_1, y_1, z_1) = (x_0, y_0, z_0)^{\phi}$ meet the conic in the points $(\theta', -\frac{1}{2}\theta'^2, 1)$ for θ' satisfying $x_0\theta'/\lambda + z_0$

$$x_0 \frac{\theta'}{\lambda} - \frac{1}{2} z_0 \left(\frac{\theta'}{\lambda} \right)^2 + y_0 = 0.$$

Therefore

$$x_1: y_1: z_1 = x_0/\lambda: y_0: z_0/\lambda^2$$
,

and

$$\langle x_0 h + y_0 e + z_0 f \rangle^{\phi} = \langle x_0 h + \lambda y_0 e + \frac{1}{\lambda} z_0 f \rangle.$$

4. Reduced lattice automorphisms

Throughout this section, we suppose that ϕ is reduced with respect to $H, \{e_{\alpha} \mid \alpha \text{ root}\}, <.$

LEMMA 4.1. Let α be a root. Then there exists a root β such that $(\alpha, \beta) = 0$ and $\alpha + \beta$ is not a root.

PROOF. We need only consider the case where α is a fundamental root at the end of a component of the Dynkin diagram since, for any α , there exists an element of the Weyl group which transforms α into such a root. For such a root α , there is a point β of the Dynkin diagram not joined to α and the result follows.

LEMMA 4.2. For each root α , there is $\lambda_{\alpha} \in F$ such that $\langle h_{\alpha} + x e_{\alpha} \rangle^{\varphi} = \langle h_{\alpha} + \lambda_{\alpha} x e_{\alpha} \rangle$ for all $x \in F$, and $\lambda_{\alpha} \lambda_{-\alpha} = 1$.

PROOF. We choose a root β such that $(\alpha, \beta) = 0$ and $\alpha + \beta$ is not a root. There exist $k \in K_{\alpha} \cap K_{\beta}$ and $n \in K_{\alpha}$ such that k and n are linearly independent. Then $\langle k, n, e_{\alpha} \rangle$ is an abelian 3-dimensional subalgebra fixed under ϕ . Therefore ϕ is semi-linear on $\langle k, n, e_{\alpha} \rangle$. But ϕ is linear on $\langle k, n \rangle$ and therefore also on the fixed subalgebra $\langle k, e_{\alpha} \rangle$. Since $\langle k, e_{\alpha}, e_{\beta} \rangle$ is also a 3-dimensional abelian fixed subalgebra, it follows that ϕ is linear on $\langle e_{\alpha}, e_{\beta} \rangle$. Put $h = h_{\alpha} + h_{\beta}$. Every subspace of $\langle h, e_{\alpha}, e_{\beta} \rangle$ is a subalgebra and it follows that ϕ is also linear on $\langle h, e_{\alpha}, e_{\beta} \rangle$. Since ϕ fixes $\langle h \rangle$, $\langle e_{\alpha} \rangle$ and $\langle e_{\beta} \rangle$, ϕ is given on $\langle h, e_{\alpha}, e_{\beta} \rangle$ by

$$\langle xh + ye_{\alpha} + ze_{\beta} \rangle^{\phi} = \langle xh + \lambda_{\alpha}ye_{\alpha} + \lambda_{\beta}ze_{\beta} \rangle$$

for some λ_{α} , $\lambda_{\beta} \in F$.

