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1. Introduction

Let L be a Lie algebra over the field F. A lattice automorphism of L is an
automorphism ¢: L(L) » Z(L) of the lattice £(L) of all subalgebras of L. We
seek to describe the lattice automorphisms in terms of maps ¢: L— L of the
underlying algebra. A semi-automorphism ¢ of L is an &utomorphism of the
algebraic system consisting of the pair (F, L), that is, a pair of maps 6: F - F,
o: L— L preserving the operations. Thus ¢: F —» F is an automorphism of F and
(x + y) =x"+y° (xy)° =x°° (ix)° = A°x° for all x,ye L and AeF. Clearly,
any semi-automorphism of L induces a lattice automorphism. To study a given
lattice automorphism ¢, we select a semi-automorphism ¢ such that ¢o~! fixes
certain subalgebras, and so we reduce the problem to the investigation of lattice
automorphisms leaving these subalgebras fixed.

Except where otherwise stated, we suppose that F is an algebraically closed
field of characteristic 0 and that L is semi-sin ple of rank r = 3. For xe L, we
denote by x,, x, the semi-simple and nil parts' respectively of x. We shall prove

THEOREM. Let L be a semi-simple Lie algebra of rank = 3 over an algebra-
ically closed field F of characteristic 0. For te F, t # 0, let ©(t): L-» L be the map
defined by x"" = x_+ tx, for xeL. Let ¢ be a lattice automorphism of L.
Then there exists a unique semi-automorphism ¢ of L and a unique te F, t # 0
such that o1(t) induces ¢. Conversely, for all semi-automorphisms ¢ and all
teF, t #0, the map o1(t) induces a lattice automorphism of L.

If 4 is a subset of L, we denote by {A) the subspace spanned by 4. We
denote by {({A4)) the subalgebra generated by 4. We say that the lattice auto-
morphism ¢ fixes the subalgebra 4 if 4? = A. Let 4 be any sul space of L. We
say that ¢ is the identity on A if U? = U for all subalgebras U of L contained in
A, thatis, if (a)? = (a) for all a € A. We say that ¢ is linear (semi-linear) on A4 if

1. See Jacobson [3] p. 98.
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there exists a linear (respectively semi-linear) transformation ¢: A — A such that
(a)? = (a®) for all ae A.

We note that, if A is a subalgebra fixed by ¢, dim 4 = 3, and if every subspace
of A is a subalgebra, then by the Fundamental Theorem of Projective Geometry,
¢ is semi-linear on A. If ¢ is semi-linear on A and there exists a 2-dimensional
subspace B < 4 on which ¢ is linear, then ¢ is linear on A4.

2. Reduction

Let H be a Cartan subalgebra of L. We denote by h, the scaled star vector
defined by
(h, hy) = a(h) (2, @)

forall h € H. This departure from the usual notation is convenient for our purposes.
For any choice of root vector ¢,, we have h,e, = e,. We now choose root vectors
e such that e_ e, = h, and such that a]l the multiplication constants v,z (defined
when «,f,a + B are roots by e,e; = v, 5 ¢,44) are rational. We choose an order
relation < on the roots in the usual way. We put K, = ker a.

DEerFINITION 2.1. We say that the lattice automorphism ¢ is reduced with
respect to H, {e,| o root}, < if ¢ is the identity on H and fixes (h, + e, for every
fundamental root «.

In §4, we shall show that the concept of a reduced lattice automorphism is in
fact independent of the choices of H, {e,|a root} and of <. If {e,) is a root
space for H, then {e,»? is a root space for H? by Barnes [1], Lemma 4. If ¢ is
reduced, we have that ¢ fixes <h,>, <h, + ¢,> and so also {e,) for each fundamental
root «. Since ¢ also preserves sums of roots ([1], proof of Theorem 2), it follows
that ¢ fixes (e, for all roots y.

