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1. Introduction

Let L be a Lie algebra over the field F. A lattice automorphism of L is an
automorphism <j>: SC(L) -• £>(L) of the lattice &(L) of all subalgebras of L. We
seek to describe the lattice automorphisms in terms of maps a: L-* L of the
underlying algebra. A semi-automorphism a of L is an automorphism of the
algebraic system consisting of the pair (F,L), that is, a pair of maps a: F-> F,
a: L-> L preserving the operations. Thus a: F -> F is an automorphism of F and
(JC + yf = x" + y", (xy)" = x°y", {Xxf = k'x" for all x,yeL and XeF. Clearly,
any semi-automorphism of L induces a lattice automorphism. To study a given
lattice automorphism <f>, we select a semi-automorphism a such that <pa~1 fixes
certain subalgebras, and so we reduce the problem to the investigation of lattice
automorphisms leaving these subalgebras fixed.

Except where otherwise stated, we suppose that F is an algebraically closed
field of characteristic 0 and that L is semi-sin pie of rank r 2; 3. For xeL, we
denote by xs, xn the semi-simple and nil parts1 respectively of x. We shall prove

THEOREM. Let L be a semi-simple Lie algebra of rank ^ 3 over an algebra-
ically closed field F of characteristic 0. For teF, t ^ 0, let T((): L-*Lbe the map
defined by xr(r) = xs + txn for xeL. Let </> be a lattice automorphism of L.
Then there exists a unique semi-automorphism a of L and a unique teF, t # 0
such that az(t) induces (j>. Conversely, for all semi-automorphisms a and all
teF, t # 0, the map <rz{i) induces a lattice automorphism of L.

If A is a subset of L, we denote by <̂ 4> the subspace spanned by A. We
denote by « ^ 4 » the subalgebra generated by A. We say that the lattice auto-
morphism <j> fixes the subalgebra A if A* = A. Let A be any sul space of L. We
say that <f> is the identity on A if U9 = U for all subalgebras U of L contained in
A, that is, if <a>* = <a> for all a e A. We say that <f> is linear (semi-linear) on A if

1. See Jacobson [3] p. 98.
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44 D. W. Barnes [2]

there exists a linear (respectively semi-linear) transformation a: A-+A such that
<a>* =<a"> for all as A.

We note that, if A is a subalgebra fixed by $, dim 4 ^ 3 , and if every subspace
of A is a subalgebra, then by the Fundamental Theorem of Projective Geometry,
<j) is semi-linear on A. If <j> is semi-linear on A and there exists a 2-dimensional
subspace BsA on which <£ is linear, then 0 is linear on A.

2. Reduction

Let H be a Cartan subalgebra of L. We denote by hx the scaled star vector
denned by

(M«) = «(&)/(«,«)
for all l i eH. This departure from the usual notation is convenient for our purposes.
For any choice of root vector ea, we have hxex = ex. We now choose root vectors
ex such that e_xex = hx and such that all the multiplication constants vx^ (defined
when ct,p,a. + ft are roots by exeB = vXtP ex+p) are rational. We choose an order
relation < on the roots in the usual way. We put Kx = ker a.

DEFINITION 2.1. We say that the lattice automorphism 4> is reduced with
respect to H, {ex | a root}, < if $ is the identity on H and fixes (hx + ex} for every
fundamental root a.

In §4, we shall show that the concept of a reduced lattice automorphism is in
fact independent of the choices of H, {ex\a root} and of < . If <ey> is a root
space for H, then <ey>* is a root space for H* by Barnes [1], Lemma 4. If (j> is
reduced, we have that cj> fixes </ia>, </ia + ea> and so also <ea> for each fundamental
root a. Since <j) also preserves sums of roots ([1], proof of Theorem 2), it follows
that (f> fixes (ey} for all roots y.

LEMMA 2.2. Let (f> be a lattice automorphism of L. Then there exists a
unique semi-automorphism a of L such that (j)"'1 is reduced with respect to
given H, {ex}, <.