In the 3-dimensional projective geometry of subspaces of $\langle h_{\alpha}, h_{\beta}, e_{\alpha}, e_{\beta} \rangle$, $\langle h_{\alpha}, e_{\alpha} \rangle$ and $\langle h_{\beta}, e_{\beta} \rangle$ are skew lines. There is a unique transversal to them through $\langle h + xe_{\alpha} + ye_{\beta} \rangle$. This transversal $\langle h_{\alpha} + xe_{\alpha}, h_{\beta} + ye_{\beta} \rangle$ is a subalgebra since $(\alpha, \beta) = 0$ and $\alpha + \beta$ is not a root. Since $\langle h_{\alpha} + xe_{\alpha}, h_{\beta} + ye_{\beta} \rangle^{\phi}$ is the transversal through $\langle h + xe_{\alpha} + ye_{\beta} \rangle^{\phi} = \langle h + \lambda_{\alpha}xe_{\alpha} + \lambda_{\beta}ye_{\beta} \rangle$,

$$\langle h_{\alpha} + xe_{\alpha}, h_{\beta} + ye_{\beta} \rangle^{\circ} = \langle h_{\alpha} + \lambda_{\alpha}xe_{\alpha}, h_{\beta} + \lambda_{\beta}ye_{\beta} \rangle$$
 and $\langle h_{\alpha} + xe_{\alpha} \rangle^{\phi} = \langle h_{\alpha}, e_{\alpha} \rangle \cap \langle h_{\alpha} + xe_{\alpha}, h_{\beta} + ye_{\beta} \rangle^{\phi}$ $= \langle h_{\alpha} + \lambda_{\alpha}xe_{\alpha} \rangle.$

By Lemma 3.1, we have $\lambda_{\alpha}\lambda_{-\alpha}=1$.

COROLLARY 4.3. The concept of a reduced lattice automorphism is independent of the choice of the root vectors e_{α} .

PROOF. If ϕ is reduced and α is a fundamental root, then $\lambda_{\alpha} = 1$ and ϕ is the identity on $\langle h_{\alpha}, e_{\alpha} \rangle$. For any choice e'_{α} of the root vector, we have $\langle h_{\alpha} + e'_{\alpha} \rangle^{\phi} = \langle h_{\alpha} + e'_{\alpha} \rangle$ as required.

LEMMA 4.4. For all $h \in H - K_{\alpha}$, $\langle h + e_{\alpha} \rangle^{\phi} = \langle h + \lambda_{\alpha} e_{\alpha} \rangle$.

PROOF. If $h \in H - K_{\alpha}$, then $h = uh_{\alpha} + k$ for some $k \in K_{\alpha}$ and $u \in F$, $u \neq 0$. By Lemma 4.2, the result holds for k = 0. Suppose $k \neq 0$. Then

$$\langle h + e_{\alpha} \rangle = \langle uh_{\alpha} + e_{\alpha}, k \rangle \cap \langle uh_{\alpha} + k, e_{\alpha} \rangle$$

and

$$\langle h + e_{\alpha} \rangle^{\phi} = \langle uh_{\alpha} + \lambda_{\alpha}e_{\alpha}, k \rangle \cap \langle uh_{\alpha} + k, e_{\alpha} \rangle = \langle h + \lambda_{\alpha}e_{\alpha} \rangle.$$

LEMMA 4.5. Let α, β be independent roots and let $N_{\alpha,\beta} = \langle e_{\gamma} | \gamma = r\alpha + s\beta$, $r \ge 0$, $s \ge 0$. Then

$$\langle xe_{\alpha} + ye_{\beta}, N'_{\alpha,\beta} \rangle^{\phi} = \langle \lambda_{\alpha}xe_{\alpha} + \lambda_{\beta}ye_{\beta}, N'_{\alpha,\beta} \rangle$$

for all $x, y \in F$.

PROOF. Put

$$p = (\alpha, \alpha) \frac{(\beta, \beta) - (\alpha, \beta)}{(\alpha, \alpha)(\beta, \beta) - (\alpha, \beta)^2}, \quad q = (\beta, \beta) \frac{(\alpha, \alpha) - (\alpha, \beta)}{(\alpha, \alpha)(\beta, \beta) - (\alpha, \beta)^2}$$