LEMMA 2.2, Let ¢ be a lattice automorphism of L. Then there exists a
unique semi-automorphism ¢ of L such that ¢°~' is reduced with respect to
given H, {e,}, <.

ProOF. H? is a Cartan subalgebra, (e, >? is the root space of a root «? for H?,
and the correspondence o — «? preserves sums. Therefore there exists an au-
tomorphism &, of L such that H® = H? and (e2"> = (e, >? for all roots . Thus
¢or ! fixes H and all the root spaces {e,>. This implies that ¢o, ! fixes (h,> for
all a. Since H is abelian and dim H = 3, ¢o; ! is semi-linear on H. Let ay,-+-,a,
be the fundamental roots and put h; = h,,. The semi-linear transformation fixes
all the (h,>, and so has the form

r r
Z x,-hi b d 2 ).ix:hi
i=1 i=1
where 7 is an automorphism of F and 2,,---,4,€ F. We now prove A; = 4; for
all i, j.

https://doi.org/10.1017/51446788700013938 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700013938

3] Lattice automorphisms of Lie algebras 45

Suppose ; + o; = f is a root. Then hy = xh,, + yh,,, where x = (¢, ;) /(8, B)
and y = («;,%;) /(B, B). Since x,y are rational, x* = x, y* = y and the semi-linear
transformation sends hg to Axh,, + A;yh,,. But <hg) is fixed by ¢o7' and
therefore 4, = 4,

Suppose «; + «; is not a root. Then e,, e,, = 0, {e,,, €,, is a subalgebra fixed
by ¢op ! and it follows that ¢poj ' permutes the subalgebras (e,, + xe,,» for x # 0.
The subalgebra (h; + yh;)> generates with {e,, + xe, > a 2-dimensional subalgebra
ff and only if y = 1. Since this property is preserved by ¢a;', <k, + h,) is fixed by
¢o; ! and we have 4, = 4;.

We have now shown that ¢a; ! is given on H by the semi-linear map

SR

r
xh — x; hy.
=1

i i

We define 0,: L —» L by

r g2 r
Since the multiplication constants are rational, they are fixed vncer 7 and o, is a
semi-automorphism. We now have that ¢oy ', " is the identity on H and fixes
all the {e,).
Let A;,---,4, be non-zero elements of F. For each root
r

y= X my, (melZ) put 4, = [] A"

i=1 i=1

Then the map ¢5: L— L defined by
* (h + X xe, )"3 =h+ X xie,
b4 Y

for he H, x,€F, is an automorphism of L and every automorphism of L which
is the identity on H has this form. We have {h; + ¢, >%°7' 5! = (h, + pe, > for
some p; #0. Put 4, =1/y; (i=1,2,---,r) and then ¢ = 630,06, is a semi-auto-
morphism with the required properties.

Suppose ¢’ is another such semi-automorphism. Then o'¢~?! is a semi-
automorphism of L. For all he H,

CBY? = Chy =Ry

and ¢’¢~! is a scalar multiple of the identity on H.As ¢'c~" is linear on H, itis
also linear on L and so is an automorphism of L. Since we also have {h; + ¢, »*'°""
= (h; + e,,), it follows that the permutation of the roots given by o'0~!isthe
identity and hence, that h°’°~! is the scaled star vector of the root «, that is
h?°-* = h,and o'~ is the identity on H. Thus ¢’c~" is an automorphism of the
form (*) above, and, since (h; + ¢,7"°'= (h; + ¢,,>, it follows that ¢’c~! = 1.
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3. The algebra 2,

Suppose the lattice automorphism ¢ of L is reduced with respect to H. If «
is a root, then <h,, e,, e_,> is a subalgebra of type W, and ¢ gives a lattice
automorphism of <h,,e,,e_,>. Consequently it is of interest to determine the
lattice automorphisms of ;.