PROOF. H* is a Cartan subalgebra, <ea>* is the root space of a root a* for H*,
and the correspondence a -+ a* preserves sums. Therefore there exists an au-
tomorphism a! of L such that H"' = if* and « > = <ea>* for all roots a. Thus
(fxti1 fixes H and all the root spaces <ea>. This implies that ^ar^1 fixes </ia> for
all a. Since # is abelian and dim H ^ 3, $crfx is semi-linear on H. Let a,,, •••,ar

be the fundamental roots and put ht = hXi. The semi-linear transformation fixes
all the (Ji^, and so has the form

r r

where T is an automorphism of F and XU'--,XreF. We now prove Xt = A,- for
all i, j .
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[3] Lattice automorphisms of Lie algebras 45

Suppose a; + <Xj = p is a root. Then he — xhXl + yhXj, where x = (ai;a,)/(/?,/?)
and y = (ay, a,)/(/?,/?). Since x,)> are rational, x* = x, yz = >> and the semi-linear
transformation sends hfi to Xixhat + Xjyhaj. But </ĵ > is fixed by </>cr̂ l and
therefore Af = Xj.

Suppose a,- + a,- is not a root. Then eX{ eXJ = 0, <eai, eXj} is a subalgebra fixed
by fay1 and it follows that fai1 permutes the subalgebras <ea( + xeXl} for x # 0.
The subalgebra </i, + y/jy> generates with <ea/ + xeay> a 2-dimensional subalgebra
ff and only if y = 1. Since this property is preserved by <f>d\l, </jf + /?y> is fixed by
(/HTI 1 and we have A; = Ay.

We have now shown that (fxr^i is given on H by the semi-linear map

r r

E x,Aj -> E x* Af.

We define a2: L -> L by

I E Xj/if + E ^e, , I = E x'/ij + E y\er

\i = l yroot / i = l yroot

Since the multiplication constants are rational, they are fixed under T and a2 is a
semi-automorphism. We now have that ^CT^CJ 1 is the identity on H and fixes
all the (eyy.

Let Xu---,Xr be non-zero elements of F. For each root
r r

y = E mpi, (mjel,) put A, = f] -**'•

Then the map a3: L-+ L defined by

(*) (h+ E xv«
for heH, xyeF, is an automorphism of L and every automorphism of L which
is the identity on H has this form. We have </*, + e ^ y r ' V = </i, + n,eai} for
some /i( # 0. Put A( = 1 ln% (i = 1,2, • • •, r) and then cr = G3O2OI is a semi-auto-
morphism with the required properties.

Suppose a' is another such semi-automorphism. Then a'a~x is a semi-
automorphism of L. For all heH,

and a'a~l is a scalar multiple of the identity on //.As a'a'1 is linear on H, it is
also linear on L and so is an automorphism of L. Since we also have </i,- + exi}"""'
= <fej + eai>, it follows that the permutation of the roots given by a'a~l is the
identity and hence, that h""'1 is the scaled star vector of the root <xh that is
hf"'1 = ht and a'a~l is the identity on//. Thus a'a~x is an automorphism of the
form (*) above, and, since </ij + eaiy"'l=: <ht + eXl}, it follows that a'a~l = 1.
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3. The algebra %l

Suppose the lattice automorphism </> of L is reduced with respect to H. If a
is a root, then </ia, ex, e_a> is a subalgebra of type 9^ and </> gives a lattice
automorphism of </ia,ea,e_a>. Consequently it is of interest to determine the
lattice automorphisms of %±.

Let S be the Lie algebra </i,e,/> with defining relations he = e, hf— —/,
ef — h. We consider the projective plane whose points and lines are the 1 and
2-dimensional subspaces of S. The conic denned by the vanishing of the Killing
form is the set of 1-dimensional subalgebras which are not Cartan subalgebras.
The 2-dimensional subalgebras are the tangents to the conic, each point of the
conic being a root space for the Cartan subalgebras on the tangent at the point.

Let <j> be a lattice automorphism of S. Then <p permutes the points of the
conic. Since each point not on the conic is the intersection of two tangents, this
permutation determines (f) completely. Since the tangents are the only 2-dimension-
al subalgebras, every permutation of the points of the conic gives- a lattice
automorphism of S.

LEMMA 3.1. Let § be a lattice automorphism of S which fixes </j> and is
linear on </i,e). Suppose (Ji + e>* = (h + Ae>. Then (f) is given by

<x/i + ye + zfy* = <x/i + lye + -j-z/>

for x, y, zeF.