and $h = ph_{\alpha} + qh_{\beta}$. Then $he_{\alpha} = e_{\alpha}$ and $he_{\beta} = e_{\beta}$. Put $N = N_{\alpha,\beta}$ and $U = \langle h, N \rangle$. Then N is a fixed nilpotent subalgebra. Since N' is normalised by H, N' is a sum of root spaces and is therefore fixed. But N' is an ideal of U and every subspace of U/N' is a subalgebra. Hence ϕ is semi-linear on U/N'. By Lemma 4.4, we have

$$\langle zh + xe_{\alpha} \rangle^{\phi} = \langle zh + \lambda_{\alpha}xe_{\alpha} \rangle, \langle zh + ye_{\beta} \rangle^{\phi} = \langle zh + \lambda_{\beta}ye_{\beta} \rangle$$

and it follows that

$$\langle zh + xe_{\alpha} + ye_{\beta}, N' \rangle^{\phi} = \langle zh + \lambda_{\alpha}xe_{\alpha} + \lambda_{\beta}ye_{\beta}, N' \rangle$$

for all $x, y, z \in F$.

LEMMA 4.6. There exists $t = t(H) \in F$, $t \neq 0$, independent of α , such that $\langle k + e_{\alpha} \rangle^{\phi} = \langle k + t \lambda_{\alpha} e_{\alpha} \rangle$ for all $k \in K_{\alpha}$.

PROOF. Since $\langle K_{\alpha}, e_{\alpha} \rangle$ is a fixed abelian subalgebra of dimension ≥ 3 , ϕ is semi-linear on $\langle K_{\alpha}, e_{\alpha} \rangle$. But ϕ is the identity on K_{α} and fixes $\langle e_{\alpha} \rangle$. Hence ϕ is given on $\langle K_{\alpha}, e_{\alpha} \rangle$ by $\langle k + e_{\alpha} \rangle^{\phi} = \langle k + \mu_{\alpha} e_{\alpha} \rangle$ for all $k \in K_{\alpha}$ and some $\mu_{\alpha} \in F$, $\mu_{\alpha} \neq 0$ independent of k. We have to prove that $\mu_{\alpha}/\lambda_{\alpha}$ is independent of α .

Let α, β be independent roots. Take $k \in K_{\alpha} \cap K_{\beta}$, $k \neq 0$, and put $V = \langle k, N \rangle$ where $N = N_{\alpha,\beta}$. Then N' is an ideal of V, V/N' is abelian, and it follows that ϕ is given on V/N' by

$$\langle zk + xe_{\alpha} + ye_{\beta}, N' \rangle^{\phi} = \langle zk + \mu_{\alpha}xe_{\alpha} + \mu_{\beta}ye_{\beta}, N' \rangle.$$

Comparing this with the description of ϕ on $\langle e_{\alpha}, e_{\beta}, N' \rangle$ given by Lemma 4.5, we get $\mu_{\alpha}/\lambda_{\alpha} = \mu_{\beta}/\lambda_{\beta}$.

LEMMA 4.7. Let $\sigma = \exp(\theta \operatorname{ad} e_{\beta})$ where $\theta \in F$. Suppose $\lambda_{\beta} = 1$. Then ϕ is reduced with respect to H^{σ} and $<^{\sigma}$, $\lambda_{\alpha^{\sigma}} = \lambda_{\alpha}$ for all roots α of H, and $t(H^{\sigma}) = t(H)$.

PROOF. $H = \langle h_{\beta}, K_{\beta} \rangle$ and $H^{\sigma} = \langle h_{\beta} + \theta e_{\beta}, K_{\beta} \rangle$. We have that ϕ is the identity on K_{β} and, by Lemma 4.4, $\langle h_{\beta} + k + \theta e_{\beta} \rangle^{\phi} = \langle h_{\beta} + k + \lambda_{\beta} \theta e_{\beta} \rangle$ for all $k \in K_{\beta}$. Since $\lambda_{\beta} = 1$, ϕ is the identity on H^{σ} . It follows that, for every root γ of H^{σ} , either $\langle e_{\gamma} \rangle^{\phi} = \langle e_{\gamma} \rangle$ or $\langle e_{\gamma} \rangle^{\phi} = \langle e_{-\gamma} \rangle$. But $\gamma = \alpha^{\sigma}$ for some root α of H and $e_{\gamma} = e_{\alpha}^{\sigma} \in N_{\alpha,\beta}$. Since $e_{\alpha}^{\sigma} \notin N_{-\alpha,\beta}$, $\langle e_{\gamma} \rangle^{\phi} \neq \langle e_{-\gamma} \rangle$ and we have $\langle e_{\gamma} \rangle^{\phi} = \langle e_{\gamma} \rangle$ for all roots γ of H^{σ} .