Let S be the Lie algebra <h,e,f> with defining relations he = e, hf = — f,
ef = h. We consider the projective plane whose points and lines are the 1 and
2-dimensional subspaces of S. The conic defined by the vanishing of the Killing
form is the set of 1-dimensional subalgebras which are not Cartan subalgebras.
The 2-dimensional subalgebras are the tangents to the conic, each point of the
conic being a root space for the Cartan subalgebras on the tangent at the point.

Let ¢ be a lattice automorphism of S. Then ¢ permutes the points of the
conic. Since each point not on the conic is the intersection of two tangents, this
permutation determines ¢ completely. Since the tangents are the only 2-dimension-
al subalgebras, every permutation of the points of the conic gives- a lattice
automorphism of S.

LeMMA 3.1. Let ¢ be a lattice automorphism of S which fixes {h)> and is
linear on {h,e>. Suprose {h + e>® = {h + Jed>. Then ¢ is given by
1
(xh + ye + zf Y = {xh + Aye +12f>
for x, y, zeF.

PROOF. For u = xh + ye + zf, (u,u) = 2(x*> 4+ 2yz). Thus the conic can be
expressed parametrically

x=0,y=—10%z=1.

The tangent to the conic at (0, —162%, 1) has equation 0x + y —46?z = 0 and
meets <h,e) in (h+ 0e). But (h+ 0e)? =<h+ ABed. Thus (0, —162, 1)¢
= (A0, —14%6%,1). The tangents from (x,, yo, Zo) meet the conic at its points of
intersection with the polar line xox + zgy + yoz=0, that isat the points (6, — 162, 1)
for @ satisfying x,0 — 12002 + yo = 0. The tangents from (x;, y;, z,) =(Xo, Yo, Zo)®
meet the conic in the points (8, —10'2, 1) for 0’ satisfying x, 0’ /A + z,

0/ 01 2
Yo7~ %20(7) + yo=0.
Therefore

Xy yytzy =Xg[At Yot zo A%,
and

1
(Xoh + yoe + zof D% = {xoh + Ayge + Izof>~
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4. Reduced lattice automorphisms

Throughout this section, we suppose that ¢ is reduced with respect to
H,{e,| o root}, <.

LEMMA 4.1. Let o be a root. Then there exists a root f§ such that (¢,5) =0
and o+ B is not a root.

ProOOF. We need only consider the case where « is a fundamental root at the
end of a component of the Dynkin diagram since, for any a, there exists an element
of the Weyl group which transforms o into such a root. For such a root «, there
is a point 8 of the Dynkin diagram not joined to « and the result follows.

LeMMA 4.2. For each root a, there is A, €F such that {h, + xe >® = {h,
+ Axe, for all xe F, and A,A_, = 1.

PrOOF. We choose a root f such that (x,8) =0 and « + f§ is not a root.
There exist ke K, N K, and ne K, such that k and n are linearly independent.
Then <{k,n,e,» is an abelian 3-dimensional subalgebra fixed under ¢. Therefore
¢ is semi-linear on {k,n,e,». But ¢ is linear on {k,n) and therefore also on the
fixed subalgebra (k,e,». Since (k,e,,e;> is also a 3-dimensional abelian fixed
subalgebra, it follows that ¢ is linear on {e,,e;>. Put h = h, + hy. Every subspace
of (h,e,,ep) is a subalgebra and it follows that ¢ is also linear on <{h, e,,ez). Since

¢ fixes (h), <e,» and {ez», ¢ is given on <{h,e,,e;> by
Cxh + e, + zegy? = (xh + Ayye, + Jyzes)

for some 4,, Ag€ F.

In the 3-dimensional projective geometry of subspaces of (h,.hg,e,,e;>,
{h,.e,> and {h,,ez) are skew lines. There is a unique transversal to them through
{h + xe, + yeg>. This transversal {h,+ xe,,hy+ ye;> is a subalgebra since
(«,8) =0 and a + B is not a root. Since {h, + xe,, h; + yey>? is the transversal
through <h + xe, + yeg)? = (h + Axe, + Agyep),

Chy + Xy, by + yegd™ = (hy + A,xe,, hy + Agyegy and
Chy + xe)? = (hy €0 N Chy + xe, hy + yeg)?
= (h, + Axe).
By Lemma 3.1, we have 4, 4_, = 1.

