
METRIZATION OF TOPOLOGICAL SPACES 
R. H. BING 

A single valued function D(x, y) is a metric for a topological space provided 
that for points x, y, z of the space: 

1. D(x, y) ^ 0, the equality holding if and only if x = y, 

2. D(x, y) = D(y, x) (symmetry), 

3. D(x, y) + D{y, z) ^ D(x, z) {triangle inequality), 

4. x belongs to the closure of the set M if and only if P(x, m) (m element of 
M) is not bounded from 0 (preserves limit points). 

A function D(x, y) is a metric for a point set R of a topological space 5 if it 
is a metric for R when R is considered as a subspace of S. A topological space 
or point set that can be assigned a metric is called metrizable. 

If a topological space has a metric, this metric may be useful in studying 
the space. Determining which topological spaces can be assigned metrics 
leads to interesting and important problems. For example, see [3]. 

A regular1 topological space is metrizable if it has a countable basis2 [7 and 
8]. However, it is not necessary that a space be separable3 in order to be 
metrizable. Theorem 3 gives a necessary and sufficient condition that a space 
be metrizable by using a condition more general than perfect separability. 

Alexandroff and Urysohn showed [1] that a necessary and sufficient condi­
tion that a topological space be metrizable is that there exist a sequence of 
open coverings Gi, G2, . . . such that (a) G;+i is a refinement4 of G», (b) the sum 
of each pair of intersecting elements of G î+i is a subset of an element of Ga, 
and (c) for each point p and each open set D containing p there is an integer n 
such that every element of Gn containing p is a subset of D. We call a sequence 
of open coverings satisfying condition (c) a development. A developable 
space is a topological space that has a development. In section 2 we study 
conditions under which developable spaces can be assigned metrics. 

The results of this paper hold in a topological space as defined by Whyburn 
in [10] or in a Hausdorff space. 

Received November 26, 1949. 
*A topological space is regular if for each open set D and each point pin D there is an open 

set containing p whose closure lies in D. 
2 A basis for a topological space is a collection G of open sets such that each open set is the 

sum of a subcollection of G. In [7 and 8] a space with a countable basis was said to satisfy 
the second axiom of countability. More recently such spaces have been called perfectly 
separable. 

3A space is separable if it has a countable dense subset. 
4The collection G is a refinement of the collection H if each element of G is a subset of an 

element of H. 
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1. Screenable spaces. We shall use the following definitions: 
Discrete. A collection of point sets is discrete if the closures of these point 

sets are mutually exclusive and any subcollection of these closures has a 
closed sum. 

Screenable. A space is screenable if for each open covering H of the space, 
there is a sequence Hi, H2, . . . such that Hi is a collection of mutually ex­
clusive domains and J^Hi is a covering of the space which is a refinement of 
H. A space is strongly screenable if there exist such Hi s which are discrete 
collections. 

Perfectly screenable. A space is perfectly screenable if there exists a sequence 
Gi, G2, . . . such that d is a discrete collection of domains and for each domain 
D and each point p in D there is an integer n(p} D) such that Gn{v,D) contains 
a domain which lies in D and contains p. 

Collectionwise normal. A space is collectionwise normal if for each discrete 
collection X of point sets, there is a collection F of mutually exclusive domains 
covering X* such that no element of Y intersects two elements of X. We use 
X* to denote the sum of the elements in X. 

The following result follows from the definitions of perfectly screenable and 
strongly screenable. 

THEOREM 1. A perfectly screenable space is strongly screenable. 

The following example shows that a developable space may not be screenable. 

EXAMPLE A. A locally connected* separable Moore space* S such that no spate 
homeomorphic with the closure of any open set in S is either normal or screenable. 
The points of 5 are the points of the plane and the open sets of 5 are given in 
terms of a development Gi, G2, . . . which is described as follows. Let Lu L2, . . 
be a sequence of horizontal lines whose sum is dense in the plane. Either of 
the following types of sets is an element of d: (a) the interior of a circle with 
diameter less than 1/i which does not intersect L\ + L2 + . . . + L», (b) 
p + I\ + ^2 where p is a point of some Lj and / i , 72 are interiors of circles of 
diameter less than l/2i which are tangent to Lj at p on opposite sides of Lj 
and such that 7i + J2 does not intersect Li + L2 + . . . + Li. 