By Lemma 4.4, for some $\lambda_{\gamma} \in F$, we have $\langle h + e_{\gamma} \rangle^{\phi} = \langle h + \lambda_{\gamma} e_{\gamma} \rangle$ for all $h \in H^{\sigma} - K_{\gamma}$. (The proof of Lemma 4.4 makes no use of the assumption that $\lambda_{\alpha} = 1$ for all fundamental roots α .) Trivially, $\lambda_{\beta\sigma} = \lambda_{\beta}$.

For $\alpha \neq \pm \beta$, take $h \in K_{\beta}$, $h \notin K_{\alpha}$. Then $h \in H^{\sigma} - K_{\alpha\sigma}$ and

$$\langle h + \lambda_{\alpha^{\sigma}} e_{\alpha}^{\sigma}, N_{\alpha, \beta}' \rangle = \langle h + e_{\alpha}^{\sigma}, N_{\alpha, \beta}' \rangle^{\phi} = \langle h + e_{\alpha}, N_{\alpha, \beta}' \rangle^{\phi}$$

$$= \langle h + \lambda_{\alpha} e_{\alpha}, N_{\alpha, \beta}' \rangle.$$

Therefore $\lambda_{\alpha\sigma} = \lambda_{\alpha}$. In particular, if α^{σ} is fundamental with respect to $<^{\sigma}$, then $\lambda_{\alpha\sigma} = 1$. Thus ϕ is reduced with respect to H^{σ} and $<^{\sigma}$.

Take $k \in K_{\beta\sigma} = K_{\beta}$. Since $e_{\beta\sigma} = e_{\beta}$, we have

$$\langle k + e_{\beta\sigma} \rangle^{\phi} = \langle k + e_{\beta} \rangle^{\phi} = \langle k + t \lambda_{\beta} e_{\beta} \rangle = \langle k + t \lambda_{\beta\sigma} e_{\beta\sigma} \rangle$$

and $t(H^{\sigma}) = t(H)$.

Lemma 4.8. For all α , $\lambda_{\alpha} = 1$. The concept of a reduced lattice automorphism is independent of the ordering of the roots.

PROOF. It is sufficient to show that $\lambda_{\alpha} = \lambda_{\beta} = 1$ implies $\lambda_{\alpha+\beta} = 1$. Since we may suppose $\alpha + \beta$ is a root (otherwise we have nothing to prove), we have $e_{\alpha}e_{\beta} = ve_{\alpha+\beta}$ and $v \neq 0$. Put $\sigma = \exp(1/v \operatorname{ad} e_{\beta})$ and $N = N_{\alpha,\beta}$. Since the term $\Gamma^3 N$ of the descending central series of N is normalised by H, it is a sum of root spaces and is therefore fixed. Since $\lambda_{\alpha} = 1$ and $N'_{\alpha,\alpha+\beta} \subseteq \Gamma^3 N$, we have by Lemma 4.5 that $\langle e_{\alpha} + e_{\alpha+\beta}, \Gamma^3 N \rangle^{\phi} = \langle e_{\alpha} + \lambda_{\alpha+\beta}, e_{\alpha+\beta}, \Gamma^3 N \rangle$. But

$$\langle e_{\alpha} + e_{\alpha+\beta}, \Gamma^{3} N \rangle^{\phi} = \langle e_{\alpha}^{\sigma}, \Gamma^{3} N \rangle^{\phi} = \langle e_{\alpha}^{\sigma}, \Gamma^{3} N \rangle$$

= $\langle e_{\alpha} + e_{\alpha+\beta}, \Gamma^{3} N \rangle$.