PROOF. For u = xh + ye + zf, («,«) = 2(x2 + 2yz). Thus the conic can be
expressed parametrically

x = 9t y = - i 0 2 , z = 1.

The tangent to the conic at (9, —\92, 1) has equation 9x + y —\Q2z = 0 and
meets </i,e> in (h + 0e>. But </i + 0e>* = <ft + X9e}. Thus (0, -\92, Vf
= (X9, —\X292,1). The tangents from (x0, y0, z0) meet the conic at its points of
intersection with the polar line xox + zoy + yoz = 0, that is at the points (9, — \92,1)
for 0 satisfying xo0 —|zo02 + y0 = 0. The tangents from(x1,y1,z1) = (x0,^0,z0)*
meet the conic in the points (0', —\9'2,1) for 0' satisfying xo0'\X + z0

Therefore

x1\y1:zl =x0IX:y0:z0/X
2,

and

<xo/i + yoe + zo/>^ = (xoh + Xyoe + j z o / > .
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4. Reduced lattice automorphisms

Throughout this section, we suppose that <j) is reduced with respect to
H,{eajaroot}, < .

LEMMA 4.1. Let a be a root. Then there exists a root /? such that (a,/?) = 0
and a + fi is not a root.

PROOF. We need only consider the case where a is a fundamental root at the
end of a component of the Dynkin diagram since, for any a, there exists an element
of the Weyl group which transforms a into such a root. For such a root a, there
is a point /? of the Dynkin diagram not joined to a and the result follows.

LEMMA 4.2. For each root a, there is XxeF such that </ia + xe^y = (hx

+ Xxxexy for all xeF, and XXX^X = 1.

PROOF. We choose a root /? such that (a,/?) = 0 and a + jS is not a root.
There exist keKxC\Kfi and neKx such that k and n are linearly independent.
Then <fc, n,ea> is an abelian 3-dimensional subalgebra fixed under <p. Therefore
<f> is semi-linear on <fc, n, ea>. But <j> is linear on </c, n> and therefore also on the
fixed subalgebra (k,exy. Since (k,ex,e0y is also a 3-dimensional abelian fixed
subalgebra, it follows that cf> is linear on <etr,e^>. Put h = hx + hp. Every subspace
of Qi,ex,e£) is a subalgebra and it follows that <p is also linear on Qi,ex,e^y. Since
4> fixes </!>, <ea> and (e^, <f> is given on </j,ea,^> by

<x/i + yex + zeBy* = <x/i + Xxyex + lpzeffy

for some Xx, X^eF.
In the 3-dimensional projective geometry of subspaces of (hx,he,ex,efy,

(hx,exy and (,hp,epy are skew lines. There is a unique transversal to them through
</i + xex + yefiy. This transversal (hx + xex,hp + ye^y is a subalgebra since
(a,)?) = 0 and a + /? is not a root. Since Qix + xex, h0 + ye^ is the transversal
through </J + xex + ye^y* = </i + Xxxex + Xfiyeey,

<hx + xex, he + ye^ = (hx + Xxxex, hp + Xeyefiy and

<K + * O * = <K,O n <̂ a + xe.,ht + ye^y*
= (hx + Xxxexy.

By Lemma 3.1, we have XXX-X = 1.

COROLLARY 4.3. The concept of a reduced lattice automorphism is inde-
pendent of the choice of the root vectors ex.

PROOF. If <j) is reduced and a is a fundamental root, then Xx = 1 and <f> is the
identity on <fta,ea>. For any choice ex of the root vector, we have </ia + e'xy*
= <jix + e'ay as required.
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LEMMA 4.4. For all heH- Kx, </i + O * = <h + Xxex}.

PROOF. If heH-Kx, then h = uhx + k for some keKx and usF, u =£ 0. By
Lemma 4.2, the result holds for k = 0. Suppose fc ^ 0. Then

<h + O = <u/ia + ea, fe> O (uhx + k,
and

LEMMA 4.5. Let a,/? fee independent roots and let Nx^ = <ey| y = m + sfi,
^O, s ^ 0>. Then

for all x, yeF.