That S is locally connected follows from the fact that vertical lines are con­
nected and horizontal lines other than Li, L2, . . . are connected. The elements 
of each G» are connected. Since the plane is separable and any set dense in 
the plane is dense in 5, S is separable. The sequence Gi, G2, . . . satisfies the 
conditions of Axiom 1 of [5], so S is a Moore space. 

Let Sr be a space homeomorphic with the closure of an open set E in 5 and 
K be an interval in E that is a subset of Li -f L2 + . . . . If Ki and K2 are 

*A topological space is locally connected if it has a basis such that the elements of the basis 
are connected. A set is connected if it cannot be expressed as the sum of two non-null sets 
such that neither contains a point of the closure of the other. 

6A space satisfying the first three parts of Axiom 1 of [5] is called a Moore space. It is a 
regular developable space. 
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subsets of 5 ' corresponding to the points of K with rational and irrational 
abscissas respectively, K\ and K2 are two mutually exclusive closed point sets. 
That S' is not normal follows from the fact that there do not exist two mutually 
exclusive domains containing Ki and K2 respectively. 

If H is an open covering of S' such that no two points of Ki + K2 belong to 
the same element of II, any open covering of S' that refines H contains un-
countably many elements. Since S' is separable, it does not contain an un­
countable collection of mutually exclusive domains. Hence, S' is not screen-
able because there is not a sequence Hh H2j. . . such that Hi is a collection of 
mutually exclusive domains and ^Hi is a covering of S' that refines H. 

The proof of the following theorem may be compared with one given by 
Tychonoff [7] to show that any regular perfectly separable topological space 
is normal. 

THEOREM 2. A regular strongly screenable space is collectionwise normal. 

Proof. Suppose {Aa} is a discrete collection of closed sets. Let K be a. 
collection of open sets covering the space such that the closure of no element 
of K intersects two elements of {Aa}. Since the space is strongly screenable, 
there is a sequence Hh H2,. . . such that Hi is a discrete collection of domains 
and Y,Hi is a covering of the space which is a refinement of K. 

Let Uip be the sum of the elements Hi that intersect Ap and Vtp be the sum 
of those intersecting elements of {Aa} other than Ap. If Dp= Uip+(U20 — Vip) 
+ (Uw - [V* + Vv]) + . . . + (U0 - E y l i Vv)+ • • • , then {Da} is a 
collection of mutually exclusive domains covering X^4a such that no element 
of {Da} intersects two elements of {^4a}. 

It cannot be concluded that a strongly screenable space is normal for a 
perfectly separable space may not even be regular. Example B shows us that 
we cannot conclude that a regular screenable space is normal. 

EXAMPLE B. A screenable, point-wise paracompact,7 nonparacompacty non-
normal Moore space with an open covering H such that the star8 of each point 
with respect to H is metrizable. 

Points are of three types: (a) elements of a countable sequence of points 
pu p2> • • • Î (b) elements of the collection of all continuous functions fa(x) 
(0 < x < 1) such that % < fa(x) < 1; and (c) ordered triples (pit t,fa) where 
pi is a point of type (a),/« is one of type (b), and I is a positive number less 
than one. 

The open sets of this space are defined by a development Gu G2, . . . which 
is described as follows. The elements of Gn are of three sorts: pj (J = 1, 2 , . . . ) 

7A topological space is point-wise paracompact if for each open covering H there is an 
open covering H' such that Hr refines H and no point lies in infinitely many elements of H'. 
It is paracompact if for each open covering H there are open coverings H' and H" such that 
H' refines H and no element of H" intersects infinitely many elements of H'. 

8The star of a point set A with respect to an open covering H is the sum of the element of 
of H that intersect A. 
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plus all points (£;,/ , /«) (t<l/n); (pj, tQ, fa) plus all points (pj,t,fm) 
(\t — to\ < 1/n); an element fa of type (b) plus all points (pj,t,fa) where 
1 - / < 1/n if j ^ n and 1 - t < [1 + nfa(l/j)]/(n + 1) if j > n. 

It is convenient to think of the space as being the collection of points of 
type (a) plus the collection of points of type (b) plus open unit intervals joining 
points of type (a) to points of type (b). An element of Gn is either (i) an element 
of type (a) plus all points that can be joined to it by intervals of lengths less than 
1/n, or (ii) a point of an open interval plus the collection of all points of the 
open interval that are nearer than 1/n to the point or (iii) a point/of type (c) 
plus all points that can be joined to it by an interval of length less than x(j) 
where p is on the interval from fa to pj and x(j) = 1/n if j ^ n and x(j) = 
= [l+nfa(l/j)]/(n + l)iij>n. 