Since $e_{\alpha+\beta} \notin \Gamma^3 N$, it follows that $\lambda_{\alpha+\beta} = 1$.

LEMMA 4.9. Let H, H* be Cartan subalgebras of L, and suppose ϕ is reduced with respect to H. Then ϕ is reduced with respect to H* and $t(H) = t(H^*)$. The concept of a reduced lattice automorphism is independent of the choice of Cartan subalgebra.

PROOF. By Lemmas 4.7, 4.8, it is sufficient to prove the existence of a chain of Cartan subalgebras $H_0 = H$, $H_1, \dots, H_n = H^*$ and root vectors e^1_α of H_i ($i = 0, 1, \dots$,

n-1) such that $H_{i+1} = H_i \exp(\lambda_i \text{ ad } e_a^i)$. By Jacobson [3] p. 288 Exercise 18, there exist roots $\alpha_1, \dots, \alpha_n$ of H, not necessarily distinct, and $\lambda_i \in F$ such that

$$H^* = \exp(\lambda_1 \operatorname{ad} e_{\alpha_1}) \exp(\lambda_2 \operatorname{ad} e_{\alpha_2}) \cdots \exp(\lambda_n \operatorname{ad} e_{\alpha_n}).$$

Put

$$\sigma_i = \exp(\lambda_{n-i} \operatorname{ad} e_{\alpha_{n-i+1}}) \exp(\lambda_{n-i+1} \operatorname{ad} e_{\alpha_{n-i+1}}) \cdots \exp(\lambda_n \operatorname{ad} e_{\alpha_n}),$$

 $H_{i+1}=H^{\sigma_i}$ and $e_{\alpha}^{i+1}=e_{\alpha_{n-i-1}}^{\sigma_i}$. Then ad $e_{\alpha}^{i+1}=\sigma_i^{-1}(\text{ad }e_{\alpha_{n-i-1}})\sigma_i$ and σ_i exp $(\lambda_{i+1} \text{ ad }e_{\alpha}^{i+1})=\sigma_{i+1}$. Thus we have e_{α}^i a root vector for H_i , $H_{i+1}=H_i$ exp $(\lambda_i \text{ ad }e_{\alpha}^i)$ and $H_n=H^*$.

LEMMA 4.10. Suppose ϕ is a reduced lattice automorphism of L. Let t = t(H) for some Cartan subalgebra H of L. Then $\langle x \rangle^{\phi} = \langle x_s + tx_n \rangle$ for all $x \in L$.

PROOF. (a) Suppose x is semi-simple. Then there exists a Cartan subalgebra H of L such that $x \in H$. By Lemma 4.9, ϕ is reduced with respect to H and therefore $\langle x \rangle^{\phi} = \langle x \rangle$.