COROLLARY 4.3. The concept of a reduced lattice automorphism is inde-
pendent of the choice of the root vectors e,

Proor. If ¢ is reduced and « is a fundamental root, then 4, = 1 and ¢ is the
identity on (h,,e,>. For any choice e, of the root vector, we have {h, + ¢,>*
= (h, + €,) as required.
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LEMMA 4.4, For all he H — K, {h + ¢, )% = {h + A.e,).

ProoF. If he H—K,, then h = uh, + k for some ke K, and ue F, u # 0. By
Lemma 4.2, the result holds for k = 0. Suppose k # 0. Then

{h+ e,y = {uh, + e, k) N uh, + k,e,)
and
Ch+ep? = (uhy + Ae kD O (ub, + ke = <h + Ae,).

LEMMA 4.5. Let o, be independent roots and let N, 5= e,|y = ra + sB,
r=0, s=0>. Then
{xe, + yeg, Ny pg>? = (A xe, + Agyes, N >
for all x, yeF.
PrOOF. Put
(B,B) — (, B) (o, ) = (, B)
(o, ) (B, B) — (=, B)* (0, ) (B, B) — (@, B)*

and h = ph, + gh;. Then he, = e, and he;=e5. Put N=N, ;and U = (h,N).
Then N is a fixed nilpotent subalgebra. Since N is normalised by H, N’ is a sum
of root spaces and is therefore fixed. But N’ is an ideal of U and every subspace
of U /N’ is a subalgebra. Hence ¢ is semi-linear on U /N’. By Lemma 4.4, we have

p=(x q=(8.p

{zh + xe? = {zh + A,xe,), {zh + yesd?® = (zh + Azyes>
and it follows that
{zh + xe, + yeg, N'»? = {zh + A, xe, + Agyes, N'>
for all x,y,zeF.
LEmMMA 4.6. There exists t =t(H)eF, t # 0, independent of «, such that
k+e)? =k +the) for all keK,.

ProoF. Since {K,,¢,»> is a fixed abelian subalgebra of dimension > 3, ¢ is
semi-linear on {K,,e,>. But ¢ is the identity on K, and fixes {e,». Hence ¢ is
given on (K,,e,> by <k + e,>* = (k + p,e,> forall ke K, and some p, € F, u, # 0
independent of k. We have to prove that p, /4, is independent of a.

Let o, § be independent roots. Take ke K, N Ky, k # 0, and put V= {k,N)
where N = N, ;. Then N’ is an ideal of ¥, V/N’ is abelian, and it follows that ¢
is given on V[N’ by

{zk + xe, + yeg, N'Y® = {zk + p,xe, + pgyes,N'>.

Comparing this with the description of ¢ on {e,,e;, N') given by Lemma 4.5, we
get He //'11 = ”ﬁ /A[J
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LEMMA 4.7. Let o = exp(fade;) where 6€F. Suppose 3 =1. Then ¢ is
reduced with respect to H® and <°, J,. = A, for all roots « of H, and H(H°) = t(H).

PROOF. H = (hy,Kj) and H® = (hy + Oe5, Kg». We have that ¢ is the identity
on K, and, by Lemma 4.4, {hy + k + 0¢s>? = (hy + k + Ag0eg)> for all ke K.
Since 45 = 1, ¢ is the identity on H”. It follows that, for every root y of H’, either
{e,»? = e, or (e,>® = {e_,>. But y=a’ for some root o of Hand e, = e;€ N,,.
Since e ¢ N_, 4, Ce,>? # (e_,> and we have {e,>? = {e,) for all roots y of H".