The above space is screenable because for any open covering K of it, there 
is an open covering K\ + K2 of it which is a refinement of K and such that Ki 
is a collection of mutually exclusive domains covering all points of type (a) 
and a dense set of those of type (c), while K2 is another such collection covering 
all points of type (c) not covered by K\. The space is point-wise paracompact 
because for each open covering K of it there is an open covering K\ + K2 

such that no point is covered by more than two elements of K\ + K2. 
The space is not normal because for each domain D containing the collection 

of all points of type (a), there is a point of type (b) which is a limit point of D. 
To find such a point, let «* be an integer such that an element of Gn{ contains pi 
and lies in D. If fp is a point of type (b) which sat isf ies /^( l / i )>l — 1/w» 
(i = 1, 2, . . .), it is a point of the closure of D. Since the collection of points of 
type (a) and the collection of points of type (b) are closed sets, and there do 
not exist mutually exclusive open sets containing these two collections, the 
space is not normal. Since it is not normal, it is not paracompact. 

To show that there is an open covering H such that the star of any point 
with respect to H is metrizable, let H be any Gi and M be the star of some 
point with respect to H. There is a connected open set M' that contains M 
such that M' contains only one point pj of type (a) and only one point/a of type 
(b). If R is the component of M' — pj containing /«, R + pj has a metric 
Di(x, y) because R + pj is homeomorphic with a regular, perfectly separable 
space. Furthermore, M' — R has a metric J92(x, y) described as follows: 
D2[pj, (Pj, *,/•)] = /; D2[(pj, tufa), (Pj, t2,ffi)] is |*i - h\ or h + t2 according 
as fa is or is not/p. There is a metric D(x, y) for M' where D(x, y) =D\(x, y) 
if x and y are points of R, D(x, y) = D2(x, y) if x and y are points of M' — R, 
and D(x, y) = Di(x, pj) + D2(pj, y) if x and y belong to R and M' — R 
respectively. 

The following theorem may be compared with the result of Urysohn [8] 
which states that a normal perfectly separable topological space is metrizable. 

THEOREM 3. A necessary and sufficient condition that a regular topological 
space be metrizable is that it be perfectly screenable. 
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Proof of sufficiency. Suppose Hi, H2, . . . is a sequence of discrete collections 
of domains such that for each domain D and each point p in D there is an 
integer n(p, D) such that an element of Hn{v,D) lies in D and contains p. 

Let Kij be the sum of the elements of Hj whose closures lie in an element of 
Hi. Since the space is normal, there is a continuous transformation Fij of 
space into the real numbers between 0 and 1 such that the image of Kij under 
Fij is 1 and the image of the complement of H*i is 0 [9]. For points x, y of 
the space we define the distance between them to be 

D(x, y) = E L l ^ ^ + j R ^ y ) ^ i ( y ) l 

where Rij(x, y) is — 1 or 1 according as y does or does not belong to an element 
of Hi that contains x. It may be found that D(x, y) satisfies the conditions 
for a metric. 

Proof of necessity. A. H. Stone has shown [6] that for each metric space 
and each positive number e, there is a sequence R€i, R€2, • . . such that £i£«» 
covers the space and R€i is a discrete collection of closed sets each of diameter 
less than e. A proof of this is also found in Theorem 9 of the present paper. 
For each element r of Rti let Dr be a domain covering r such that Dr is of 
diameter less than c and each point of DT is more than twice as close to r as to 
any other element of Rti. If H€i denotes the collection of all such open sets 
Dr, {H(i\ € = 1, | , J, . . . and i = 1, 2 , . . . } becomes on suitable ordering a 
countable sequence of discrete collections of open sets which insures that a 
metric space is perfectly screenable. * 

In the following modification of Theorem 3 we dispense with the supposition 
that the elements of Hi are mutually exclusive. E. E. Floyd suggested that 
such a modification might be possible. 

THEOREM 4. A regular topological space S is metrizdble if and only if there 
is a sequence Gi, G2, . . . such that 

(a) d is a collection of open subsets of S such that the sum of the closures of any 
subcollection of d is closed and 

(b) if p is a point and D is an open set containing p there is an integer n(p, D) 
such that an element of Gn(P,D) contains p and each element of Gn(PtQ) containing 
p lies in D. 