- (b) Suppose x is nil. Then there exist $h, y \in L$ such that hx = x, hy = -y and xy = h. All the elements $h + \lambda x$ are semi-simple. Therefore all the subalgebras $\langle h + \lambda x \rangle$ are fixed, and it follows that $\langle x \rangle$ is fixed.
- (c) Suppose x_s and x_n are non-zero. Take a Cartan subalgebra H such that $x_s \in H$. Then $x_n = \sum_{\alpha} \mu_{\alpha} e_{\alpha}$ where $\mu_{\sigma} \in F$ and e_{α} is a root vector for the root α of H. For some ordering of the roots, the roots α for which $\mu_{\alpha} \neq 0$ are all positive. Since $x_s x_n = 0$, if $\mu_{\alpha} \neq 0$, then $\alpha(x_s) = 0$. Let γ be the largest root for which $\gamma(x_s) = 0$. Then $\langle x_s + \lambda e_{\gamma} \rangle^{\phi} = \langle x_s + t\lambda e_{\gamma} \rangle$ by Lemma 4.6. Thus the result holds if $x_n = \lambda e_{\gamma}$ for some $\lambda \in F$. If x_n and e_{γ} are linearly independent, then $\langle x_s, x_n, e_{\gamma} \rangle$ is a fixed 3-dimensional abelian subalgebra. Every element of $\langle x_n, e_{\gamma} \rangle$ is nil. Thus ϕ is the identity on $\langle x_n, e_{\gamma} \rangle$. From ϕ linear on $\langle x_s, x_n, e_{\gamma} \rangle$ and $\langle x_s + e_{\gamma} \rangle^{\phi} = \langle x_s + t e_{\gamma} \rangle$, it now follows that $\langle x_s + x_n \rangle^{\phi} = \langle x_s + t x_n \rangle$.

This completes the proof of the direct part of the theorem.

5. The converse

In this section, we suppose that L is a semi-simple Lie algebra over a (not necessarily algebraically closed) field of characteristic 0. We take some $t \in F$, $t \neq 0$ and put $\tau = \tau(t)$ and we prove that τ induces a reduced lattice automorphism of L.

Lemma 5.1. Let $A=\langle\langle a,b\rangle\rangle$ be the subalgebra of L generated by a,b. Then

- (a) a_sb_s , a_sb_n , a_nb_s , $a_nb_n \in A'$.
- (b) There exists $u \in A'$ such that $a_s(b+u)=0$.
- (c) If A is soluble, there exist $c, d \in A$ such that $c a, d b \in A'$ and $c_s d = c d_s = 0$.

- PROOF. (a) For all polynomials f(x) without constant term, $bf(ada) \in A'$. In particular, b ad $a_s \in A'$ and b ad $a_n \in A'$. Thus $a_s b$, $a_n b \in A'$. Therefore $a_s g(ad b) \in A'$ $a_n g(ad b) \in A'$ for all polynomials g(x) without constant term. Therefore $a_s b_s$, $a_s b_n$, $a_n b_s$, $a_n b_n \in A'$.
- (b) Let m(x) = x f(x) be the minimum polynomial of ad a_s . Then x does not divide f(x), and there exist polynomials p(x), q(x) such that xp(x) + f(x)q(x) = 1. Put u = -b ad $a_sp(\text{ad }a_s)$. Then $u \in A'$, $b + u = b f(\text{ad }a_s) q(\text{ad }a_s)$ and $a_s(b + u) = 0$.
- (c) By (b), there exist $u \in A'$ such that $(a+u)b_s = 0$. Put c = a + u. Since ad b_s commutes with ad c, it commutes with all polynomials in ad c, in particular with ad c_s . By the argument of (b), there exists a polynomial f(x) such that, for $v = b_n f(\operatorname{ad} c_s)$, we have $c_s(b_n + v) = 0$. Clearly $v \in A'$. Let K be the algebraic closure of F and let L_K be the algebra obtained from L by extension of the field. Since A is soluble, A is contained in a Borel subalgebra B of L_K . B' is precisely the set of all nil elements in B. It follows that every element of A' is nil and that the sum of two nil elements of A is again nil. Thus $b_n + v$ is nil. Since ad b_s commutes with ad c_s , v $b_s = b_n$ b_s $f(\operatorname{ad} c_s) = 0$. Thus $b_s(b_n + v) = 0$ and b_s and $b_n + v$ are the semi-simple and nil parts respectively of d = b + v.

LEMMA 5.2. Let U be a subset of L, $P = \langle \langle U \rangle \rangle$ and $Q = \langle \langle U^{\tau} \rangle \rangle$. Then P' = O'.