PROOF. Put

and /i = p/ia + qhp. Then /tea = ea and /iep = e .̂ Put JV = Nx,p and U = {h,N}.
Then AT is a fixed nilpotent subalgebra. Since A7' is normalised by H, N' is a sum
of root spaces and is therefore fixed. But N' is an ideal of U and every subspace
of U JN' is a subalgebra. Hence <p is semi-linear on I) jN'. By Lemma 4.4, we have

and it follows that

(zh + xex + yef,N'y= <zh + kxxex

for all x,y,zeF.

LEMMA 4.6. There exists t = t(H) e f , t ^ 0, independent of a, suc/i
<fe + O * = <fc + t ^ O /or a// keKx.

PROOF. Since <Ka,ea> is a fixed abelian subalgebra of dimension ^ 3, <£ is
semi-linear on <Xa,ea>. But </> is the identity on Kx and fixes <ea>. Hence <̂  is
given on <KX, ex} by </c + ea>* = <fc + /iaea> for all k e Kx and some \ix 6 F, /ia ^ 0
independent of fc. We have to prove that fix jXx is independent of a.

Let a,/? be independent roots. Take keKxC\Kfi, k ^ 0, and put F = <fc,N>
where N = iVa,p. Then N ' is an ideal of V, V/N' is abelian, and it follows that $
is given on V/N' by

xca + ye,,N">* =

Comparing this with the description of (j> on (ex,ee,N'y given by Lemma 4.5, we

get nJK
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[7] Lattice automorphisms of Lie algebras 49

LEMMA 4.7. Let a = exp(0adfy) where 6eF. Suppose Xp = l. Then <f> is
reduced with respect to H" and <", Xx<, = XJor all roots a ofH, and t(H") = t(H).

PROOF. H = (hf,Kpy and H" = (h0 + Bef,Kp}. We have that <f> is the identity
on Kt and, by Lemma 4.4, {hB + k + 0^ )* = (h0 + k + X06efi} for all k e K0.
Since Xfi = 1, </> is the identity on H". It follows that, for every root y of H", either
<ey>0 = Oy> or <ey>* = <e_r>. But y = a" for some root a of Hand e,, = eleNx,fi.
Since ex^N.ttff, <e))>

<'> ^ <e_y> and we have <e?>* = <ey> for all roots y of Hff.
By Lemma 4.4, for some Xy e F, we have <fc + ey>* = </J + A/,,) for all

heH" — Ky. (The proof of Lemma 4.4 makes no use of the assumption that Xa = 1
for all fundamental roots a.) Trivially, Xp* = XB.

For a # +/?, take fceiC,, h$Kx. Then heH'-K^ and

Therefore X^ = Aa. In particular, if a" is fundamental with respect to < ", then
Xx, = 1. Thus <p is reduced with respect to H" and <".

Take k e X ^ = Kfi. Since e^ = ee, we have

and r(H")

LEMMA 4.8. For alia, Xx = 1. The concept of a reduced lattice automorphism
is independent of the ordering of the roots.

PROOF. It is sufficient to show that Xa = Xp = 1 implies Xa+f = 1. Since we may
suppose a + /? is a root (otherwise we have nothing to prove), we have exee = vex+p

and v # 0 . Put <7 = exp(l/vade^) and JV = Na,p. Since the term T3iV of the
descending central series of JV is normalised by H, it is a sum of root spaces and is
therefore fixed. Since Aa = 1 and N'x>x+f £ F3N, we have by Lemma 4.5 that

<ex + Xa+e e.+t, F3N>. But

Since ea+0 <tF3N, it follows that Xx+fi = 1.

LEMMA 4.9. Let H, H* be Cartan subalgebras of L, and suppose 4> is
reduced with respect to H. Then <f> is reduced with respect to H* and t(H) = t(H*).
The concept of a reduced lattice automorphism is independent of the choice of
Cartan subalgebra.

PROOF. By Lemmas 4.7, 4.8, it is sufficient to prove the existence of a chain of
Cartan subalgebras Ho = H,Hu--,Hn = H* and root vectors e\ of E{ (i = 0,1, • • •,

https://doi.org/10.1017/S1446788700013938 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013938


50 D. W. Barnes [8]

n - 1) such that Hi+1= Ht exp (A,- ad e£. By Jacobson [3] p. 288 Exercise 18,
there exist roots al5 •••,an of H, not necessarily distinct, and XteF such that

H* = exp (Aj ad eai) exp (A2 ad eX2) • • • exp (AB ad ean).
Put

Hi+1=Ha' and ej+1 = <,'_,_,. Then ad ei+1 = a;\ad ««„_,_>, and ff, exp
(A/+1 ad ej,+ 1) = ai+l. Thus we have el a root vector for Hh Hi+1 = Ht exp(Af ad
4) and Hn = H*.