Proof. Since a metric space is perfectly screenable, it contains a sequence 
Gi, Gi, . . . satisfying the conditions of the theorem. We complete the proof 
of Theorem 4 by showing that any regular topological space admitting such a 
sequence is perfectly screenable. 

First, we show that any open subset D of 5 is strongly screenable. Let 
H = (hi, h2, . . . , ha, . . .) be a well ordered collection of open sets whose sum 
is D. Let Vai be the sum of the elements of G» whose closures lie in ha. If Ua%j 
denotes the sum of the elements of Gj whose closures lie in Va% but do not in­
tersect YlfiKaVpi then Wij= { Uyij\ 7 = 1, 2, . . . , a, . . .} is a discrete collection 
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of open sets which is a refinement of H. To see that £ £ ^ covers D, let 
p be a point of D and ftp be the first element of H containing p. Then p be­
longs to some Vpk but does not belong to £ t t< 0 Vak- Then for some integer m, £ 
lies in an element of Gm whose closure lies in V$k but does not intersect £ a < fi Vak 
and p is a point of Upkm» 

For each positive integer k let X u , X*2, . . . be a sequence of discrete collec­
tions of open sets such that each Xh% is a refinement of G* and ^fLiXki covers 
G*fc. That 5 is perfectly screenable follows from the fact that the elements 
of {Xki; i, k = 1 ,2 , . . . } may be ordered in a sequence fulfilling the conditions 
to be satisfied by the sequence Gh G2, . . . mentioned in the definition of a 
perfectly screenable space. 

We find from Example C that condition (b) of Theorem 4 could not be 
weakened to 

(b') if p is a point and D is an open set containing p, there is an integer n(p,D) 
such that an element of Gn(p} D) contains p and lies in D. 

EXAMPLE C. A regular strongly screenable topological space not satisfying 
the first axiom of countability} Points are the points of the plane. A neigh­
bourhood is either (a) an open interval of a line through the origin such that 
this interval does not contain the origin or (b) the sum of a collection of open 
intervals each of which contains the origin and such that each line through 
the origin contains one of these open intervals. 

The space is strongly screenable because for each open covering H of it 
there are two discrete collections Hi, and H2 such that Hi + H2 is an open 
covering of the space which refines H. The space does not satisfiy the first 
axiom of countability because for each sequence of neighbourhoods of the origin 
there is a neighbourhood of the origin that does not contain any of these 
neighbourhoods. Let G\ be the collection of all neighbourhoods N of type (b) 
containing the origin such that if p is a point of the boundary of N, then for 
some integer n, p is at a distance 1/n from the origin in the plane. Then 
collections G2, G3, . . . may be chosen to satisfy conditions (a) and (b')- How­
ever, the space is not metrizable. 

2. Developable spaces. For each developable topological space there is a 
sequence Gi, G2, . . . such that (a) G; is a covering of the space with open sets, 
(b) Gf-f 1 is a refinement of Gt-, and (c) for each domain and each point p in D 
there is an integer n(py D) such that each element of Gn(v,D) which contains p 
lies in D. Condition (b) is not necessary in defining a developable space 
because if there is a sequence satisfying conditions (a) and (c), there is one 
satisfying conditions (a), (b), and (c). In fact, in [5] the condition is imposed 
that G;+i is a subcollection of G*. Regular developable topological spaces 
have been studied extensively because a Moore space is such a space. 

9A topological space satisfies the first axiom of countability at a point p if there is a countable 
collection G of neighbourhoods of p such that any neighbourhood of p is a subset of an element 
of G. 
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As seen from Examples A and D, not all developable spaces are screenable 
and not all screenable spaces are developable. 

EXAMPLE D. A regular, separable, strongly screenable space that is not 
perfectly screenable or developable. Points belong to the #-axis and neighbour­
hoods are closed intervals minus their right hand end points. 

The space is separable because each set of points dense on the x-axis is dense 
in the space. If H is an open covering of it, there is an open covering H' which 
refines H such that no two elements of H' intersect each other. The space is 
strongly screenable because each such open covering H' is a discrete collection. 