PROOF. For all $u, v \in U$, we have

$$u^{\tau}v^{\tau} = (u_s + tu_n) (v_s + tv_n) = u_sv_s + t(u_nv_s + u_sv_n) + t^2u_nv_n$$

and by Lemma 5.1(a), $u^{\tau}v^{\tau} \in P'$. For all $u \in U$ and $a \in P'$, we have $u^{\tau}a = u_s a + tu_n a \in P'$ by Lemma 5.1 (a). It follows that $Q' \subseteq P'$. Applying this to $\tau^{-1} = \tau(1/t)$, we get $P' \subseteq Q'$.

LEMMA 5.3. Let A be a soluble subalgebra of L. Then A^{τ} is a subalgebra of L and dim $A^{\tau} = \dim A$.

PROOF. Since all elements of A' are nil, $A'^{\tau} = A'$. A^{τ} is closed with respect to multiplication since, by Lemma 5.2, $\langle \langle A^{\tau} \rangle \rangle' = A'$. We have to prove that A^{τ} is a subspace of the same dimension as A.

- (1) We use induction on dim A to prove that $(a + b)^{\tau} a^{\tau} b^{\tau} \in A'$ for all $a, b \in A$. The assertion is trivial if dim A = 1. We can work in $\langle \langle a, b \rangle \rangle$, so we may suppose $A = \langle \langle a, b \rangle \rangle$.
- CASE 1. Suppose $b \in A'$. If b = 0, the result is trivial, so we suppose $b \neq 0$. Since $A' \neq 0$, we have A' > A''. As $A = \langle a, A' \rangle$ and $b \in A' = aA' + A''$, we have b = au + v for some $u \in A'$, $v \in A''$. Put

$$c = a \exp(\operatorname{ad} u) = a + au + \frac{1}{2}(au)u + \cdots$$

Then c = a + b + w where $w \in A''$. We have

$$c_s = a_s \exp(\operatorname{ad} u) \equiv a_s \operatorname{mod} A'$$

 $c_n = a_n \exp(\operatorname{ad} u) \equiv a_n \operatorname{mod} A',$

and

$$c^{\tau} - a^{\tau} = (c_s - a_s) + t(c_n - a_n) \equiv 0 \mod A'.$$

Since $w \in A'' < A', \langle \langle c, w \rangle \rangle < A$ and by induction, $(c - w)^{\tau} - c^{\tau} + w^{\tau} \in \langle \langle c, w \rangle \rangle'$. But b^{τ} , $w^{\tau} \in A'$ and therefore

$$(a+b)^{\mathfrak{r}}-a^{\mathfrak{r}}-b^{\mathfrak{r}}=(c-w)^{\mathfrak{r}}-a^{\mathfrak{r}}-b^{\mathfrak{r}}\equiv c^{\mathfrak{r}}-a^{\mathfrak{r}}\equiv 0 \mod A'.$$

CASE 2. We now consider general a, b. By Lemma 5.1(c), there exist $c, d \in A$ such that c - a, $d - b \in A'$ and $c_s d = c d_s = 0$. Put u = c - a, v = d - b. Since $c_s d_s = 0$, $c_s + d_s$ is semi-simple. Since c_n, d_n are nil and A is soluble, $c_n + d_n$ is nil. But $(c_s + d_s)(c_n + d_n) = 0$. Therefore $(c_s + d_s)$ and $(c_n + d_n)$ are the semi-simple and nil parts of c + d, and we have $(c + d)^{\tau} - c^{\tau} - d^{\tau} = 0$. Trivially, $(u + v)^{\tau} = u^{\tau} + v^{\tau}$ since u, v, u + v are nil. By Case 1, we have