LEMMA 4.10. Suppose (j> is a reduced lattice automorphism of L. Let
t = t(H) for some Cartan subalgebra H of L. Then <x>* = <xs + txn} for all
xeL.

PROOF, (a) Suppose x is semi-simple. Then there exists a Cartan subalgebra
H of L such that xeH.By Lemma 4.9, (j> is reduced with respect to H and therefore

(b) Suppose x is nil. Then there exist h, yeL such that hx = x,hy = — y and
xy = h. All the elements h + Xx are semi-simple. Therefore all the subalgebras
Qi + Ax) are fixed, and it follows that <x) is fixed.

(c) Suppose xs and xn are non-zero. Take a Cartan subalgebra H such that
xseH. Then xn = 'Z0L[ixea where n^eF and ex is a root vector for the root a of H.
For some ordering of the roots, the roots a for which \ix # 0 are all positive. Since
xs xn = 0, if na v̂  0, then a(xs) = 0. Let y be the largest root for which y(xs) = 0.
Then <xs + key^ = <xs + fAey> by Lemtra 4.6. Thus the result holds if xn = Xey

for some XeF. If xn and ey are linearly independent, then <xs,xn,ey> is a fixed
3-d:mensional abelian subalgebra. Every element of <xn,ev> is nil. Thus 0 is the
identity on <xn,ev>. From </> linear on <xs,xn,ey> and <xs + ey>^ = <xs + teyy, it
now follows that <xs + xn>0 = <xs + fxn>.

This completes the proof of the direct part of the theorem.

5. The converse

In this section, we suppose that L is a semi-simple Lie algebra over a (not
necessarily algebraically closed) field of characteristic 0. We take some t e F, t # 0
£nd put t = T(0 and we prove that T induces a reduced lattice automorphism of L.

LEMMA 5.1. Let 4̂ = « a , b » be the subalgebra of L generated by a,b.
Then

(a) asbs,asbn,anbs,anbn£A'.
(b) There exists ueA' such that as(b + u) = 0.
(c) / / A is soluble, there exist c,deA such that c — a, d — bzA' and

csd=cds=0.

https://doi.org/10.1017/S1446788700013938 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013938


[9] Lattice automorphisms of Lie algebras 51

PROOF, (a) For all polynomial f(x) without constant term, bf(ada)eA'. In
particular, badaseA' and badaneA'. Thus asb, anbe A'. Therefore asg(adb)e A'
an g(adb)eA' for all polynomials g(x) without constant term. Therefore asbs,
asbn, anbs, anbne A'.

(b) Let m(x) = xf(x) be the minimum polynomial of ad as. Then x does not
divide/(x), and there exist polynomials p(x), q(x) such that xp(x) + f(x)q(x) = 1.
Put u = - b ad asp(adas). Then ueA',b + u = bf(adas) q(adas) and as{b + u)
= 0.

(c) By (b), there exist us A' such that (a + u)bs = 0. Put c = a + u. Since
ad bs commutes with ad c, it commutes with all polynomials in ad c, in particular
with ad cs. By the argument of (b), there exists a polynomial/(x) such that, for
v = bn /(adcs), we have cs(bn + v) = 0. Clearly veA'. Let K be the algebraic
closure of F and let LK be the algebra obtained from L by extension of the field.
Since A is soluble, A is contained in a Borel subalgebra B of LK. B' is precisely the
set of all nil elements in B. It follows that every element of A' is nil and that the
sum of two nil elements of A is again nil. Thus bn + v is nil. Since ad bs commutes
with ad cs, v bs = bn bs /(ad cs) = 0. Thus bs(bn + v) = 0 and bs and bn + v are
the semi-simple and nil parts respectively of d = b + v.

LEMMA 5.2. Let U be a subset of L, P = « C / » and Q = « U r » . Then
P' = Q'.