The space is not perfectly separable because for each countable collection 
G of neighbourhoods, there is a point p that does not belong to the left end of 
any element of G and any neighbourhood of p with a left end at p is not the 
sum of a subcollection of G. Since the space is separable but not perfectly 
separable, it is not metrizable. It follows from Theorem 3 that it is not per­
fectly screenable and from Theorem 5 that it is not developable. 

THEOREM 5. A separable screenable developable space is perfectly separable. 

Proof. No separable space contains uncountably many mutually exclusive 
domains. Hence if H is an open covering of a separable screenable space, 
there is a countable open covering H' which refines 77. If d , G2, . . . is a 
development of a space S and G'i is a countable open covering that refines G„ 
then ^G'i is a countable basis for S. 

A similar argument shows that a separable perfectly screenable space is 
perfectly separable. 

THEOREM 6. A strongly screenable developable space is perfectly screenable. 

Proof. Let Gi, G2, . . . be a development of the space. Since the space is 
strongly screenable, for each positive integer i there is a sequence Hu, H^ . . . 
such that Ha is a discrete collection of domains and J^jZiHij covers the space 
and is a refinement of Gi. Then \Hij\ i,j = 1, 2, . . .} is a countable collec­
tion insuring that the space is perfectly screenable. 

THEOREM 7. A regular developable space (Moore space) is metrizable if it is 
strongly screenable. 

Theorem 7 follows from Theorems 3 and 6. That Theorem 7 cannot be 
altered by assuming screenability instead of strong screenability may be seen 
from Example B. 

THEOREM 8. A screenable Moore space is metrizable if it is normal. 
Proof. This result will follow from Theorem 7 if it is shown that a screen-

able normal developable space is strongly screenable. 
Let H be a collection of mutually exclusive open sets, W be the complement 

of H*, and d , 62, . . . be a development of the space. Denote by Xi the sum 
of all points p such that no element of Gi containing p intersects W. Since 
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the space is normal, there is a domain D containing Xi such that D does not 
intersect W. If Hi is the collection of all domains h such that h is the common 
part of D and an element of H, then Hi is a discrete collection of domains. 
Since for each collection H of mutually exclusive domains there is a collection 
Y^Hi covering H such that Hi is a discrete collection of domains which is a 
refinement of JE£, a normal developable space is strongly screenable if it is 
screenable. 

THEOREM 9. For each open covering H of a developable space there is a sequence 
Xu X2, . . . such that Xi is a discrete collection of closed sets which is a refinement 
of both Xt+i and H while J^Xi covers the space. 

Proof. Suppose W is a well ordering of H and Gi, G2, . . . is a development 
of the space such that G t+i is a refinement of G*. For each element h of H, 
let x(h, i) denote the sum of all points p such that no element of H that con­
tains p precedes h in W and each element of Gi containing p is a subset of h. 
If Xi denotes the collection of all such sets x(h, i), Xi is a discrete collection 
because no element of Gi intersects two elements of Xi. If p is a point and 
h(p) is the first element of H and W containing p, then for some integer i, 
[h(p), i] contains p. Hence J^Xi covers the space. 

THEOREM 10. A Moore space is metrizable if it is collectionwise normal. 

Proof. If it is shown that a collectionwise normal Moore space is screenable 
Theorem 10 will follow from Theorem 8. 

For each open covering H of the space, it follows from Theorem 9 that there 
is a sequence X\y X2, . . . such that Xi is a discrete collection of closed sets and 
^Xi is a covering of the space which is a refinement of H. Collectionwise 
normality insures that there is a collection F* of mutually exclusive open sets 
covering X*i such that no element of Yi intersects two elements of Xi but each 
is a subset of an element of H. Then Yu F2, . . . is a sequence such that £ Yi 
is a refinement of H covering the space and Yi is a collection of mutually ex­
clusive domains. Hence, the space is screenable. 

Question. Is there a normal Moore space which is neither screenable nor 
collectionwise normal? If this question could be answered, it could be deter­
mined whether or not each normal Moore space is metrizable. F. B. Jones 
showed [4] that such a space is metrizable if it is separable and Ni = C Hence, 
the space mentioned in Example E is metrizable if fc<i = C. 

EXAMPLE E. A separable normal Moore space. The points of the space are 
the points of the plane which lie above the x-axis and the points of a subset X 
of the x-axis such that each subset of X is the common part of X and a G« set 
in the plane. The elements of Gi are of two sorts: (a) the interior of a circle 
of radius less then 1/i which lies above the x-axis and (b) p + I where p is a 
point of X and I is the interior of a circle of diameter less than 1/i which is 
tangent to the x-axis at p from above. 