$$((c+d) - (u+v))^{\tau} \equiv (c+d)^{\tau} - (u+v)^{\tau}$$

$$a^{\tau} = (c-u)^{\tau} \equiv c^{\tau} - u^{\tau}$$

$$b^{\tau} = (d-v)^{\tau} \equiv d^{\tau} - v^{\tau} \mod A'.$$

Thus

$$(a+b)^{\mathfrak{r}} - a^{\mathfrak{r}} - b^{\mathfrak{r}} = ((c+d) - (u+v))^{\mathfrak{r}} - a^{\mathfrak{r}} - b^{\mathfrak{r}}$$

$$\equiv (c+d)^{\mathfrak{r}} - (u+v)^{\mathfrak{r}} - c^{\mathfrak{r}} + u^{\mathfrak{r}} - d^{\mathfrak{r}} + v^{\mathfrak{r}}$$

$$\equiv 0 \mod A'.$$

(2) For any $a \in A$, by (1) we have $(a + A')^{\tau} \subseteq a^{\tau} + A'$. Applying this to τ^{-1} and the soluble subalgebra $\langle a^{\tau}, A' \rangle$, we get $(a + A')^{\tau} = a^{\tau} + A'$. Put $B = \langle A^{\tau} \rangle$. Then τ induces a map $\tau_1 \colon A/A' \to B/A'$. By (1), τ_1 is linear and im τ_1 is a subspace of B/A'. But $\langle a^{\tau} + A' | a \in A \rangle = B/A'$. Thus im $\tau_1 = B/A'$ and it follows that $A^{\tau} = B$. Since τ_1 is invertible, dim $B/A' = \dim A/A'$ and the result follows.

LEMMA 5.4. Let A be any subalgebra of L. Then A^{τ} is a subalgebra of L and dim $A^{\tau} = \dim A$.

PROOF. Let R be the radical of A and let S be a Levi factor. Then $A = R \oplus S$ as vector space. By Lemma 5.3, R^{τ} is a subalgebra of L and R^{τ} is soluble since $R^{\tau'} = R'$. Since S is semi-simple, we have $S = S' = \langle \langle S^{\tau} \rangle \rangle'$ and so $S^{\tau} \subseteq S$. Applying this to $\tau^{-\tau}$, we get $S^{\tau-1} \subseteq S$ and so $S^{\tau} = S$.

For any $s \in S$, $\langle s, R \rangle$ is a soluble subalgebra and $\langle s, R \rangle' \subseteq R$. By Lemma 5.3 $\langle s, R \rangle^{\tau}$ is a subalgebra and

$$\langle s, R \rangle^{\tau} = \langle s, R \rangle' = \langle s, R \rangle'^{\tau} \subseteq R^{\tau}.$$

Thus $s^{\tau}R^{\tau} \subseteq R^{\tau}$ and $R^{\tau} + S$ is a subalgebra. Since R^{τ} is a soluble ideal of $R^{\tau} + S$ $R^{\tau} \cap S = 0$ and dim $(R^{\tau} + S) = \dim (R + S)$.

Suppose $a \in A$. Then a = r + s for some $r \in R$, $s \in S$, and $a \in \langle s, R \rangle$. Hence $a^{\tau} \in \langle s, R \rangle^{\tau} \subseteq R^{\tau} + S$ since $\langle s, R \rangle^{\tau}$ is a subalgebra. Thus $(R + S)^{\tau} \subseteq R^{\tau} + S$. Applying this to τ^{-1} gives the reverse inequality. Therefore $A^{\tau} = R^{\tau} + S$ and so is a subalgebra.

This completes the proof that τ induces a reduced lattice automorphism of L, and so completes the proof of the theorem.

References

- [1] D. W. Barnes, 'Lattice isomorphisms of Lie algebras', J. Austral. Math. Soc. 4 (1964), 470-475.
- [2] D. W. Barnes and G. E. Wall, 'On normaliser preserving lattice isomorphisms between nilpotent groups', J. Austral. Math. Soc. 4 (1964), 454-469.
- [3] N. Jacobson, Lie Algebras (Interscience Tracts No. 10, 1962).

Department of Pure Mathematics University of Sydney Australia