PROOF. For all u, veU, we have

H V = (Us + tUn) (V, + tVn) = USVS + t(unVs + UsVn) + t2UnVn

and by Lemma 5.1(a), uTvTeP'. For all ueU and aeP', we have uTa = usa +
tunaeP' by Lemma 5.1 (a). It follows that Q' s P'. Applying this to x"1 = t(l/f),
we get P ' c g ' .

LEMMA 5.3. Lef A be a soluble subalgebra of L. Then A1 is a subalgebra of
L and dim/T = dim/4.

PROOF. Since all elements of A' are nil, A'z = A'. Az is closed with respect to
multiplication since, by Lemma 5.2, « ^ 4 t » ' = A'. We have to prove that Az is a
subspace of the same dimension as A.

(1) We use induction on dim A to prove that (a + b)z — az — bzeA' for all
a, be A. The assertion is trivial if dim A = 1. We can workin«a,ft»,sowemay
suppose A =

CASE I. Suppose be A'. If b = 0, the result is trivial, so we suppose b ^ 0.
Since A' ¥= 0, we have A' > A". As A = (a, A'} and b eA' = aA' + .4", we have
b = au + v for some M e A', ve A". Put

c = a e x p ( a d u ) = a + au + \{au)u + •••.
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Then c = a + b + w where w e A". We have

cs — asexp(adu) s a5modA'

cn = anexp(adu) s anmodA',
and

cz-az = (cs - as) + t(cn ~an) = 0 mod A'.

Since weA"< ,4', « c , w » < A and by induction, (c — w)z — cT + wz e « c , w» ' .
But ft1, wTey4' and therefore

(a + by - az - ft1 = (c - w)1 - az - ft1 s cz - az = 0 mod 4 ' .

CASE 2. We now consider general a,b. By Lemma 5.1(c), there exist c,deA
such that c — a, d — beA' and csd = cds — 0. Put u = c — a, u = d — ft. Since
csds = 0, cs + ds is semi-simple. Since cn,dn are nil and A is soluble, cn + dn is nil.
But (cs + ds)(cn + dn) = 0. Therefore (cs + ds) and (cn + dn) are the semi-simple
and nil parts of c + d, and we have (c + d)z - cz - dz = 0. Trivially, (u + t?)1

= uz+ vz since u,v,u + v are nil. By Case 1, we have

((c + d) - (u + v))z = (c + d)z-(u + vy

ax = (c-u)z = cz-uz

bz = (d - v)z = dz - vz mod A'.

Thus

(a + ft)1 - az - bz = ((c + d) - (u + t;))T - a1 - bz

= (c + d)z-(u + v)z -cz + uz-d* + vz

E= 0 mod X'.

(2) For any a eA, by (1) we have (a + A')z s aT + /!'. Applying this to T"1

and the soluble subalgebra <aT,^'>, we get (a + A')z = az + A'. Put B = (Az).
Then T induces a map xx: AI A' -> BjA'. By (1), tj is linear and im zt is a subspace
of B/A'. But (az + A'\aeAy = BjA'. Thus im rt = B/A' and it follows that
.A1 = B. Since TX is invertible, dim BjA' = dim /I/A' and the result follows.

LEMMA 5.4. Let A be any subalgebra of L. Then Az is a subalgebra of L
and dim^T =

PROOF. Let R be the radical of A and let S be a Levi factor. Then A = R © S
as vector space. By Lemma 5.3, Rz is a subalgebra of L and Rz is soluble since
RZI = R'. Since S is semi-simple, we have S = S' = « S r » ' and so Sz £ S. Ap-
plying this to T~T, we get Sz~1 E S and so ST = S.

For any seS, {s,R} is a soluble subalgebra and (s,R}' s R. By Lemma 5.3
<s, R}z is a subalgebra and
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Thus sTRT s R* and R* + S is a subalgebra. Since RT is a soluble ideal of RT + S
R1 n S = 0 and dim (Rr + S) = dim (/? + S).

Suppose aeA. Then a = r + s for some rei?, seS, and ae<s,i?>. Hence
a t e<s ,^> t cK t + s since <5,i?>r is a subalgebra. Thus (R + S)z cR* + s.
Applying this to T"1 gives the reverse inequality. Therefore A* = Rz + S and so is
a subalgebra.

This completes the proof that T induces a reduced lattice automorphism of L,
and so completes the proof of the theorem.
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