If X is countable, the above space is metrizable because it is perfectly 
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separable. The set X cannot have the power of the continuum because each 
subset Y with the power of the continuum in a separable metric space S con­
tains a subset Y' which is not the common part of Y and a G& set in S. 

In my paper [2] the following theorem is proved. 

THEOREM 11. A topological space is metrizable provided there exists a sequence 
Hi, H2, . . . such that 

(a) for each integer i, Hi is a collection of sets covering space, 

(b) a point p is a point of the closure of the set M if and only if for each integer 
n, some element of Hn contains p and intersects M, and 

(c') each pair of points that is covered by either an element of Hi+i or the sum 
of a pair of intersecting elements of Hi+i can be covered by an element of Hi. 

In [2] it was falsely stated that (c') could be replaced by (c) each pair of 
points that is covered by the sum of a pair of intersecting elements of Hi+i can be 
covered by an element of Hi. I am indebted to Dick Wick Hall for calling my 
attention to the fact that this replacement is not possible. This paper was 
being studied in one of his classes and L. K. Meals, a member of that class, 
pointed out that if S is a nonmetrizable space with a development Gi, G2, . . . 
such that Gi+\ is a refinement of Gi (as in Example A), then if Hi is Gi or 5 
according as i is odd or even, then Hi, H2f . . . satisfies conditions (a), (b), 
and (c). 

3, Collectionwise normality. In a developable space, either full normality10 

or collectionwise normality implies metrizability. However, in general, 
collectionwise normality is weaker than full normality as is shown in the 
following theorem. 

THEOREM 12. Full normality implies collectionwise normality but not con­
versely. 

Proof. Let W be a discrete collection of closed sets and H be an open cover­
ing of the space such that no element of H intersects two elements of W. If 
the space is fully normal, there is an open covering H' of the space such that 
for each point pr the sum of the elements of Hr containing p is a subset of an 
element of H. For each element w of W let Dw be the sum of the elements of 
H' intersecting w. If Wi and w2 are different elements of W, DWl does not 
intersect DW2 in a point p or else an element of H containing p intersects both 
Wi and w2. Then the collection of all such domains Dw is a collection of mutu­
ally exclusive domains covering W such that no one of these domains inter­
sects two elements of W. 

The space described below shows that collectionwise normality does not 
imply full normality. 

10A space is fully normal if for each open covering Hoi the space there is an open covering H' 
of the space such that the star of each point with respect to H' is a subset of an element of H. 
Stone showed [6] that the notions of full normality and paracompactness are equivalent for a 
topological space. 
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EXAMPLE F. A collectionwise normal space which is not fully normal. 
Points are the elements of an uncountable well ordered collection W such 
that no element of W is preceded by uncountably many elements of it. A 
neighbourhood is either the first element of W or the collection of all points 
that lie between two nonadjacent elements of W. 

This space is collectionwise normal because it is normal and does not con­
tain an infinite discrete collection of points. The space is not fully normal 
because if H is any collection of open sets covering the space, there is a point 
p such that the star of p with respect to H contains all points that follow p. 
There is an open covering H such that no elements of H contains all the points 
that follow some point in it. 

THEOREM 13. Suppose H is an open covering of a collectionwise normal 
space S and Hi, Hz, . . . is a sequence such that Hi is a discrete collection of closed 
sets and YlHi is a refinement of H which covers S. Then there is an open covering 
G of S such that G is a refinement of H and for each point p of an element of Hi 
there is a domain D containing p such that not more than i elements of G inter­
sect D. 

Since a metric space is developable and collectionwise normal, Theorems 9 
and 13 imply that a metric space is paracompact [6]. Theorem 13 would not be 
true if the hypothesis that £ # * covers 5 were omitted. 

Proof of Theorem 13. Since S is collectionwise normal, there is a discrete 
collection Fz of open sets covering the sum of the elements of Hi such that 
Yi is a refinement of H and each element of F» intersects just one element of 
Hi. As S is normal, there is an open set Di containing the sum of the elements 
of Hi such that Yi covers Di. Each element of Y\ is an element of G and if 
y is an element of F»+i not covered by D1+D2+ . . . + Â , y — (D1+D2... +Bj) 
is an element of G. 