By Lemma 4.4, for some 1,€F, we have (h+ e, )? = (h+ Ae,) for all
he H® — K,. (The proof of Lemma 4.4 makes no use of the assumption that , = 1
for all fundamental roots a.) Trivially, 5. = 4.

For a# + B, take heK,;, h¢ K, Then he H — K,. and

<h + }'a“e:’ Nal,ﬂ> = <h + e:sNa,,ﬂ>¢ = <h + ea’N;.B>¢
= <h + lae:zaNa,z.ﬂ>'

Therefore 1,. = A,. In particular, if «° is fundamental with respect to <, then
A, = 1. Thus ¢ is reduced with respect to H® and <°.
Take k € Kgo = K. Since ez, = ¢5, we have

Kk + ego)? = Kk + eg)? = (k + thgegy =k + thgoepe)
and {(H°) = 1(H).

LemMMA 4.8. Foralla,, = 1. The concept of a reduced lattice automorphism
is independent of the ordering of the roots.

Proor. It is sufficient to show that 1, = A, = 1 implies 4,,, = 1. Since we may
suppose o + f is a root (otherwise we have nothing to prove), we have e, e; = ve, g
and v+#0. Put o =exp(l/vade;) and N = N,,,. Since the term I'’N of the
descending central series of N is normalised by H, it is a sum of root spaces and is
therefore fixed. Since 4,=1 and N, .., <IN, we have by Lemma 4.5 that
e+ €15, T°NY® = (e, + Ayyp €yip, [N). But

{e, + e,+,g,F3N)4’ = (e, T3NY? = (el ,T°N)
= (e, + eu45T3ND.
Since e,,, ¢ >N, it follows that A, = 1.

LeMMA 4.9. Let H, H* be Cartan subalgebras of L, and suppose ¢ is
reduced with respect to H. Then ¢ is reduced with respect to H* and t(H) = t(H*).
The concept of a reduced lattice automorphism is independent of the choice of
Cartan subalgebra.

PrOOF. By Lemmas 4.7, 4.8, it is sufficient to prove the existence of a chain of
Cartan subalgebras H, = H, H,,---,H, = H* and root vectors e, of H;(i = 0,1, -+,
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n — 1) such that H, ;= H; exp(); ad e}). By Jaco“son [3] p. 288 Exercise 18,
there exist roots ay,--+,a, of H, not necessarily distinct, and A, € F such that

H* = exp(l,ade, )exp(4,ade,,)---exp(4,ade,).
Put

o; = exp()'n—iad ea_n,)exp(ln—i+1 ad ea,.-ul) o exp(lnad ea,.)9

Hyy=H" and e*'=eZ' _ . Then ad e!*' =0;'(ad e, _,_)o, and o; exp

(Ai+1 ad é*1) = 6;, . Thus we have e! a root vector for H;, H,, ;= H; exp(4; ad
ey and H, = H*.

LeMMA 4.10. Suppose ¢ is a reduced lattice automorphism of L. Let
t = t(H) for some Cartan subalgebra H of L. Then {x)>? = {x, + tx,» for all
xeL.

PrOOF. (a) Suppose x is semi-simple. Then there exists a Cartan subalgebra
H of L such that x € H. By Lemma 4.9, ¢ is reduced with respect to H and therefore
xp? = (x).

(b) Suppose x is nil. Then there exist h, y € L such that hx = x, hy = — y and
xy = h. All the elements h + Ax are semi-simple. Therefore all the subalgebras
(h + Ax) are fixed, and it follows that {x) is fixed.

(c) Suppose x, and x, are non-zero. Take a Cartan subalgebra H such that
x,€ H. Then x, = Z_p.e. where p e F and e, is a root vector for the root o of H.
For some ordering of the roots, tke roots « for which g, 0 are all positive. Since
xg x, = 0, if p, % 0, then a(x;) = 0. Let y be the largest root for which y(x,) = 0.
Then (x, + Ae,>?® = (x, + tle,> by Lemma 4.6. Thus the result holds if x, = Ze,
for some A€ F. If x, and e, are linearly independent, then {(x.,x,,e,> is a fixed
3-d’mensional abelian subalgebra. Every element of {x,,e,> is nil. Thus ¢ is the
identity on {x,,e,>. From ¢ linear on {x,x,,e,> and {x; + e,>? = {x, + te,), it
now follows that {x; + x,>? = {x, + tx,).