THEOREM 14. Collectionwise normality implies normality but normality does 
not imply collectionwise normality. 

Proof. Since a collection consisting of two mutually exclusive closed sets is 
a discrete collection, collectionwise normality implies normality. We shall 
show that the space described in Example G is normal but not collectionwise 
normal. 

EXAMPLE G. A normal topological space that is not collectionwise normal. 
Let P be an uncountable set, Q the set of all subsets of P , and F the set of all 
functions f on Q having only 1 and 0 as values. To each element p of P 
associate the function fv whose value fv (q) on q is 1 or 0 according as p belongs 
to q or not. Let Fp be the set of all such functions fv. The set F is topolo-
gized as follows. Any point / in F — Fv is declared to be a neighbourhood 
of itself. Given a point fp in Fp and a finite subset r of Q we define the r neigh­
bourhood of fp to be the set of a l l / such that f(q) = fp(q) whenever q belongs 
to r. 
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To show the space F thus topologized is normal consider two mutually ex­
clusive closed subsets Hi and H2 of it. Let Ak(k = 1,2) be the set of points 
common to Hk and Fp and let qu be the associated set in P consisting of all p 
for which/p belongs to Ak. We suppose that neither A1 nor A2 is null because 
if A1 = 0, Hi and F — Hi are mutually exclusive domains containing Hi and 
H2 respectively. The set Z>& of all f in F such that f(qk) = 1 and /(<Zy) = 0 
(j 7^ k) is then an open set containing Ak. Moreover no point in F is com­
mon both to Di and D2. Therefore the sets (Dx — H2) + (Hi — Ai) and 
(D2 — Hi) + (H2 — A 2) are mutually exclusive open sets containing Hi and 
H2 respectively. 

We now show that F is not collectionwise normal. The subset Fp = {fp} 
of F is a discrete collection of points. However, there does not exist a collection 
of mutually exclusive neighbourhoods {Dp} such that Dp is a neighbourhood 
of/p. For suppose, to the contrary, that there were such a collection. Let 
Dp be the rp neighbourhood of fp. Since rp is a finite subset of Q and P is un­
countable there is an integer n and an uncountable subset W of P such that rp 

has exactly w elements for every p in W. For any two elements a and b olW 
the sets ra and r& have an element in common, else Da and Db would intersect. 
Hence there is an element qi of Q and an uncountable subset W\ of W such 
that qi belongs to rp for every p in Wi . Moreover there is a /1 with value 1 
or 0 and an uncountable subset Wi of W\ such that/p(^i) = t\ for every p in 
Wi. Similarly there is an element q2 of Q different from qh a t2 with value 
1 or 0, and an uncountable subset W2 of W\ such that q2 belongs to r2 and 
fviqi) = *2 for every p in W2. Continuing recursively in this fashion we get 
Qky tky Wk for k = 1, 2, . . . , n. Let r be the set consisting of qi, q2, . . . ,<?n 

and D the set of all / with f(qk) = tk for k = 1, 2, . . . , n. Then rp = r and 
Dp = D for all £ in Wn in contradiction to the choice of Z>p as mutually ex­
clusive. 

One might wonder if Example G could be modified so as to obtain a normal 
developable space which is not metrizable. A developable space could be 
obtained by introducing more neighbourhoods into the space F. However, a 
difficulty might arise in introducing enough neighbourhoods to make the re­
sulting space developable but not enough to make it collectionwise normal. 

Another method of modifying Example G is to replace points by closed sets. 
No non-isolated point of the space Fis the intersection of a countable number 
of neighbourhoods. In Example H, we modify Example G by replacing the 
points of F by closed sets so as to get a space in which all closed sets are inner 
limiting (Gs) sets.11 

EXAMPLE H. A normal topological space that is not collectionwise normal 
and in which each closed set is an inner limiting (Gs) set. We define P , Q, and 
Fp as in Example G but let the points of F be functions / defined on Q such 

n A set is an inner limiting set or Gs set if it is the intersection of a countable number of 
open sets. 
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tha.tf(x) is a non-negative integer. Each point of F — Fp is a neighbourhood. 
For each finite subset r of Q, each element fp of Fp, and each positive integer 
n , / p plus all points / of F such that / (x) > n (x element of Q) and/(x ') =/P(x ' ) 
mod 2 {x' element of r) is a neighbourhood. 
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