This completes the proof of the direct part of the theorem.

5. The converse

In this section, we supposz that L is a semi-simple Lie algebra over a (not
necessarily algebraically closed) field of characteristic 0. We take some teF, t #0
and put t = 7(f) and we prove that t induces a reduced lattice automorphism of L.

LemMMmA 5.1. Let A ={{a,bd) be the subalgebra of L generated by a,b.
Then

(a) ab,, ab,, a,b,, a,b,c A’

(b) There exists uc A’ such that a(b + u) = 0.

(©) If A is soluble, there exist ¢c,de A such that c—a, d —bec A’ and
cd=cd; =0.
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ProoF. (a) For all polynomials f(x) without constant term, bf(ada)c A’. In
particular, bada,e A’ and bad a,e A’. Thus a,b, a,b € A'. Therefore ag(ad b)e A’
a, g(ad b)e A’ for all polynomials g(x) without constant term. Therefore ab,,
ab,, a,b,, a,b,e A’

(b) Let m(x) = x f(x) be the minimum polynomial of ad a,. Then x does not
divide f(x), and there exist polynomials p(x), g(x) such that xp(x) + f(x)g(x) = 1.
Put u = — b ad a,p(aday). Then ue A, b +u = b f(ada,) g(ad a)) and a (b + u)
=0.

(c) By (b), there exist u e A’ such that (a + u)b,=0. Put ¢ = a + u. Since
ad b, commutes with ad c, it commutes with all polynomials in ad ¢, in particular
with ad c,. By the argument of (b), there exists a polynomial f(x) such that, for
v=">, f(adc,), we have c(b,+ v) =0. Clearly ve 4’. Let K be the algebraic
closure of F and let Ly be the algebra obtained from L by extension of the field.
Since A is soluble, 4 is contained in a Borel subalgebra B of L. B’ is precisely the
set of all nil elements in B. It follows that every element of 4’ is nil and that the
sum of two nil elements of A is again nil. Thus b, + v is nil. Since ad b; commutes
with ad ¢,, v by =D, b, f(adc,) = 0. Thus b(b, + v) =0 and b, and b, + v are
the semi-simple and nil parts respectively of d = b + v.

LEMMA 5.2. Let U be a subset of L, P =<{{U>Y and Q = {KU">>. Then
P =0’

ProoF. For all u, ve U, we have
u" = (ug + tu,) (v5+ tv,) = uw, + uv, + uw,) + t*u,v,

and by Lemma 5.1(a), u"v*€ P’. For all ue U and a€ P’, we have u'a =ua +
tu,a € P’ by Lemma 5.1 (a). It follows that Q' < P’. Applying this to t=! = 7(1/1),
we get P' < Q'.

LEMMA 5.3. Let A be a soluble subalgebra of L. Then A® is a subalgebra of
L and dim A" = dim A.

Proor. Since all elements of A’ are nil, A’* = A’. A" is closed with respect to
multiplication since, by Lemma 5.2, ((A®>)’ = A’. We have to prove that 47 is a
subspace of the same dimension as A4.

(1) We use induction on dim A to prove that (a + b)* — a® — b*e A’ for all
a, be A. The assertion is trivial if dim A =1. We can work in {{a, b)), so we may
suppose A = {{a,b>).

CASE 1. Suppose be A’. If b = 0, the result is trivial, so we suppose b # 0.
Since A’ # 0, we have 4’ > A4". As A ={a,A’> and be 4’ = aA’ + A", we have
b=au + v for some ue 4’, ve A”. Put

c=aexp(adu)=a+ au + (awu + ---.
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Then ¢ =a + b + w where we A”. We have
¢, = asexp(adu) = a,;mod 4’

¢, = a,exp(adu) = a,mod 4’,
and
cF—a*=(c,—a;)+ tc,—~a,)=0mod 4"

Since we 4” < A’,{{c,w)) < A and by induction, (¢ — w)* — ¢’ + w'e{{c,w))’".
But b%, we A’ and therefore

(a+b)f~a" —-b'=(c—w)'—a"—b"=c*—a*=0 mod 4.

CASE 2. We now consider general a,b. By Lemma 5.1(c), there exist c,d€ 4
such that c—a, d—be A’ and ¢ d=cd;=0. Put u=c—a, v=d — b. Since
cdy =0, c, + d, is semi-simple. Since c,,d, are nil and A is soluble, ¢, + d,, is nil.
But (¢, + d)(c, + d,) = 0. Therefore (c, + d,) and (¢, + d,) are the semi-simple
and nil parts of ¢ +d, and we have (c + d)* —~ ¢ — d° = 0. Trivially, (u + v)’
= u*+ v° since u,v,u 4+ v are nil. By Case 1, we have

(c+d) — W+v)'=(c+d)°—(@u+v)y
a = (c—uw)f=c—u'
b* = (d—v)*=d"—v° mod 4'.
Thus
(@a+ b —a*—b* = ((c+d)— u+0v)"—a —b°
c+d)' —(u+v)y~c+u"—d +o°
= 0 mod A4’

(2) For any ae 4, by (1) we have (a + A')" < a” + A’. Applying this to t~*
and the soluble subalgebra {a®, A’), we get (a + A")"=a* + A’. Put B = {4%).
Then 7 induces a map z,: A /A’ —» BJA’. By (1), 7, is linear and im 7, is a subspace
of B/A’. But {a’+ A’|ac Ay = BJA’. Thus im 7, = B/4’ and it follows that
A" = B. Since T, is invertible, dim B/A’ = dim A[A’ and the result follows.

LEMMA 5.4. Let A be any subalgebra of L. Then A® is a subalgebra of L
and dim A® = dim A.

PRrOOF. Let R be the radical of 4 and let S be a Levi factor. Then A =R ® S
as vector space. By Lemma 5.3, R* is a subalgebra of L and R" is soluble since
R¥ = R’. Since S is semi-simple, we have S =S’ = ({S*>)’ and so ST S. Ap-
plying this to =7, we get S*~! = Sand so S*= S.

For any se S, {s,R) is a soluble subalgebra and {s,R)’ = R. By Lemma 5.3
{s,R)>" is a subalgebra and
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{s,RY™ = (s,RY’ =<{s,R)'"* S R".

Thus s°R* = R* and R* + S is a subalgebra. Since R* is a soluble ideal of R* + S
R*NS =0and dim (R* + S) =dim (R + S).

Suppose a€ 4. Then a =r + s for some reR, seS, and ae{s,R). Hence
a*e{s,R)*’= R*+ S since {s,R)>" is a subalgebra. Thus (R + S)*< R’ + S.
Applying this to 7~ ! gives the reverse inequality. Therefore A* = R* + S and so is
a subalgebra, '

This completes the proof that 7 induces a reduced lattice automorphism of L,
and so completes the proof of the theorem.

References

[1] D. W. Barnes, ‘Lattice isomorphisms of Lie algebras’, J. Austral. Math. Soc. 4 (1964), 470-475.

[2] D. W. Barnes and G. E. Wall, ‘On normaliser preserving lattice isomorphisms between nil-
potent groups’, J. Austral. Math. Soc. 4 (1964), 454-469.

[3] N. Jacobson, Lie Algebras (Interscience Tracts No. 10, 1962).

Department of Pure Mathematics
University of Sydney
Australia

https://doi.org/10.1017/51446788700013938 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700013938

